Conditional Random Fields

Jacob Andreas / MIT 6.864 / Spring 2020

Admin

Don't worry about "right" answers! Describe the results of your experiments.

The initial code scaffold is just a scaffold—you'll need to write additional code (loops over parameters, etc.) to answer the questions in the notebook.

Homework 1

Today: sign up for OpenReview https://openreview.net/group?id=csail.mit.edu/MIT/MIT-6.864 Make sure you can both submit and review.

On Thursday: upload your report to Stellar, and your report and code printout to OpenReview.

On Monday: review assignments & rubric will be sent. We'll also provide a sample report and worksheet from TAs. You'll grade 2 of your classmates' HWs (anonymously!).

The review form will look something like this:

- 1a. Does the report answer the questions from Part 1? **Oall** Omost Olor 2 Onone
- 1b. Summarize any challenges encountered and the described solutions.
- 1c. For which answers in this section are convincing experiments / proof provided? Which need more work?

Will also be released in two parts. HW2a on Thursday and HW2b on Tuesday.

Same format.

Better tested! $\overline{\mathbf{O}}$

Saturdays 4–5:30p in 32–370 **Tuesdays** 6–7:30p in 32–370

This class assumes senior/grad-level mathematical & engineering)

On Piazza: if you're looking for help with a bug, describe where it's happening and what test cases you've constructed.

In OH: come prepared with specific questions.

computational maturity (algorithms, ML models, software

- Still feeling overwhelmed? Email jda@mit or glass@csail.mit.

Review: Hidden Markov Models

Fed raises interest rates 0.5 percent

Noun Verb Noun Noun Num Noun Fed raises interest rates 0.5 percent

Noun Verb Noun Noun Num Noun Fed raises interest rates 0.5 percent

"The Fed has caused interest rates to get .5% bigger"

NounNounNounNounFedraisesinterestrates0.5percent

"Rates are interested (but only 0.5%) in Fed raises" (???)

NounNounNounNounFedraisesinterestrates0.5percent

We can't just guess labels in isolation—need to model sentence context!

Named entity recognition

hey Alexa turn the lights on in the kitchen

Named entity recognition

\bigotimes Wake \bigotimes \bigotimes Action Arg1 \bigotimes \bigotimes Arg2 hey Alexa turn the lights on in the kitchen

Grammar Induction

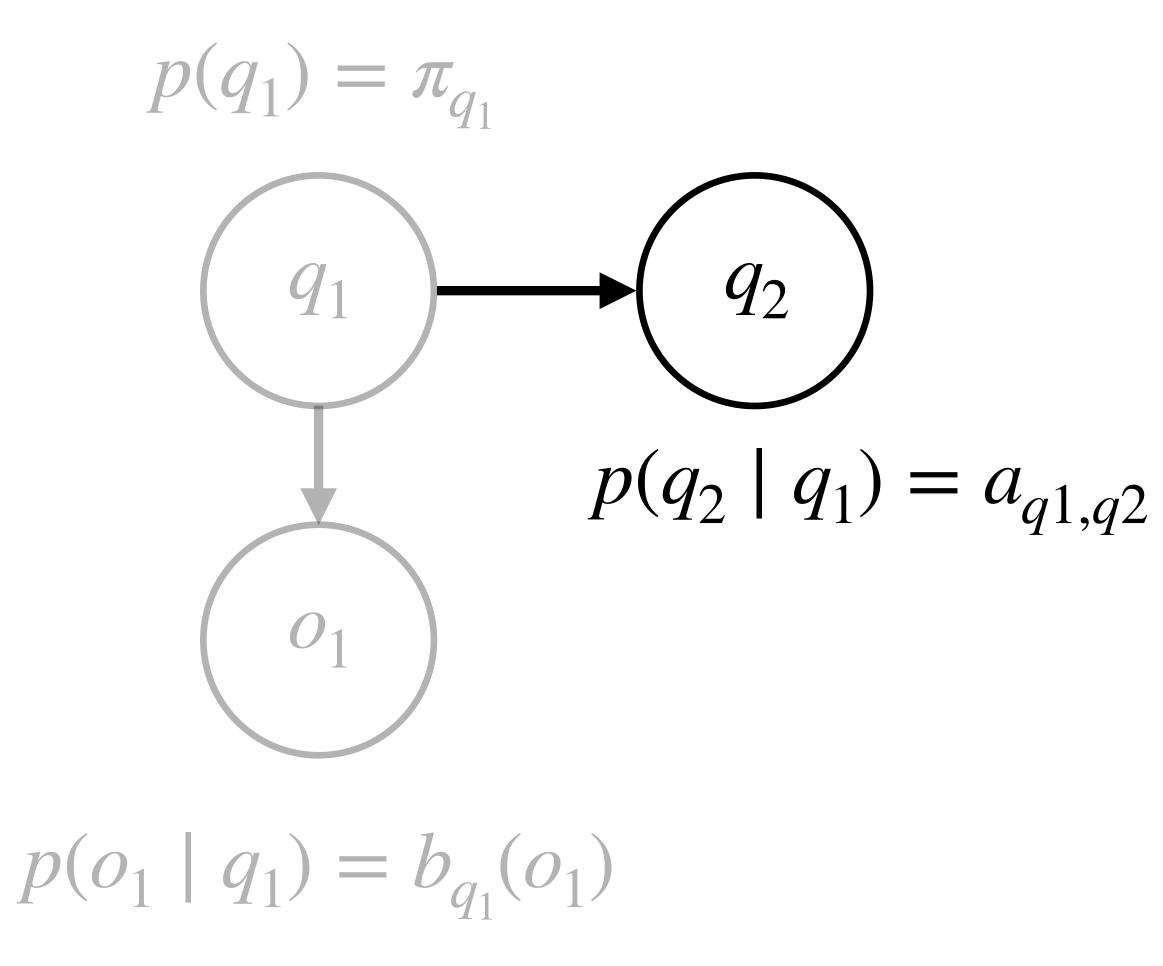
f84hh4-<u>18da4d</u>-wr-<u>040hi</u>-<u>eb3</u>-m8bb-9e8d-<u>j74</u>-1e0h3-0i-<u>0</u>

