
Structured Losses
Zero-Shot Task Generalization with
Multi-Task Deep Reinforcement Learning
Junhyuk Oh, Satinder Singh, Honglak Lee, Pushmeet
Kohli
Oh et al. 2017 https://arxiv.org/abs/1706.05064

Presented by Belén Saldías
belen@mit.edu
Friday, November 6, 2020

https://arxiv.org/abs/1706.05064

Outline
1. Paper: Oh et al. 2017 11:35 - 12:05 (~ 30 mins)
2. Breakout rooms discussion 12:05 - 12:20 (~ 15 mins)
3. Class discussion 12:20 - 12:30 (~ 10 mins)

2

Zero-Shot Task
Generalization with
Multi-Task Deep
Reinforcement Learning

Oh et al. 2017

● Problem set up

● Approach and technical contributions

● Related work

● Learning a Parameterized Skill

● Learning to Execute Sequential Instructions

● Conclusions & Takeaways

● Discussion

3

Feel free to raise your blue-Zoom

hand if you want to add something

as the presentation goes!

Motivation: Zero-shot task generalization

4Oh et al. 2017

Problem: It is infeasible to train a household
robot to do every possible combinations of
instructions.

1. Go to the kitchen
2. Wash dishes
3. Empty the trash can
4. Go to the bedroom

Unseen

Seen

Task
space

Goal: Train the agent on a small set of tasks
such that it can generalize over a larger set of
tasks without additional training.

Motivation: Multi-task Deep Reinforcement
Learning (RL)

5Oh et al. 2017

The agent is required to:
- Perform many different tasks depending on the given task description.
- Generalize over unseen task descriptions.

Observation

Agent

Task Description

Action

Problem set up

6Oh et al. 2017

Task:
Instruction execution: an agent's task is to
execute a given list of instructions described
by a simple form of natural language while
dealing with unexpected events.

Assumption:
Each instruction can be executed by
performing one or more high-level subtask
in sequence.

Problem set up

7Oh et al. 2017

Task:
Instruction execution: an agent's task is to
execute a given list of instructions described
by a simple form of natural language while
dealing with unexpected events.

Assumption:
Each instruction can be executed by
performing one or more high-level subtask
in sequence.

Challenges:
○ Generalization

■ Unseen subtasks (skill learning
stage)

■ Longer sequences of instructions
○ Delayed reward (subtask updater)
○ Interruptions (bonus or emergencies)
○ Memory (loop tasks)

Discussion prompts (keep in mind for later)

8

1. What are the limitations of this framework? Why?

2. How does structuring losses inform learned representations?

3. How could common sense reasoning and information be injected to the model
so that we don't rely as much in training analogies.

4. How do you think this architecture would generalize to other specific
tasks/scenarios? Why?

5. What are some tasks that the current framework wouldn't be able to generalize?
Why?

Approach and technical contributions

9Oh et al. 2017

The learning problem is divided in two stages

1) Learning parameterized skills to perform
subtasks and generalize to unseen subtasks.

subtask := several disentangled parameters

2) Learning to execute instructions using the
learned skills.

Approach and technical contributions

10Oh et al. 2017

The learning problem is divided in two stages

1) Learning parameterized skills to perform
subtasks and generalize to unseen subtasks.

subtask := several disentangled parameters

How to generalize?

New objective function that encourages making
analogies between similar subtasks so that the
manifold of the subtasks spaces can be learned
without experiencing all subtasks.

The authors show that the analogy-making
objective can generalize successfully.

Approach and technical contributions

11Oh et al. 2017

The learning problem is divided in two stages

How to generalize?

The meta controller's ability to learn when to
update a subtask plays a key role in solving the
overall problem.

2) Learning to execute instructions using the
learned skills.

Related work

12Oh et al. 2017

- Much of previous work has assumed an optimal
sequence of subtasks fixed during evaluation. Also
using meta meta controller and a set low-level controllers
for subtasks.

- Makes it hard to evaluate the agent's ability to solve
previously unseen sequential tasks in a zero-shot
fashion unless the agent is trained on the new tasks.

- Different to previous work, in this work instructions are
a description of the tasks, where the agent needs to
learn to use these descriptions to maximize reward.

