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Zero-Shot Task 
Generalization with
Multi-Task Deep 
Reinforcement Learning

Oh et al. 2017

● Problem set up

● Approach and technical contributions
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● Learning a Parameterized Skill

● Learning to Execute Sequential Instructions

● Conclusions & Takeaways

● Discussion
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Feel free to raise your blue-Zoom 

hand if you want to add something 

as the presentation goes!



Motivation: Zero-shot task generalization

4Oh et al. 2017

Problem: It is infeasible to train a household 
robot to do every possible combinations of 
instructions.

1. Go to the kitchen
2. Wash dishes
3. Empty the trash can
4. Go to the bedroom

Unseen

Seen

Task 
space

Goal: Train the agent on a small set of tasks 
such that it can generalize over a larger set of 
tasks without additional training.



Motivation: Multi-task Deep Reinforcement 
Learning (RL)

5Oh et al. 2017

The agent is required to:
- Perform many different tasks depending on the given task description.
- Generalize over unseen task descriptions.

Observation

Agent

Task Description

Action



Problem set up

6Oh et al. 2017

Task:
Instruction execution: an agent's task is to 
execute a given list of instructions described 
by a simple form of natural language while 
dealing with unexpected events.

Assumption:
Each instruction can be executed by 
performing one or more high-level subtask 
in sequence.



Problem set up
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Task:
Instruction execution: an agent's task is to 
execute a given list of instructions described 
by a simple form of natural language while 
dealing with unexpected events.

Assumption:
Each instruction can be executed by 
performing one or more high-level subtask 
in sequence.

Challenges:
○ Generalization

■ Unseen subtasks (skill learning 
stage)

■ Longer sequences of instructions
○ Delayed reward (subtask updater)
○ Interruptions (bonus or emergencies)
○ Memory (loop tasks)



Discussion prompts (keep in mind for later)
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1. What are the limitations of this framework? Why?

2. How does structuring losses inform learned representations?

3. How could common sense reasoning and information be injected to the model 
so that we don't rely as much in training analogies.

4. How do you think this architecture would generalize to other specific 
tasks/scenarios? Why?

5. What are some tasks that the current framework wouldn't be able to generalize? 
Why?



Approach and technical contributions

9Oh et al. 2017

The learning problem is divided in two stages

1) Learning parameterized skills to perform 
subtasks and generalize to unseen subtasks.

subtask := several disentangled parameters

2) Learning to execute instructions using the 
learned skills.



Approach and technical contributions

10Oh et al. 2017

The learning problem is divided in two stages

1) Learning parameterized skills to perform 
subtasks and generalize to unseen subtasks.

subtask := several disentangled parameters

How to generalize?

New objective function that encourages making 
analogies between similar subtasks so that the 
manifold of the subtasks spaces can be learned 
without experiencing all subtasks.

The authors show that the analogy-making 
objective can generalize successfully.



Approach and technical contributions
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The learning problem is divided in two stages

How to generalize?

The meta controller's ability to learn when to 
update a subtask plays a key role in solving the 
overall problem.

2) Learning to execute instructions using the 
learned skills.



Related work

12Oh et al. 2017

- Much of previous work has assumed an optimal 
sequence of subtasks fixed during evaluation. Also 
using meta meta controller and a set low-level controllers 
for subtasks.

- Makes it hard to evaluate the agent's ability to solve 
previously unseen sequential tasks in a zero-shot 
fashion unless the agent is trained on the new tasks.

- Different to previous work, in this work instructions are 
a description of the tasks, where the agent needs to 
learn to use these descriptions to maximize reward.

- Most of the recent work on hierarchical RL and 
deep learning build an open-loop policy at the 
high-level controller that waits until the previous 
subtask is finished to trigger the next subtask.

- This open-loop approach is not able to handle 
interruptions, while this work proposed an 
architecture that can switch its subtask at any time.

Hierarchical RL Hierarchical Deep RL



Related work
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- Some previous work aimed at generalization by 
mapping task descriptions to policies or using 
sub-networks that are shared across tasks.