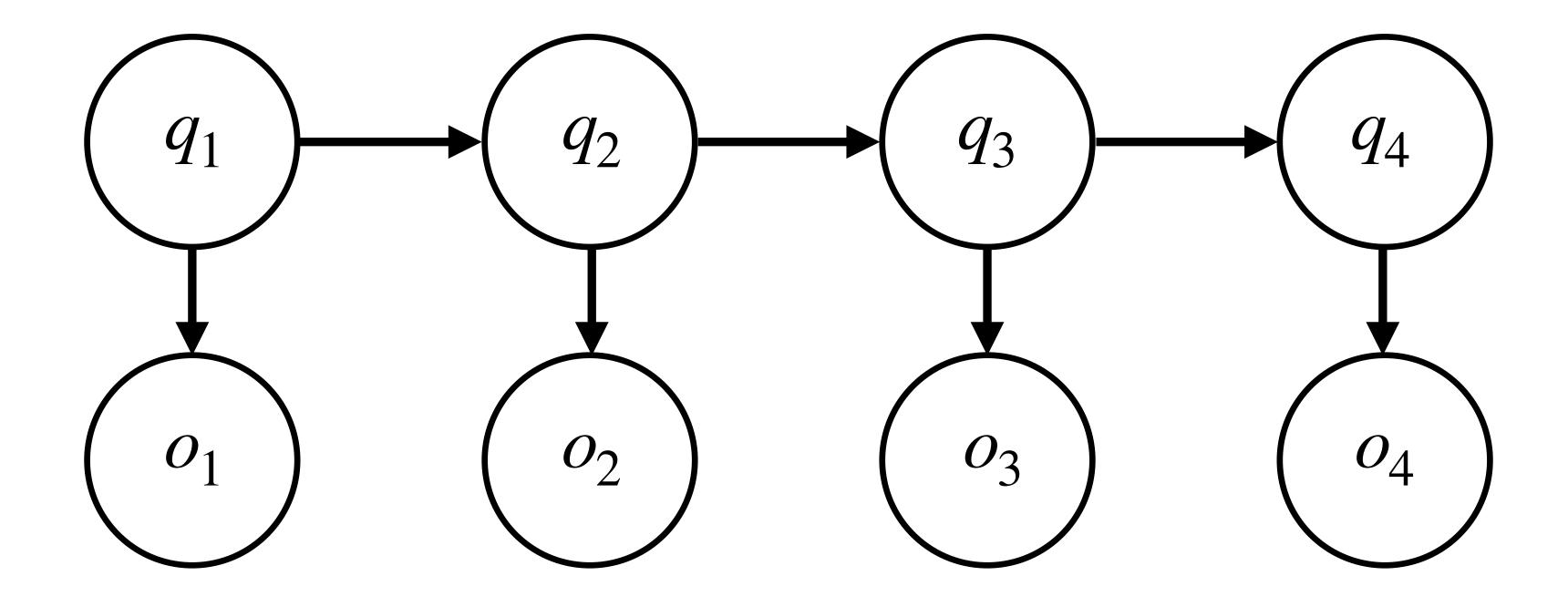
2 3 2 3 1 3 4 2 5 1 f84hh4-<u>l8da4d</u>-wr-<u>o40hi</u>-<u>eb3</u>-m8bb-9e8d-<u>j74</u>-1e0h3-0i-<u>0</u>