- Most of the recent work on hierarchical RL and
deep learning build an open-loop policy at the
high-level controller that waits until the previous
subtask is finished to trigger the next subtask.

- This open-loop approach is not able to handle
interruptions, while this work proposed an
architecture that can switch its subtask at any time.

Hierarchical RL Hierarchical Deep RL

Related work

13Oh et al. 2017

- Some previous work aimed at generalization by
mapping task descriptions to policies or using
sub-networks that are shared across tasks.

- Andreas et al. (2016) proposes a framework to
generalize over new sequence of pre-learned tasks.

- This work propose a flexible metric learning
method (i.e., analogy-making) that can be applied
to various generalization scenarios.

- This work aims to generalize to both to unseen
tasks and unseen sequences of them.

- Some work has focused on using natural language
understanding to map instructions to actions.

- This work focuses on generalization to sequences
of instructions without any supervision for language
understanding or for actions.

- Branan et al. (2009) tackles a similar problem but
with only a single instruction at a time, while the
authors' agent works on aligning a list of
instructions and internal state.

Zero-Shot Task Generalization Instruction execution

Approach

14Oh et al. 2017

The learning problem is divided in two stages

1) Learning parameterized skills to perform
subtasks and generalize to unseen subtasks.

subtask := several disentangled parameters

2) Learning to execute instructions using the
learned skills.

1) Learning a Parameterized Skill

15Oh et al. 2017

Object-independent scenario

Training Testing

Pick up (📦) Pick up (🎾)
Throw (⚽)

To generalize, the agent assumes:
● Semantics of each parameter are consistent.
● Required knowledge: "Pick up ⚽ as you pick

up 📦."

Object-dependent scenario

Training Testing

Interact (🍎) = eat Interact (🍟) = eat
Interact (⚽) = throw

● Semantics of a task depend on a
combination of parameters (e.g., target
object).

● Impossible to generalize over unseen
combinations without any prior knowledge.

● Required knowledge:
"Interact with 🍟 as you interact with 🍎."

1) Learning a Parameterized Skill

16Oh et al. 2017

Pick up

📦

Representation of
task parameters

Deep neural net

CONVx4 + LSTM

1) Learning a Parameterized Skill

17Oh et al. 2017

Pick up

📦

Representation of
task parameters

Deep neural net

Analogy making
(Fully-connected output layer)

Aiming to generalize, this
introduces knowledge about tasks
through analogy-making in the task
embedding space.

Actor-Critic
(Fully-connected output layer)

Binary classification
(Fully-connected output layer)

CONVx4 + LSTM

1) Learning a Parameterized Skill

18Oh et al. 2017

Pick up

📦

Representation of
task parameters

Deep neural net, trained end-to-end with
these three objectives.

Analogy making
(Fully-connected output layer)

Aiming to generalize, this
introduces knowledge about tasks
through analogy-making in the task
embedding space.

Actor-Critic
(Fully-connected output layer)

Binary classification
(Fully-connected output layer)

CONVx4 + LSTM

1.1) Learning to Generalize by Analogy-Making

19

Goal: learn correspondence
between tasks.

Analogy-making

Object-independent scenario

Acquire knowledge about the
relationship between different task
parameters when learning the task
embedding.

[Visit, X] : [Visit, Y] :: [Pick up, X] : [Pick up, Y]

[Visit, X] [Pick up, X]

[Visit, Y] [Pick up, Y]
 unseen

difference

difference

=

Oh et al. 2017

Constraints in embedding space

1.1) Learning to Generalize by Analogy-Making

20Oh et al. 2017

Goal: learn correspondence
between tasks.

Analogy-making

Object-independent scenario

[Visit, X] : [Visit, Y] :: [Pick up, X] : [Pick up, Y]

[Visit, X] [Pick up, X]

[Visit, Y] [Pick up, Y]
 unseen

difference

difference

=

Analogy-making (similar to
Mikolov et al. (2013)).

Prevent trivial solutions and
learn differences between
tasks.

Constraints in embedding space

1.1) Learning to Generalize by Analogy-Making

21Oh et al. 2017

Goal: learn correspondence
between tasks.

Analogy-making

Object-independent scenario

[Visit, X] : [Visit, Y] :: [Pick up, X] : [Pick up, Y]

[Visit, X] [Pick up, X]

[Visit, Y] [Pick up, Y]
 unseen

difference

difference

=

Analogy-making (similar to
Mikolov et al. (2013)).