- Andreas et al. (2016) proposes a framework to 
generalize over new sequence of pre-learned tasks.

- This work propose a flexible metric learning 
method (i.e., analogy-making) that can be applied 
to various generalization scenarios.

- This work aims to generalize to both to unseen 
tasks and unseen sequences of them.

- Some work has focused on using natural language 
understanding to map instructions to actions.

- This work focuses on generalization to sequences 
of instructions without any supervision for language 
understanding or for actions.

- Branan et al. (2009) tackles a similar problem but 
with only a single instruction at a time, while the 
authors' agent works on aligning a list of 
instructions and internal state.

Zero-Shot Task Generalization Instruction execution



Approach

14Oh et al. 2017

The learning problem is divided in two stages

1) Learning parameterized skills to perform 
subtasks and generalize to unseen subtasks.

subtask := several disentangled parameters

2) Learning to execute instructions using the 
learned skills.



1) Learning a Parameterized Skill

15Oh et al. 2017

Object-independent scenario

Training Testing

Pick up (📦) Pick up (🎾)
Throw (⚽)

To generalize, the agent assumes:
● Semantics of each parameter are consistent.
● Required knowledge: "Pick up ⚽ as you pick 

up 📦."

Object-dependent scenario

Training Testing

Interact (🍎) = eat Interact (🍟) = eat
Interact (⚽) = throw

● Semantics of a task depend on a 
combination of parameters (e.g., target 
object).

● Impossible to generalize over unseen 
combinations without any prior knowledge.

● Required knowledge: 
"Interact with 🍟 as you interact with 🍎."



1) Learning a Parameterized Skill

16Oh et al. 2017

Pick up

📦

Representation of 
task parameters

Deep neural net

CONVx4 + LSTM



1) Learning a Parameterized Skill
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Pick up

📦

Representation of 
task parameters

Deep neural net

Analogy making
(Fully-connected output layer)

Aiming to generalize, this 
introduces knowledge about tasks 
through analogy-making in the task 
embedding space.

Actor-Critic
(Fully-connected output layer)

Binary classification
(Fully-connected output layer)

CONVx4 + LSTM



1) Learning a Parameterized Skill
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Pick up

📦

Representation of 
task parameters

Deep neural net, trained end-to-end with 
these three objectives.

Analogy making
(Fully-connected output layer)

Aiming to generalize, this 
introduces knowledge about tasks 
through analogy-making in the task 
embedding space.

Actor-Critic
(Fully-connected output layer)

Binary classification
(Fully-connected output layer)

CONVx4 + LSTM



1.1) Learning to Generalize by Analogy-Making

19

Goal: learn correspondence 
between tasks.

Analogy-making

Object-independent scenario

Acquire knowledge about the 
relationship between different task 
parameters when learning the task 
embedding.

[Visit, X] : [Visit, Y]  ::  [Pick up, X] : [Pick up, Y]

[Visit, X]   [Pick up, X]

[Visit, Y]   [Pick up, Y]
  unseen

difference

difference

=

Oh et al. 2017

Constraints in embedding space



1.1) Learning to Generalize by Analogy-Making
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Goal: learn correspondence 
between tasks.

Analogy-making

Object-independent scenario

[Visit, X] : [Visit, Y]  ::  [Pick up, X] : [Pick up, Y]

[Visit, X]   [Pick up, X]

[Visit, Y]   [Pick up, Y]
  unseen

difference

difference

=

Analogy-making (similar to 
Mikolov et al. (2013)).

Prevent trivial solutions and 
learn differences between 
tasks.

Constraints in embedding space



1.1) Learning to Generalize by Analogy-Making
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Goal: learn correspondence 
between tasks.

Analogy-making

Object-independent scenario

[Visit, X] : [Visit, Y]  ::  [Pick up, X] : [Pick up, Y]

[Visit, X]   [Pick up, X]

[Visit, Y]   [Pick up, Y]
  unseen

difference

difference

=

Analogy-making (similar to 
Mikolov et al. (2013)).

