Trees!

Jacob Andreas / MIT 6.804-6.864 / Spring 2020

All grades are now Pass / No Record. II / TQE status is not affected.

Midterm has been turned into a homework assignment, and no peer grading on future assignments. Deadlines are flexible.

Let us know if you're having trouble accessing videos.

Stay safe!

Admin

Recap: labels and sequences

Predicting labels

 $W_2^{\mathsf{T}}h_1 = S$ 0 0 1 "hidden layer" [1] output

Predicting sequences: n-gram models

sphinx of

Predicting sequences: n-gram models

sphinx of

Predicting sequences: neural networks

Labeling sequences: HMMs & CRFs

HMM: $p(O, Q) = p(q_t | q_{t-1}) p(o_t | q_t)$ t

Labeling sequences: HMMs & CRFs

Labeling sequences: HMMs & CRFs

Labeling sequences: neural networks

cheap and delicious [SEP] would definitely [CLS] buy again

transformer

11

Sequence-to-sequence models

ENCODER

Other structures

Syntax

Syntax

[Images: <u>thespruceeats.com</u>, <u>freepik.com</u>]

Syntax

Useful to distinguish between statements and beliefs, even in

Semantics

forbid(send(find(type=email), find(keyword=dean))

the email to the dean

Semantics

forbid(send(find(type=email), find(keyword=dean))

Semantics

Discourse

The projections are in the neighborhood of 50 cents a share to 75 cents,

[Ji and Eisenstein 2014]

\$1.65 a share a year earlier,

when profit was \$107.8 million on sales of \$435.5 million.

"Simplest" formal generative process that provides hierarchical relationships and long-distance dependencies:

My <u>aunt gave</u> me a <u>microscope</u>.

My aunt's <u>sister gave</u> me a <u>microscope</u>.

My aunt's <u>sister</u>, who works at the NIH, <u>gave</u> me a microscope.

Why trees?

- My aunt's sister, who works at a little-known constituent institute of th

Syntax in ten minutes

Key idea from previous examples: some sentence fragments "stick together"—can be moved around, replaced, and modified without affecting meaning / grammaticality:

- I ate spaghetti with meatballs
- ate
- nte

It was spaghetti with meatballs that I ate

Some fragments are harder to manipulate:

- ate spaghetti with meatballs
- *ate* meatballs **X** (meaning changed)

It was ate spaghetti with that I meatballs X (not grammatical)

Not just things:

ate spaghetti with a fork

ate spaghetti

was with a fork that I ate spaghetti lt

Constituents

Constituents & Types

Constituents & Types

Constituents & Types

Lots of research on the exact form of this hierarchy. For most NLP applications: entities, events, relations.

Types & semantics

Types & semantics

Just like in HMMs, we'd like to define some joint distribution over sentences and underlying structures, and reason about marginals and conditionals.

What's the right distribution over trees and sentences?

Context free grammars

A **sentence** might consist of an entity and an action. [*I*] [*swallowed the spider*]

Context free grammars

A sentence might consist of an entity and an action. [I] [swallowed the spider]

 $S \rightarrow NP VP$ a Noun Phrase followed by a Verb Phrase make a Sentence

A sentence might just consist of an action. [eat the spider]

 \rightarrow VP

a Verb Phrase makes a Sentence

Context free grammars

$S \rightarrow NP VP | VP$ "or"

the followed by a noun makes an entity

 $NP \rightarrow the N$

N → cat | dog | spider | cheesecake | democracy

a verb and an optional entity make an action $VP \rightarrow V \mid V NP$

 $V \rightarrow eat | eats | run | differentiate | ...$

- $S \rightarrow NP VP | VP$
- $NP \rightarrow the N$
 - $N \rightarrow cat$ | dog | spider | cheesecake | democracy
- $VP \rightarrow V \mid V \mid NP$
 - $V \rightarrow eat | eats | run | differentiate | ...$

A sample from our CFG

- $S \rightarrow NP VP | VP$
- $NP \rightarrow the N$
 - $N \rightarrow cat \mid dog \mid spider \mid cheesecake \mid democracy$
- $VP \rightarrow V \mid V \mid NP$
 - $V \rightarrow eat \mid eats \mid run \mid differentiate \mid ...$
 - the cat VP S
- NP VP the cat V NP the N VP
 - the cat eat NP

A sample from our CFG

the cat eat the N the cat eat the democracy

- $S \rightarrow NP VP VP$
- $NP \rightarrow the N$
 - $N \rightarrow cat$ | dog | spider | cheesecake | democracy
- $VP \rightarrow V \mid V \mid NP$
 - $V \rightarrow eat | eats | run | differentiate | ...$

A sample from our CFG

What about other languages?

a taky na to většinou nemá peníze and also for it generally hasn't money

and in most cases he has no money for it either

[McDonald et al 2005]

What about other languages?

a taky na to většinou nemá peníze and also for it generally hasn't money

and in most cases he has no money for it either

can't draw a constituency tree!

