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We study the (underexplored!) setting where 
language is available at train time, but 
unavailable for new tasks at test time
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1. Does a model trained with language (LSL) do better than a 
model trained without (Meta)?

2. Is there any benefit to using language as a discrete bottleneck 
(L3), rather than just an auxiliary training objective (LSL)?
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Val Test

Meta 62 61

LSL 69 67

L3 70 67

ShapeWorld: Results

+6

+6
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Scaling up to real vision + language
Caltech-UCSD Birds
n-way, k-shot classification

Train Test
n-way

k-shot



Natural language annotations (Reed et al., 2016)



Natural language annotations (Reed et al., 2016)

Assume limited, class-level language:
sample D = 20 captions per class (~2000 captions total)



Birds: results
5-way, 1-shot classification

Accuracy
(± 95% CI)

Meta 58.0 ± .96

LSL 61.2 ± .96

L3 54.0 ± 1.1 -4.0

+3.3
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Two Questions

1. Does a model trained with language (LSL) do better than a 
model trained without (Meta)?
> Yes! Language is a promising source of supervision for vision
models.

2. Is there any benefit to using language as a discrete bottleneck 
(L3), rather than just an auxiliary training objective (LSL)?
> No, at least for the tasks explored here.



Questions for discussion

1. This paper looked at using language as (1) a regularizer, or (2) a 
bottleneck for class-level representations. How / where else 
could we use language to support the training process?

2. What do we expect to be the comparative strengths of LSL / L3 / 
other language-based training procedures?
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