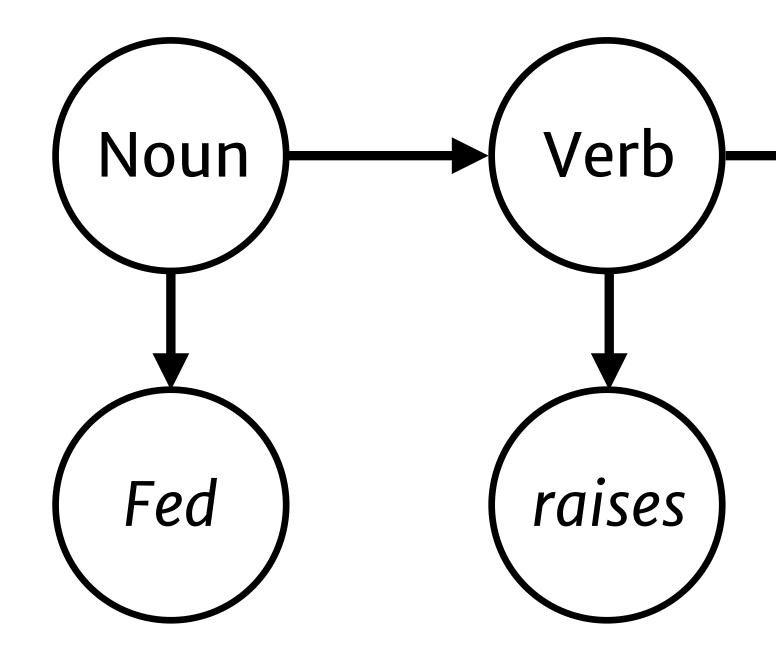
 $p(q_1) = \pi_{q_1}$ q_1

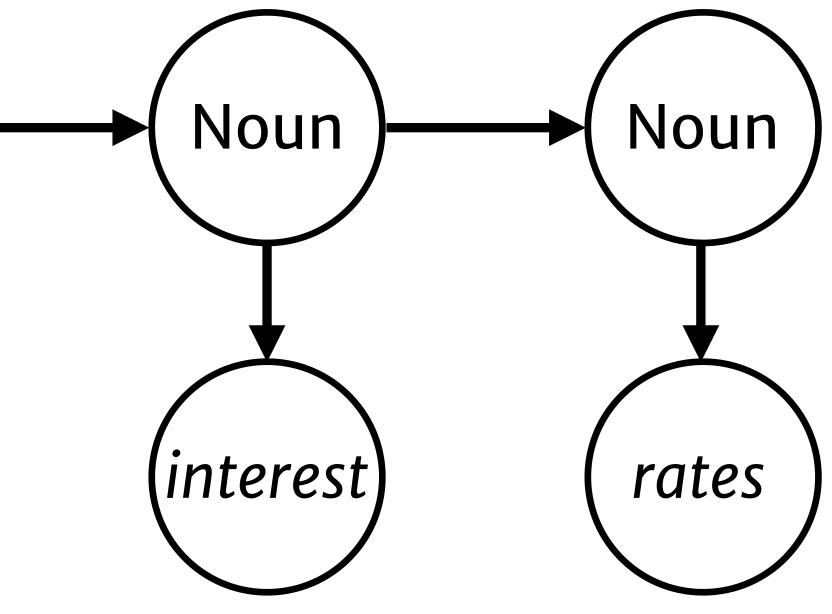
 $p(q_1) = \pi_{q_1}$ O_1

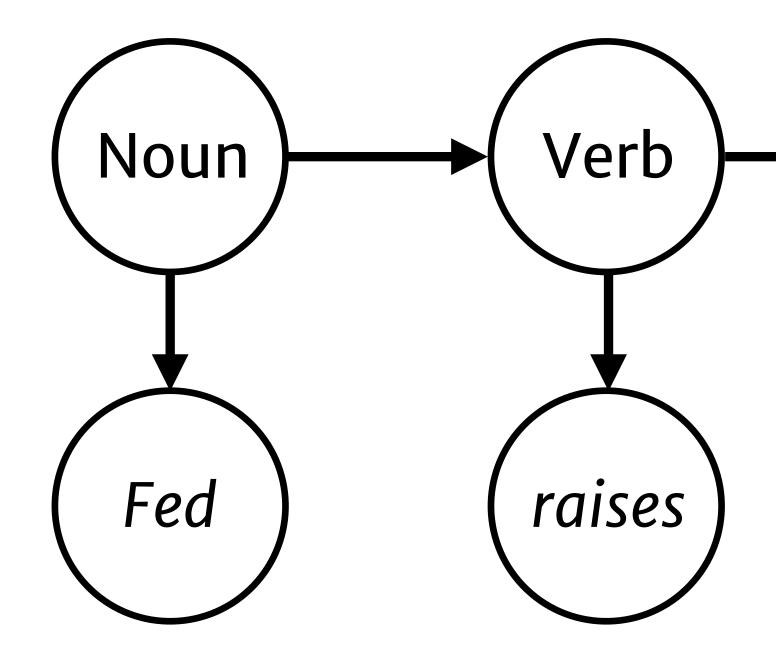
$p(o_1 \mid q_1) = b_{q_1}(o_1)$



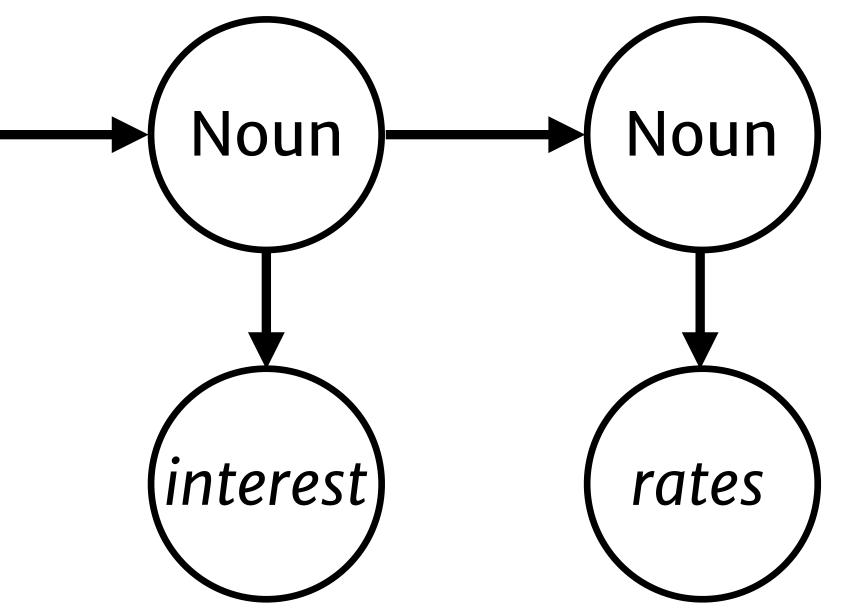








over hidden states and observations.



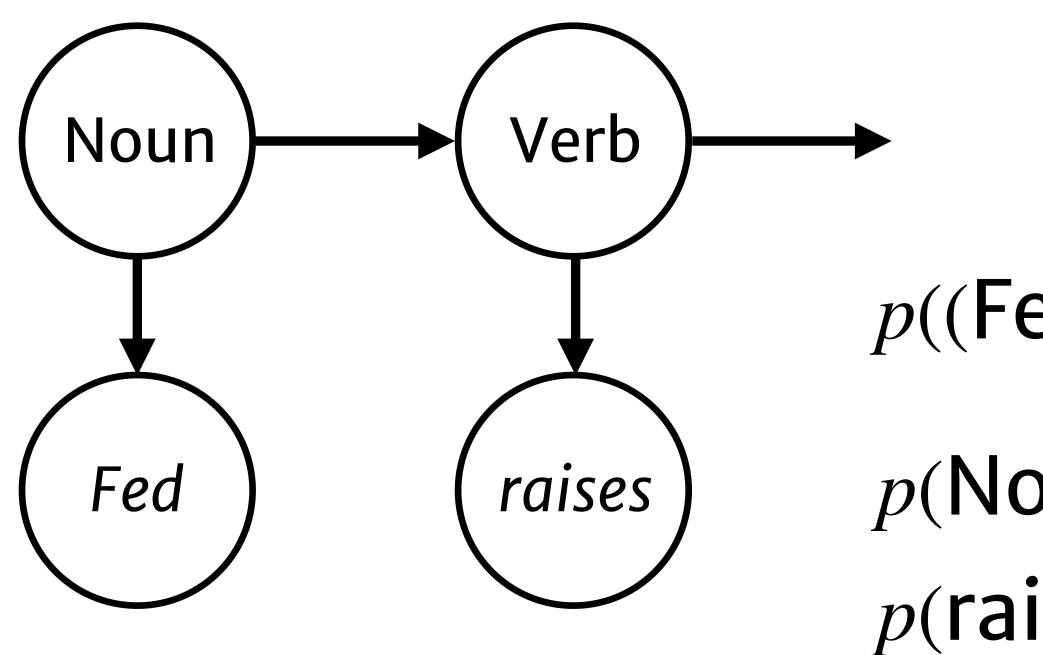
HMMs define a joint distribution p(O, Q)

If we're given the parameters A, B and π , what questions can we answer?

Q1: what is the joint probability of a pair of (observation, tag) sequences?

p(O, Q) $:= p(O, Q \mid \lambda)$

Q1: what is the joint probability of a pair of (observation, tag) sequences?

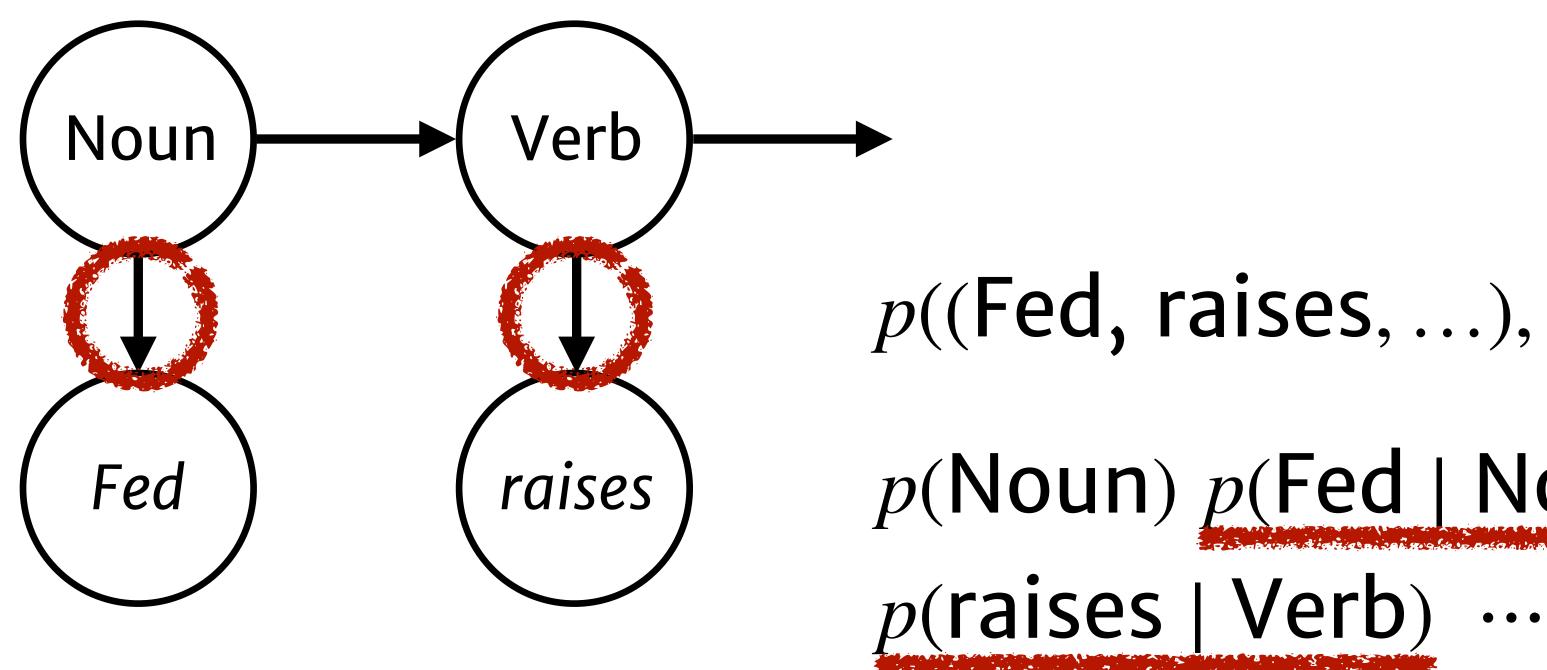


p(U, U)

p((Fed, raises, ...), (Noun, Verb, ...)) =

p(Noun) *p*(Fed | Noun) *p*(Verb | Noun) p(raises | Verb) ...