Prevent trivial solutions and
learn differences between
tasks.

Weighted sum of these three
restrictions is added as a
regularizer.

Constraints in embedding space

1) Learning a Parameterized Skill

22Oh et al. 2017

Pick up

📦
Representation of
task parameters

Analogy making
(Fully-connected output layer)

Actor-Critic
(Fully-connected output layer)

Binary classification
(Fully-connected output layer)

analogy-making regularizer

cross-entropy loss for
termination prediction

Fine-tune multi-task
policy

1.1) Learning to Generalize by Analogy-Making

23Oh et al. 2017

Results

Sets of parameterized tasks

The semantics of the tasks are consistent across all types of target
objects. Generalize to unseen configuration of task parameters.

Two groups: Group A and B. Given "interact with" action, Group A should
be picked up, whereas Group B should be transformed. To generalize to
unseen objects, the agent needs to learn an embedding for the group.

A task is defined by: action, object, and number. Repeat the same subtask
for a given number of times. Trained in all actions and objects, but not all
numbers. The agent should generalize over unseen numbers.

1.1) Learning to Generalize by Analogy-Making

24Oh et al. 2017

Environment

Implementation details
- Curriculum training
- Actor-critic (parameters updated

after 8 episodes).

http://www.youtube.com/watch?v=L7cumHGI4uM

1) Learning to Generalize by Analogy-Making

25Oh et al. 2017

Results

1) Learning to Generalize by Analogy-Making

26Oh et al. 2017

Results

1) Learning to Generalize by Analogy-Making

27Oh et al. 2017

Takeaways

● When learning a representation of task parameters, it is possible to inject prior
knowledge in the form of the analogy-making objective.

● Analogy-making, in this particular scenario, was crucial for generalization to unseen
task parameters depending on semantics or context without needing to experience
them.

Problem set up

28Oh et al. 2017

Task:
Instruction execution: an agent's task is to
execute a given list of instructions described
by a simple form of natural language while
dealing with unexpected events.

Assumption:
Each instruction can be executed by
performing one or more high-level subtask
in sequence.

Challenges:
○ Generalization

■ Unseen subtasks (skill learning
stage)

■ Longer sequences of
instructions

○ Delayed reward (subtask updater)
○ Interruptions (bonus or emergencies)
○ Memory (loop tasks)

2) Learning to execute instructions

29Oh et al. 2017

The agent needs to:
1. Execute a sequence of natural language instructions.

Read one instruction at a time (pointer).
Detect when the current instruction is finished.
Memory (keep track of progress -- counts)

2) Learning to execute instructions

30Oh et al. 2017

The agent needs to:
1. Execute a sequence of natural language instructions.

Read one instruction at a time (pointer).
Detect when the current instruction is finished.
Memory (keep track of progress -- counts)

2. Handle unexpected events (e.g., bonus or low battery).
Interrupt ongoing subtasks

Assume:
- Already trained parameterized skills.

2) Learning to execute instructions

31Oh et al. 2017

The learning problem is divided in two stages, stage 2:

How to generalize?

The meta controller's ability to learn when to
update a subtask plays a key role in solving the
overall problem.

2) Learning to execute instructions using the
learned skills.

2) Learning to execute instructions

32Oh et al. 2017

Architecture

Meta Controller: reads instructions and

2) Learning to execute instructions

33Oh et al. 2017

Architecture

Meta Controller: reads instructions and passes
subtask parameters to the parameterized skill.

2) Learning to execute instructions

34Oh et al. 2017

Architecture

Meta Controller: reads instructions and passes
subtask parameters to the parameterized skill.

Parameterized skill: executes the given subtask
and

2) Learning to execute instructions

35Oh et al. 2017

Architecture

Meta Controller: reads instructions and passes
subtask parameters to the parameterized skill.

Parameterized skill: executes the given subtask
and gives a termination signal to the meta
controller.

2.1) Meta Controller Architecture

36Oh et al. 2017Oh et al. 2017

Meta controller can update its subtask at any time
and take the termination signal as additional input.

Internal state (progress)

Sentence
embedding

2.1) Meta Controller Architecture

37Oh et al. 2017Oh et al. 2017

Meta controller can update its subtask at any time
and take the termination signal as additional input.