Dependency grammar

Probabilistic grammars

Probabilistic CFGs

- 1. A set of nonterminal symbols N 2. A set of terminal symbols T
- 3. A set of rules *R*
- **4.** A set of rule probabilities $p(r \in R \mid n \in N)$

A probabilistic context free grammar (PCFG) consists of

A rule consists of

- 1. A left hand symbol
- 2. A sequence of right-hand symbols

LHS RHS $S \rightarrow NP VP$

such that $\sum_{rules with LHS symbol A} p(rule | LHS) = 1$

prob 0.75

Queries: joint probability

p(I, S)

joint prob. of tree and sentence

$p(S \rightarrow NP VP) \cdot p(NP \rightarrow D N)$ $p(D \rightarrow the) \cdot p(N \rightarrow cat) \cdots$

$\operatorname{argmax}_T p(T \mid S)$

most probable tree given sent.

 $p(S \rightarrow NP VP) \cdot p(NP \rightarrow D N)$ $p(D \rightarrow the) \cdot p(N \rightarrow cat) \cdots$

Queries: sentence marginal

p(S)

prob. of sentence under any tree

(there are $\frac{(2n)!}{(n+1)!n!}$ unlabeled binary trees over *n* words...)

Parsing

- Notational convenience: only binary trees.
- Every rule has one of these forms:
- Nonterminal \rightarrow Terminal Nonterminal \rightarrow Nonterminal Nonterminal
- (Can always get rules into this form by introducing new NTs)

Chomsky normal form

Is the string S generated by CFG G?

- $S \rightarrow NP VP$
- $NP \rightarrow DN$
 - $N \rightarrow cat | eats$
 - VP → eats | sings
 - $D \rightarrow the | a$

1. Fill in bottom row with NTs that can generate observed words

- $S \rightarrow NP VP$
- $NP \rightarrow DN$
 - $N \rightarrow cat | eats$
- VP → eats | sings
- $D \rightarrow the | a$

2. Fill in second row with NTs that generate a symbol in each child

- $S \rightarrow NP VP$
- $NP \rightarrow DN$
 - $N \rightarrow cat | eats$
 - $VP \rightarrow eats | sings$
 - $D \rightarrow the | a$

3. Fill in higher rows with NTs that generate a symbol any pair of non-overlapping children

- \rightarrow NP VP
- $NP \rightarrow DN$
 - $N \rightarrow cat | eats$
 - $VP \rightarrow eats | sings$
 - $D \rightarrow the | a$

3. Fill in higher cells with NTs that generate symbols in any pair of non-overlapping children

- \rightarrow NP VP
- $NP \rightarrow DN$
 - $N \rightarrow cat | eats$
 - $VP \rightarrow eats | sings$
 - $D \rightarrow the | a$

4. If the top cell contains the start symbol, the string is generated.

- $S \rightarrow NP VP$
- $NP \rightarrow DN$
 - $N \rightarrow cat | eats$
 - $VP \rightarrow eats | sings$
 - $D \rightarrow the | a$

What parse assigns highest prob. to S under the PCFG G?

- 0.9 0.1 $S \rightarrow NPVP | NPN$
- NP \rightarrow D N
 - 0.8 0.2
 - $N \rightarrow cat | eats$
 - 0.5 0.5
 - $VP \rightarrow eats$ sings

0.5 0.5 $D \rightarrow the \mid a$

1. Fill in bottom row with prob. that each NT generates word

0.9 0.1 $S \rightarrow NPVP | NPN$ NP \rightarrow DN 0.8 0.2 $N \rightarrow cat | eats$ 0.5 0.5 $VP \rightarrow eats$ sings 0.5 0.5 \rightarrow the | a D

probs. times rule prob.

2. Fill in higher rows with highest-scoring product of child

0.9 0.1 $S \rightarrow NPVP \mid NPN$ = 0.5 x 0.8 x 1 NP \rightarrow D N 0.8 0.2 → cat | eats Ν 0.5 0.5 eats $VP \rightarrow$ sings 0.5 0.5 $D \rightarrow the | a$

probs. times rule prob.