Q1: what is the joint probability of a pair of (observation, tag) sequences?

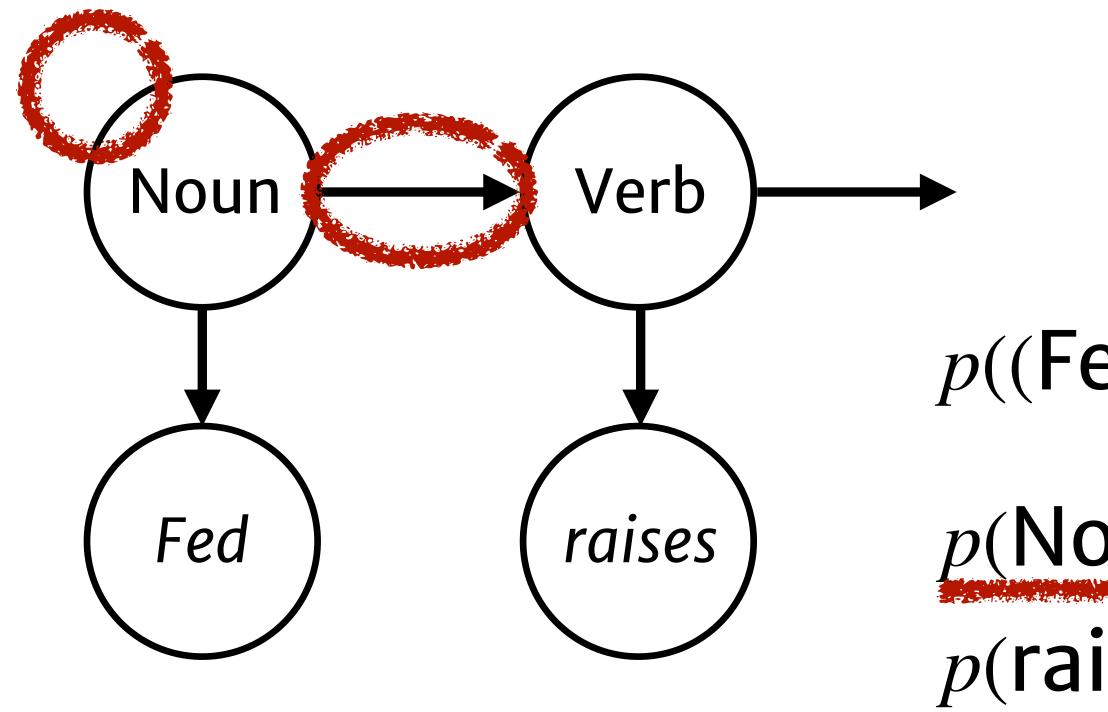


p(O, Q)

p((Fed, raises, ...), (Noun, Verb, ...)) =

p(**Noun**) *p*(**Fed** | **Noun**) *p*(**Verb** | **Noun**)

Q1: what is the joint probability of a pair of (observation, tag) sequences?



p(O, Q)

p((Fed, raises, ...), (Noun, Verb, ...)) =

p(**Noun**) *p*(**Fed** | **Noun**) *p*(**Verb** | **Noun**)

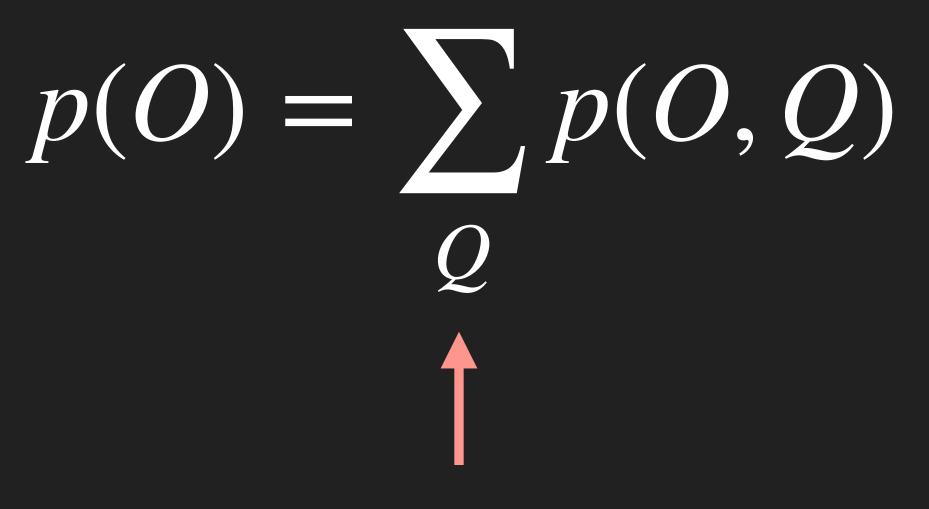
p(raises | Verb) ...

Queries: marginal probability

Q2: what is the **marginal** probability of an observation?

p(O)

(num tags)(sequence length) of these!



Queries: marginal probability

Q2: what is the **marginal** probability of an observation?

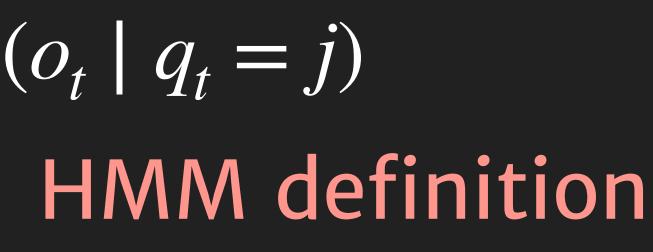
Forward algorithm: notice that

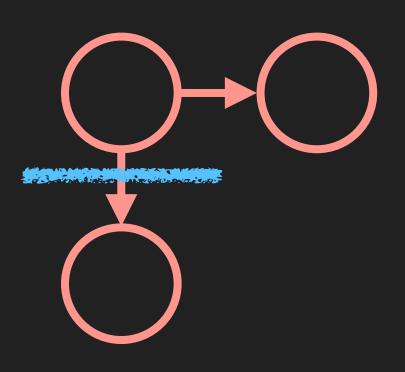
$$p(O_{:t}, q_t = j) = p(o_t | q_t = j) \sum_{i=1}^{t} \sum_{i=1}^{t} p(o_t | q_t = j) \sum_{i=1}^{t} p(o_t | q_$$

p(O)

$p(O_{:t-1}, q_{t-1} = i)p(q_t = j | q_{t-1} = i)$

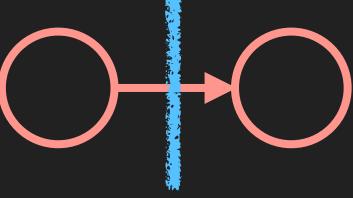
$p(O_{:t}, q_t = j) = p(O_{:t-1}, q_t = j) p(o_t | q_t = j)$





 $= \left(\sum_{i} p(O_{:t-1}, q_{t-1} = i, q_t = j)\right) p(o_t \mid q_t = j)$ marginalizing over q_{t-1}

 $= \left(\sum_{i} p(O_{:t-1}, q_{t-1} = i)p(q_t = j \mid q_{t-1} = i)\right) p(o_t \mid q_t = j)$ HMM definition



The forward algorithm

Q2: what is the **marginal** probability of an observation?

$$p(O_{:t}, q_t = j) = p(o_t | q_t = j) \sum_{i}^{i}$$

$$\alpha(t,j) = b_j(o_t) \sum_i \alpha(t-1,i) \ a_{ij}$$

$$\alpha(1,j) = \pi_j \ b_j(o_1)$$

p(O)

$p(O_{:t-1}, q_{t-1} = i)p(q_t = j | q_{t-1} = i)$

dynamic program!