Internal state (progress)

Pointer to instructions

Sentence
embedding

2) Learning to execute instructions

38Oh et al. 2017

The agent needs to:
1. Execute a sequence of natural language instructions.

Read one instruction at a time (pointer).
Detect when the current instruction is finished.
Memory (keep track of progress -- counts)

2. Handle unexpected events (e.g., bonus or low battery).
Interrupt ongoing subtasks

2.2) Learning to Operate at a Large Time-Scale

39Oh et al. 2017

Open-loop meta controller

- Update subtask only when the previous
one is finished.

- Pro: can operate a larger time scale.

- Con: cannot handle unexpected events
immediately.

Time

Unexpected event

2.2) Learning to Operate at a Large Time-Scale

40Oh et al. 2017

Closed-loop meta controller

- Update subtask at every step.

- Pro: can handle unexpected events.

- Con: need to make a decision in every
time step.

Time

2.2) Learning to Operate at a Large Time-Scale

41Oh et al. 2017

Learned time-scale for meta
controller

- Meta controller learns when to
update a subtask. It introduces an
internal binary decision which
indicates whether to invoke the
subtask updater or not (e.g., move
the pointer).

- Pro: can handle unexpected events.

- Con: can operate at larger time
scale.

2.2) Learning to Operate at a Large Time-Scale

42Oh et al. 2017

Hierarchical dynamic time-scale for
meta controller

- Can capture both long-term and
short-term temporal information.

Time

Low-level units
focus on
short-term
information.

High-level units
capture
long-term
dependencies.

2) Learning to execute instructions

43Oh et al. 2017

Experiments & RQs

RQ1) Will the proposed hierarchical architecture outperform a
non-hierarchical baseline?

RQ2) How beneficial is the meta controller's ability to learn when to
update the subtask?

2) Learning to execute instructions

44Oh et al. 2017

Experiments & RQs

It directly chooses actions without using the parameterized
skill. It is also pre-trained on the training set of subtasks.

Open-loop

Closed-loop

Proposed hierarchical dynamic controller.

2) Learning to execute instructions

45Oh et al. 2017

Results

Open-loop

Closed-loop

Without parameterized skills

Proposed approach

2) Learning to execute instructions

46Oh et al. 2017

Results

Open-loop

Closed-loop

Without parameterized skills

Proposed approach

2) Learning to execute instructions

47Oh et al. 2017

Takeaways

● Overall performance: their agent is able to generalize to longer compositions of seen
and unseen instructions by just learning to solve short sequences of a subset of
instructions.

● The proposed controller is key to handle loop instructions, thanks to its ability to
determine when to move to the next task (informed by parameterized skills) and keep
progress in memory.

● Their architecture makes fewer decisions by operating at a large time-scale.

Summary

48Oh et al. 2017

Looking for: Zero-shot task generalization capabilities in Reinforcement Learning (RL)

Introduce a new RL problem with two steps:
1. An agent should learn useful skills that solve subtasks.
2. The same agent should learn to execute sequences of tasks using the learned skills.

Required generalization types:
● Generalize to previously unseen instructions

○ New objective which encourages learning correspondences between similar subtasks by
making analogies.

● Generalize to longer sequences of instructions
○ Hierarchical architecture where a meta controller learns to use the acquired skills for

executing the instructions.

Takeaways
Oh et al. 2017

● Explored a type of zero-shot task generalization
in RL.

- Parameterized tasks
- Sequence of instructions

● Propose a new problem where an agent is
required to execute and generalize over
sequences of instructions.

● We can teach to generalize to new tasks with
analogies through metric learning (learning a
distance function between objects).

● Learning when to update subtasks helps when
the agent has high-level skills and deals with
complex decision problems.

49

Discussion prompts

50

1. What are the limitations of this framework? Why?

2. How does structuring losses inform learned representations?

3. How could common sense reasoning and information be injected to the model
so that we don't rely as much in training analogies.

4. How do you think this architecture would generalize to other specific
tasks/scenarios? Why?

5. What are some tasks that the current framework wouldn't be able to generalize?
Why?

2) Learning to execute instructions

51Oh et al. 2017

Results

Closed-loop
Without parameterized skills

Proposed approach