Prevent trivial solutions and 
learn differences between 
tasks.

Weighted sum of these three 
restrictions is added as a 
regularizer.

Constraints in embedding space



1) Learning a Parameterized Skill
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Pick up

📦
Representation of 
task parameters

Analogy making
(Fully-connected output layer)

Actor-Critic
(Fully-connected output layer)

Binary classification
(Fully-connected output layer)

analogy-making regularizer

cross-entropy loss for 
termination prediction

Fine-tune multi-task 
policy



1.1) Learning to Generalize by Analogy-Making
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Results

Sets of parameterized tasks

The semantics of the tasks are consistent across all types of target 
objects. Generalize to unseen configuration of task parameters.

Two groups: Group A and B. Given "interact with" action, Group A should 
be picked up, whereas Group B should be transformed. To generalize to 
unseen objects, the agent needs to learn an embedding for  the group.

A task is defined by: action, object, and number. Repeat the same subtask 
for a given number of times. Trained in all actions and objects, but not all 
numbers. The agent should generalize over unseen numbers.



1.1) Learning to Generalize by Analogy-Making
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Environment

Implementation details
- Curriculum training
- Actor-critic (parameters updated 

after 8 episodes).

http://www.youtube.com/watch?v=L7cumHGI4uM


1) Learning to Generalize by Analogy-Making
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Results



1) Learning to Generalize by Analogy-Making
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Results



1) Learning to Generalize by Analogy-Making
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Takeaways

● When learning a representation of task parameters, it is possible to inject prior 
knowledge in the form of the analogy-making objective.

● Analogy-making, in this particular scenario, was crucial for generalization to unseen 
task parameters depending on semantics or context without needing to experience 
them.



Problem set up
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Task:
Instruction execution: an agent's task is to 
execute a given list of instructions described 
by a simple form of natural language while 
dealing with unexpected events.

Assumption:
Each instruction can be executed by 
performing one or more high-level subtask 
in sequence.

Challenges:
○ Generalization

■ Unseen subtasks (skill learning 
stage)

■ Longer sequences of 
instructions

○ Delayed reward (subtask updater)
○ Interruptions (bonus or emergencies)
○ Memory (loop tasks)



2) Learning to execute instructions

29Oh et al. 2017

The agent needs to:
1. Execute a sequence of natural language instructions.

Read one instruction at a time (pointer).
Detect when the current instruction is finished.
Memory (keep track of progress -- counts)



2) Learning to execute instructions
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The agent needs to:
1. Execute a sequence of natural language instructions.

Read one instruction at a time (pointer).
Detect when the current instruction is finished.
Memory (keep track of progress -- counts)

2. Handle unexpected events (e.g., bonus or low battery).
Interrupt ongoing subtasks

Assume:
- Already trained parameterized skills.



2) Learning to execute instructions
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The learning problem is divided in two stages, stage 2:

How to generalize?

The meta controller's ability to learn when to 
update a subtask plays a key role in solving the 
overall problem.

2) Learning to execute instructions using the 
learned skills.



2) Learning to execute instructions

32Oh et al. 2017

Architecture

Meta Controller: reads instructions and 



2) Learning to execute instructions
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Architecture

Meta Controller: reads instructions and passes 
subtask parameters to the parameterized skill.
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Architecture

Meta Controller: reads instructions and passes 
subtask parameters to the parameterized skill.

Parameterized skill: executes the given subtask 
and



2) Learning to execute instructions
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Architecture

Meta Controller: reads instructions and passes 
subtask parameters to the parameterized skill.

Parameterized skill: executes the given subtask 
and gives a termination signal to the meta 
controller.



2.1) Meta Controller Architecture
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Meta controller can update its subtask at any time 
and take the termination signal as additional input.

Internal state (progress)

Sentence 
embedding



2.1) Meta Controller Architecture

37Oh et al. 2017Oh et al. 2017

Meta controller can update its subtask at any time 
and take the termination signal as additional input.