The forward algorithm

Q2: what is the **marginal** probability of an observation?

Forward algorithm: $\alpha(t,j) = b_j(o_t) \sum_i \alpha(t-1,i) a_{ij}$ 1 2 3

Noun

Verb

Fed raises

p(O)

raises interest

The forward algorithm

Q2: what is the **marginal** probability of an observation?

Forward algorithm: $\alpha(t,j) = b_j(o_t) \sum_i \alpha(t-1,i) a_{ij}$ 1 2 3

 $\frac{1}{NOUN} \pi_{NOUN} b_{NOUN} (Fed)$

Verb $\pi_{Verb}b_{Verb}(Fed)$

Fed

raises

p(O)

interest

Q2: what is the marginal probability of an observation?

Forward algorithm: $\alpha(t,j) = b_i(o_t) \sum \alpha(t-1,i) a_{ii}$

 $\frac{1}{Noun} \sum_{Noun} b_{Noun}(Fed) = \frac{2}{\alpha(1,Noun)}$ $\frac{1}{Verb} \pi_{Verb} b_{Verb}(Fed)$

Fed raises n(J)

3

interest

Q2: what is the **marginal** probability of an observation?

Forward algorithm: $\alpha(t,j) = b_j(o_t) \sum_i \alpha(t-1,i) a_{ij}$ 1 2 3

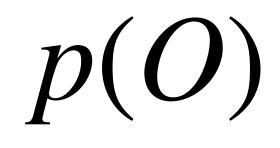
1 2Noun $\pi_{Noun}b_{Noun}(Fed) \alpha(1,Noun)$ Verb $\pi_{Verb}b_{Verb}(Fed) \alpha(1,Verb)$ Fed raises

p(O)

interest

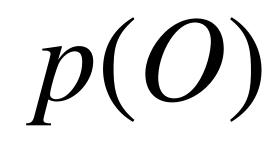
Q2: what is the marginal probability of an observation?

Forward algorithm: $\alpha(t,j) = b_j(o_i) \sum_i \alpha(t-1,i) a_{ij}$ 1 2 3 Noun $\pi_{Noun}b_{Noun}(Fed) \alpha(1,Noun) \rightarrow \alpha(2,Noun)$ Verb $\pi_{Verb}b_{Verb}(Fed) \alpha(1,Verb)$ raises interest Fed



Q2: what is the **marginal** probability of an observation?

$p(O) = \sum_{i} p(O_{:T}, q_{T} = i) = \sum_{i} \alpha(T, i)$ $\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow \qquad f = sequence length$



The backward algorithm

Q2: what is the **marginal** probability of an observation?

$$p(O_{t+1:} | q_t = i) = \sum_{j} p(q_{t+1} = j | q_t$$
$$\beta(t, i) = \sum_{j} a_{ij} b_j(o_{t+1}) \beta(t+1, j)$$
$$\beta(T, i) = 1$$

p(O)

= *i*) $p(o_{t+1} | q_{t+1} = j) p(O_{t+2:} | q_{t+1} = j)$

Same trick!

The forward-backward algorithm

Now we know how to compute:

 $\alpha(t, i) = p(O_{t}, q_t = i)$

 $\beta(t, i) = p(O_{t+1} \mid q_t = i)$

The forward - backward algorithm

Now we know how to compute: $\alpha(t, i) = p(O_{t}, q_t = i)$

 $\beta(t, i) = p(O_{t+1:} | q_t = i)$

 $\alpha(t, i) \ \beta(t, i) = p(O, q_t = i)$

$\alpha(t,i) \ a_{i,j} \ b_j(o_{t+1}) \ \beta(t+1,j) = p(O,q_t = i,q_{t+1} = j)$

Queries: most probable tag sequence

Q3: what is the **most probable** assignment of tags to observations?

$\operatorname{argmax}_{Q} p(Q \mid O)$

Queries: most probable tag sequence

Q3: what is the **most probable** assignment of tags to observations?

$\begin{aligned} \arg\max_{Q} p(Q \mid O) \\ = \arg\max_{Q} p(O, Q) \end{aligned}$

Q3: what is the **most probable** assignment of tags to observations?

$\max_{Q_{t-1:}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_i \left(\max_{Q_{t-2:}} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i) \right)$

$\operatorname{argmax}_{Q} p(O, Q)$

 $p(q_t = j | q_{t-1} = i) \cdot p(o_t | q_t = j)$

$\max_{Q_{t-1:}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_{Q_{t-1:}} p(O_{:t-1}, Q_{:t-1}, q_t = j) p(o_t | q_t = j)$ MMM definition

 $= \max_{Q_{t-2:}, i} p(O_{:t-1}, Q_{:t-2}, q_{t-1} = i, q_t = j) p(o_t | q_t = j)$ separating Q_{t-2:} and q_{t-1}

 $= \max_{Q_{t-2:}, i} p(O_{:t-1}, Q_{:t-2}, q_{t-1} = i) p(q_t = j | q_{t-1} = i) p(o_t | q_t = j)$ HMM definition

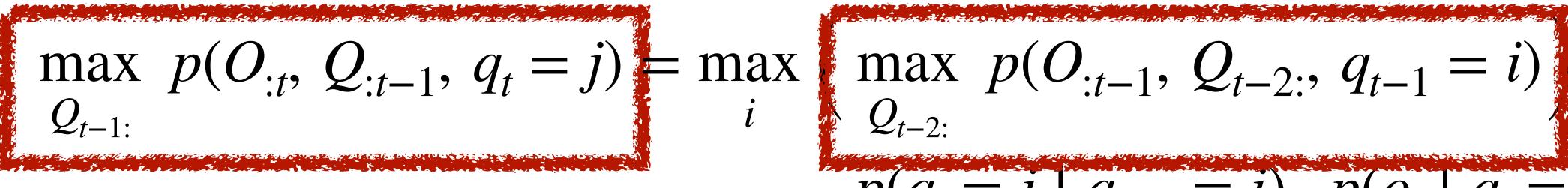
 $= \max_{i} \left(\max_{i} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i) \right) p(q_t = j \mid q_{t-1} = i) p(o_t \mid q_t = j)$ separating args to max

Q3: what is the most probable assignment of tags to observations?

$\operatorname{argmax}_{O} p(O, Q)$

 $\max_{Q_{t-1:}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_{i} \left(\max_{Q_{t-2:}} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i) \right)$ $p(q_t = j | q_{t-1} = i) \cdot p(o_t | q_t = j)$

Q3: what is the most probable assignment of tags to observations?



best length-t tag seq. ending in *j*

$\operatorname{argmax}_{O} p(O, Q)$

best length-t-1 tag seq. ending in i $p(q_t = j \mid q_{t-1} = i) \cdot p(o_t \mid q_t = j)$

Q3: what is the **most probable** assignment of tags to observations?