2. Fill in higher rows with highest-scoring product of child

NP \rightarrow D N 0.8 0.2 \rightarrow cat | eats Ν 0.5 0.5 eats $VP \rightarrow$ sings 0.5 0.5 \rightarrow the | a D

3. The score for S in the top cell is the score of the best parse. 0.9 0.1 $S \rightarrow NPVP | NPN$ NP \rightarrow D N 0.8 0.2 → cat | eats Ν 0.5 0.5 eats $VP \rightarrow$ sings 0.5 0.5 \rightarrow the | a D

The Viterbi algorithm for CFGs

Q: what is the most probable tree for a given sentence?

 $\delta(s, i, j)$ highest-scoring tree with root s covering words i:j

base case:

 $\delta(s, i, i+1) = p(s \to w_i)$

inductive case: $\delta(s, i, j) = \max \max p(s \to s's'') \,\delta(s', i, k) \,\delta(s'', k, j)$ $k \in [i+1, j-1] \quad s', s''$

$\max_T p(T, S)$

The Viterbi algorithm for CRFs

Q: what is the **most probable** assignment of tags to observations?

$$\delta(t,j) = \max_{i} \delta(t-1,i) a_{ij}$$

$\operatorname{argmax}_{Q} p(Q \mid O)$

 $\delta(1,j) = \pi(j) \ b_j(o_1)$ $b_i(O_t)$

The inside algorithm for CFGs

Q: what is the marginal probability of a sentence given a tree?

 $\beta(s, i, j)$ probability of all parses with root s covering words i:j

base case:

 $\beta(s, i, i+1) = p(s \to w_i)$

inductive case:

 $\beta(s, i, j) =$ $k \in [i+1, j-1] \ s', s''$

 $\sum p(s \to s's'') \beta(s', i, k) \beta(s'', k, j)$

Instead of scores $p(A \rightarrow B C)$, use an arbitrary scorer $w^{\mathsf{T}}\phi(A, B, C, i, j)$

(can be different in each cell & look at full sentence sentence)

Works just like the HMM version! $\beta(S,0,|S|)$ is the partition function

Learning

Supervised learning

Supervised learning

estimate by counting: $p(S \rightarrow NP VP)$ $\#(S \rightarrow NP VP)$

This doesn't work very well: basic syntactic categories are too coarse.

Supervised learning: lexicalization

Idea: enrich nonterminal alphabet with information about the most important **word** underneath:

[e.g. Collins 97]

Supervised learning: Markovization

Idea: enrich nonterminal alphabet with more information about the local tree structure:

[e.g. Klein 03]

Supervised learning: features & NNs

$P(T) \propto \exp\left\{ \sum w^{\mathsf{T}} \phi(A, B, C, i, k, j) \right\}$ $(A \rightarrow B C, i, k, j)$

and give ϕ features like "A = NP and j:k contains fork" (or make it a neural network)

Idea: Use the CRF version

Supervised parsing: what's still hard?

		Nodes		
Error Type	Occurrences	Involved	Ratio	
PP Attachment	846	1455	1.7	spaghetti with a fork
Single Word Phrase	490	490	1.0	
Clause Attachment	385	913	2.4	
Adverb and Adjective Modifier Attachment	383	599	1.6	
Different Label	377	754	2.0	
Unary	347	349	1.0	
NP Attachment	321	597	1.9	ГГ <i>I I I</i> I I
NP Internal Structure	299	352	1.2	> [[world oil] prices]
Coordination	209	557	2.7	
Unary Clause Label	185	200	1.1	
VP Attachment	64	159	2.5	
Parenthetical Attachment	31	74	2.4	
Missing Parenthetical	12	17	1.4	
Unclassified	655	734	1.1	_

[Kummerfeld, 2016]

Unsupervised learning

Model

Random Trees Right Branching

Scalar PCFG (unsupervised)

worse than assuming every tree looks like this:

[Kim et al. 2018]

Unsupervised learning: embeddings

Model

Random Trees Right Branching Scalar PCFG Neural PCFG

"Grammar embeddings": $p(A \rightarrow B \ C) \propto \exp\{v_A^{\mathsf{T}} f(v_B, v_C)\}$

[Kim et al. 2018]

F_1	Training/Test PPL
19.5	
39.5	
< 35.0	> 350
52.6	≈ 250

What about neural nets?

almost as good: train an independent cell classifier that takes $v_{i,j,k}$ as input

transformer

Next class: advanced language modeling