Internal state (progress)

Pointer to instructions

Sentence 
embedding



2) Learning to execute instructions
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The agent needs to:
1. Execute a sequence of natural language instructions.

Read one instruction at a time (pointer).
Detect when the current instruction is finished.
Memory (keep track of progress -- counts)

2. Handle unexpected events (e.g., bonus or low battery).
Interrupt ongoing subtasks



2.2) Learning to Operate at a Large Time-Scale
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Open-loop meta controller

- Update subtask only when the previous 
one is finished.

- Pro: can operate a larger time scale.

- Con: cannot handle unexpected events 
immediately.

Time

Unexpected event



2.2) Learning to Operate at a Large Time-Scale
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Closed-loop meta controller

- Update subtask at every step.

- Pro: can handle unexpected events.

- Con: need to make a decision in every 
time step.

Time



2.2) Learning to Operate at a Large Time-Scale
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Learned time-scale for meta 
controller

- Meta controller learns when to 
update a subtask. It introduces an 
internal binary decision which 
indicates whether to invoke the 
subtask updater or not (e.g., move 
the pointer).

- Pro: can handle unexpected events.

- Con: can operate at larger time 
scale. 



2.2) Learning to Operate at a Large Time-Scale
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Hierarchical dynamic time-scale for 
meta controller

- Can capture both long-term and 
short-term temporal information.

Time

Low-level units 
focus on 
short-term 
information.

High-level units 
capture 
long-term 
dependencies.



2) Learning to execute instructions
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Experiments & RQs

RQ1) Will the proposed hierarchical architecture outperform a 
non-hierarchical baseline?

RQ2) How beneficial is the meta controller's ability to learn when to 
update the subtask?



2) Learning to execute instructions

44Oh et al. 2017

Experiments & RQs

It directly chooses actions without using the parameterized 
skill. It is also pre-trained on the training set of subtasks.

Open-loop

Closed-loop

Proposed hierarchical dynamic controller.



2) Learning to execute instructions
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Results

Open-loop

Closed-loop

Without parameterized skills

Proposed approach
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Results

Open-loop

Closed-loop

Without parameterized skills

Proposed approach



2) Learning to execute instructions
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Takeaways

● Overall performance: their agent is able to generalize to longer compositions of seen 
and unseen instructions by just learning to solve short sequences of a subset of 
instructions.

● The proposed controller is key to handle loop instructions, thanks to its ability to 
determine when to move to the next task (informed by parameterized skills) and keep 
progress in memory.

● Their architecture makes fewer decisions by operating at a large time-scale.



Summary
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Looking for: Zero-shot task generalization capabilities in Reinforcement Learning (RL)

Introduce a new RL problem with two steps:
1. An agent should learn useful skills that solve subtasks.
2. The same agent should learn to execute sequences of tasks using the learned skills.

Required generalization types:
● Generalize to previously unseen instructions

○ New objective which encourages learning correspondences between similar subtasks by 
making analogies.

● Generalize to longer sequences of instructions
○ Hierarchical architecture where a meta controller learns to use the acquired skills for 

executing the instructions.



Takeaways
Oh et al. 2017

● Explored a  type of zero-shot task generalization 
in RL.

- Parameterized tasks
- Sequence of instructions

● Propose a new problem where an agent is 
required to execute and generalize over 
sequences of instructions.

● We can teach to generalize to new tasks with 
analogies through metric learning (learning a 
distance function between objects).

● Learning when to update subtasks helps when 
the agent has high-level skills and deals with 
complex decision problems.

49



Discussion prompts
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1. What are the limitations of this framework? Why?

2. How does structuring losses inform learned representations?

3. How could common sense reasoning and information be injected to the model 
so that we don't rely as much in training analogies.

4. How do you think this architecture would generalize to other specific 
tasks/scenarios? Why?

5. What are some tasks that the current framework wouldn't be able to generalize? 
Why?



2) Learning to execute instructions
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Results

Closed-loop
Without parameterized skills

Proposed approach