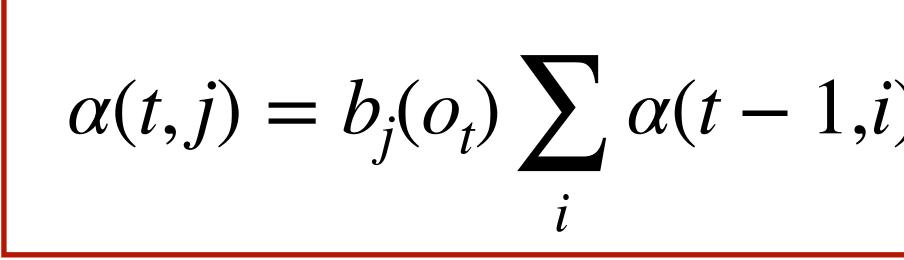
$\max_{Q_{t-1:}} p(O_{:t}, Q_{:t-1}, q_t = j) = \max_i ($

 $\delta(t,j) = b_j(o_t) \max_i \delta(t-1)$

$\operatorname{argmax}_{Q} p(O, Q)$

$$\begin{pmatrix} \max_{Q_{t-2:}} p(O_{:t-1}, Q_{t-2:}, q_{t-1} = i) \end{pmatrix} \cdot p(q_t = j \mid q_{t-1} = i) \cdot p(o_t \mid q_t = j)$$

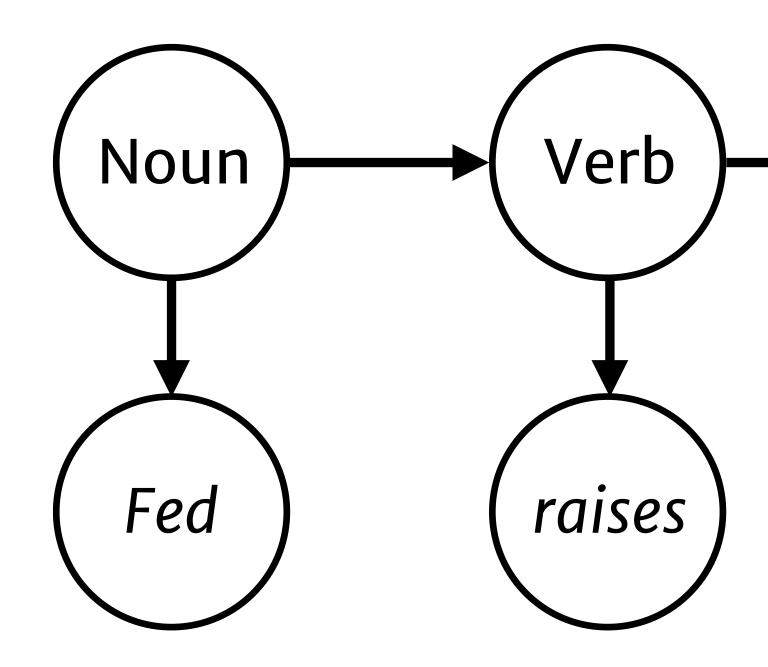
i,*i*)
$$a_{ij} \qquad \delta(1,j) = \pi(j) \ b_j(o_1)$$

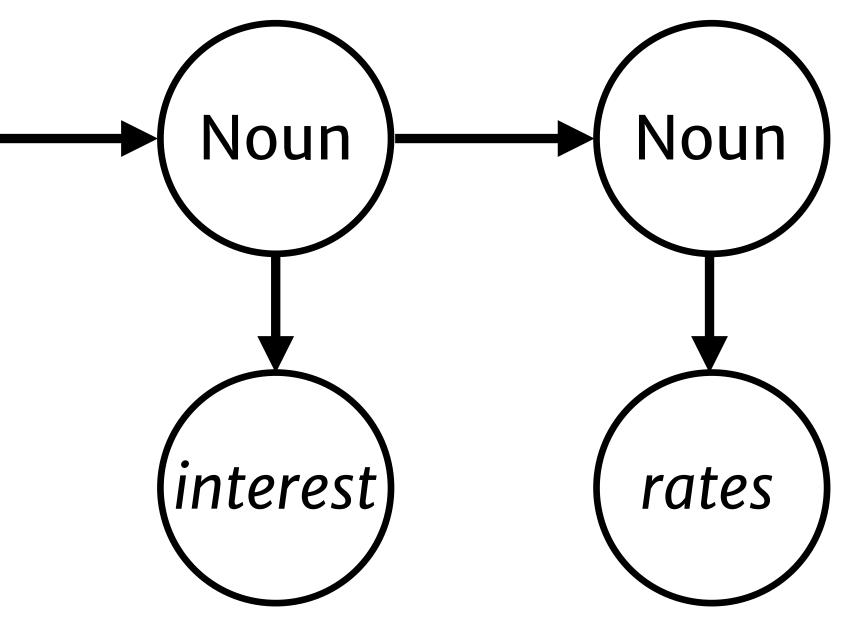


,*i*)
$$a_{ij}$$
 $\alpha(1,j) = \pi(j) \ b_j(o_1)$

Where do π , *A* and *B* come from?

Where do π , A and B come from?





If we have labeled sequences, just count.

Where do π , A and B come from?

$$\pi_i = p(q_1 = i) = -\frac{1}{4}$$

$$a_{ij} = p(q_t = j \mid q_{t-1} = i) = \frac{\#(q_{t-1} = i, q_t = j)}{\#(q_{t-1} = i, q_t = *)}$$

w) = $p(o_t = w \mid q_t = i) = \frac{\#(q_t = i, o_t = w)}{\#(q_t = i)}$

$$a_{ij} = p(q_t = j \mid q_{t-1} = i) = \frac{\#(q_{t-1} = i, q_t = j)}{\#(q_{t-1} = i, q_t = *)}$$
$$b_i(w) = p(o_t = w \mid q_t = i) = \frac{\#(q_t = i, o_t = w)}{\#(q_t = i)}$$

If we have labeled sequences, just count.

$$\#(q_1 = i)$$

sequences

- Where do π , A and B come from?
- $\pi_i = p(q_1 = \text{Noun}) = \frac{\#(q_1 = \text{Noun})}{\#\text{sequences}}$
- $a_{ij} = p(q_t = \text{Verb} \mid q_{t-1} = \text{Nc}$

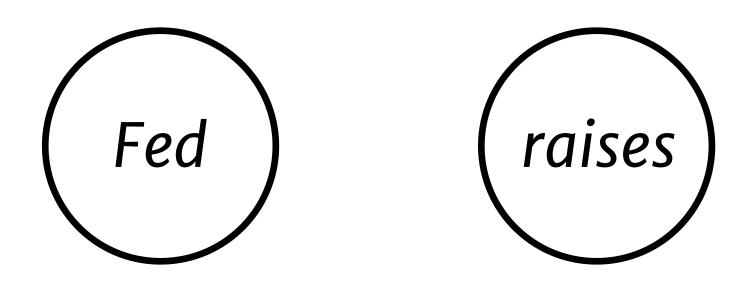
 $b_i(w) = p(o_t = \text{Fed} \mid q_t = \text{Nour}$

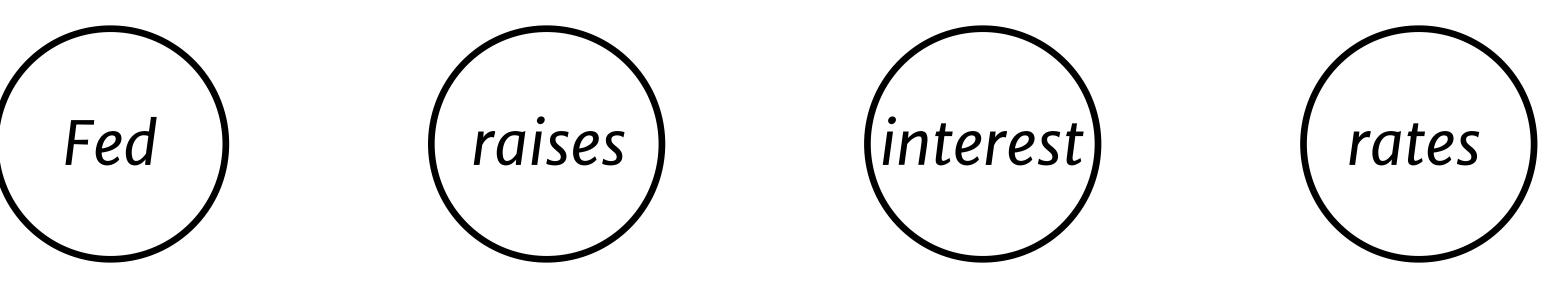
If we have labeled

$$\operatorname{oun} = \frac{\#(q_{t-1} = \operatorname{Noun}, q_t = \operatorname{Verb})}{\#(q_{t-1} = \operatorname{Noun}, q_t = *)}$$
$$\operatorname{h} = \frac{\#(q_t = \operatorname{Noun}, o_t = \operatorname{Fed})}{\#(q_t = \operatorname{Noun})}$$
sequences, just count.

Unsupervised training

Where do π , A and B come from?





If we don't have labeled sequences, compute expected labelings under current parameters, then re-estimate parameters.

Unsupervised training

 $\pi_i = p(q_1 = i) = \frac{\#(q_1 = i)}{\#\text{sequences}}$

 $\pi_i = p(q_1 = i) = \frac{\sum_O p(q_1 = i \mid O)}{\text{#sequences}}$

If we don't have labeled sequences, compute expected labelings under current parameters, then re-estimate parameters.

Unsupervised training

$a_{ij} = p(q_t = j | q_{t-1} = i) =$

$a_{ij} = p(q_t = j \mid q_{t-1} = i) =$

If we don't have labeled sequences, compute expected labelings under current parameters, then re-estimate parameters.

$$= \frac{\#(q_{t-1} = i, q_t = j)}{\#(q_{t-1} = i, q_t = *)}$$

$$= \frac{\sum_{O} \sum_{t} p(q_{t-1} = i, q_t = j \mid O)}{\sum_{O} \sum_{t} p(q_{t-1} = i, q_t = * \mid O)}$$

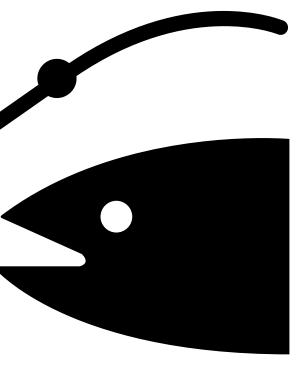
Conditional Random Fields

People can fish

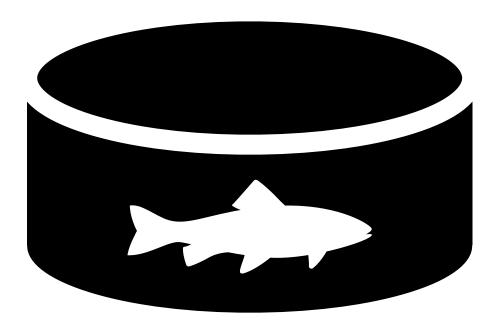
Noun People can fish

Modal

Verb



Noun



Verb People can fish

Noun

Modal Verb On my boat, people can fish

Verb Noun In my factory, people can fish

While aboard my floating tuna **?? ??** cannery, people can fish.

HMMs make it very hard to model

Modal Verb On my boat, people can fish

this kind of long-distance dependency.

Tagging as classification?

On my boat, people can fish

On my boat, people can fish $p(Modal | can, O) \propto \exp\{w_{Modal}^{\top} f(can, O)\}$

Tagging as classification?

Tagging as classification?

On my boat, people can fish

On my boat, people can fish $p(Modal | can, O) \propto \exp\{w_{Modal}^{\mathsf{T}} f(can, O)\}$ target word is can next word is fish f(can, O) =context includes boat

Tagging as classification?

Modal

near end-of-sentence

On my boat, people can fish $p(Modal | can, O) \propto \exp\{w_{Modal}^{\mathsf{T}} f(can, O)\}$

Training a discriminative classifier would let us incorporate lots of long-range context features.

Tagging as classification?

on my floating cannery, people can fish

Uncertainty and context

Noun 0.5 Verb 0.5 on my floating cannery, people can fish 0.5 Modal 0.5 Verb

Uncertainty and context

Noun 0.5 Verb 0.5 on my floating cannery, people can fish 0.5 Modal 0.5 Verb

but no way to tell that p(Modal, Noun) = 0!

Uncertainty and context

How do we simultaneously support: (like an HMM)

rich context features? (like a discriminative classifier)

- structured queries about relationships between tags?

Define: $p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O)\}}{(q_t, O)}$

Conditional random fields

Z(O)

Define: $p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O)\}}{Z(O)}$

Looks like a classifier! Scores are log-proportional to a sum of dot products between feature vectors and weights.

Conditional random fields

Looks like an HMM! Probability of a sequence factors along (state, state) and (state, obs) pairs.

Define:

$p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_{a}(q_{t-1}, q_{t}) + b^{\mathsf{T}} \phi_{b}(q_{t}, O)\}}{(q_{t}, O)}$

Conditional random fields

Z(O)

(but now we can use the whole context, not just o_t)

Normalizing the model

$p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O)\}}{Z(O)}$

What is Z? For this to be a proper distribution, needs to sum to 1 over all Q, i.e.:

 $Z(O) = \sum \exp \left\{ \sum a^{\mathsf{T}} \phi_a(q'_{t-1}, q'_t) + b^{\mathsf{T}} \phi_b(q'_t, O) \right\}$

"partition function"

If we're given the parameters A, B and π , what questions can we answer?

Q1: what is the joint probability of a pair of (observation, tag) sequences?

Queries: joint probability?

p(O, Q)

In HMMs, this is easy (but P(O) and P(Q|O) are harder)

Queries: joint probability?

Q1: what is the joint probability of a pair of (observation, tag) sequences?

In CRFs, there is no generative model of O and no joint probability!

D(U, U)

In HMMs, this is easy (but P(O) and P(Q|O) are harder)

Queries: conditional probability

Q2: what is the conditional probability of $p(Q \mid O)$ tags Q given observations O?

$p(Q \mid O) = \frac{\exp\{\sum_{t} a^{\mathsf{T}} \phi_{a}(q_{t-1}, q_{t}) + b^{\mathsf{T}} \phi_{b}(q_{t}, O)\}}{(q_{t}, Q)}$

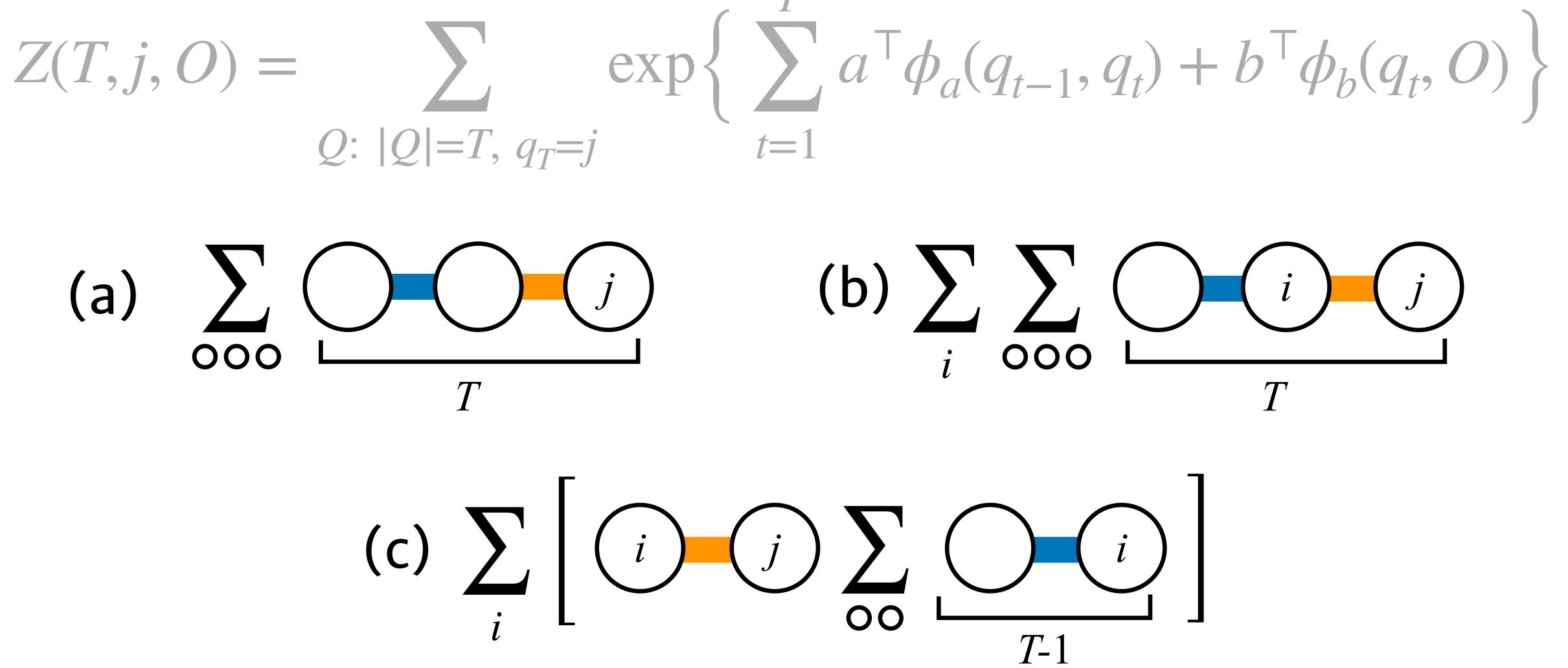
Just need to compute Z!

$Z(T, j, O) = \sum_{Q: |Q|=T, q_T=j} \exp\left\{\sum_{t=1}^T a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O)\right\}$ length-T sequences that end in i

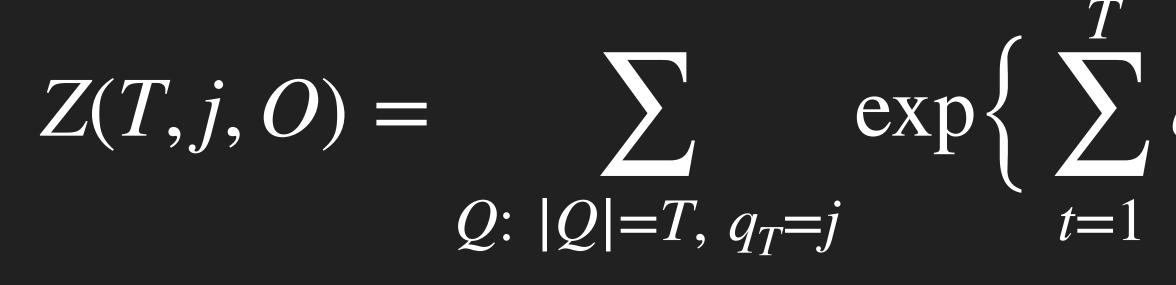
Computing the partition function

$Z(T, j, O) = \sum_{Q: |Q|=T, q_T=j} \exp \left\{ \sum_{t=1}^T a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O) \right\}$ length-T sequences that end in i **Claim:** $Z(T, j, O) = \sum Z(T - 1, i) \cdot \exp\{a^{\mathsf{T}}\phi_{a}(i, j) + b^{\mathsf{T}}\phi_{b}(j, O)\}$

Computing the partition function



Computing the partition function



exp *i* Q': |Q'| = T - 1 $q_{T-1} = i, q_T = j$

exp{ a $i \quad Q': \quad |Q'| = T - 1$ $q_{T-1} = i, q_T = j$

 $\exp\left\{\sum a^{\mathsf{T}}\phi_a(q_{t-1},q_t) + b^{\mathsf{T}}\phi_b(q_t,O)\right\}$

by definition

$$\sum_{i=1}^{T} a^{\mathsf{T}} \phi_a(q_{t-1}, q_t) + b^{\mathsf{T}} \phi_b(q_t, O) \bigg\}$$

rewrite Q as concat. of Q' (ending in *i*)
and $q_{\mathsf{T}} = j$

$$\varphi_{a}(i,j) + b^{\top}\phi_{b}(j,O)$$

+ $\sum_{t=1}^{T-1} a^{\top}\phi_{a}(q_{t-1},q_{t}) + b^{\top}\phi_{b}(q_{t},O)$

pull timestep T for inner sum to the front

$\sum_{i} \exp\left\{a^{\mathsf{T}} \phi_a(i,j) + b^{\mathsf{T}} \phi_b(j,O)\right\} \cdot Z(T-1,i,O)$ by definition

 $\times \sum_{\substack{Q': \ |Q'| = T-1 \\ q_{T-1} = i}} \sum_{t=1}^{T-1} \exp\left\{a^{\mathsf{T}}\phi_a(q_{t-1}, q_t) + b^{\mathsf{T}}\phi_b(q_t, O)\right\} \right]$ and then factor it out

Just now: $Z(T, j, O) = \sum Z(T - 1, i) \cdot \exp\{a^{\mathsf{T}}\phi_{a}(i, j) + b^{\mathsf{T}}\phi_{b}(j, O)\}\$

Just now: $Z(T, j, O) = \sum Z(T - 1, i) \cdot \exp\{a^{\top}\phi_{a}(i, j) + b^{\top}\phi_{b}(j, O)\}$ $= \exp\{b^{\mathsf{T}}\phi_b(j, O)\} \sum Z(T-1, i) \cdot \exp\{a^{\mathsf{T}}\phi_a(i, j)\}$

Just now: $Z(T,j,O) = \sum Z(T-1,i) \cdot \exp\{a^{\mathsf{T}}\phi_a(i,j) + b^{\mathsf{T}}\phi_b(j,O)\}$ $= \exp\{b^{\mathsf{T}}\phi_b(j, O)\} \sum Z(T-1, i) \cdot \exp\{a^{\mathsf{T}}\phi_a(i, j)\}$

Previously:

 $\alpha(t,j) = b_j(o_t) \sum \alpha(t-1,i) a_{ij}$

The forward recurrence

$\alpha(t,j) = b_j(o_t) \sum \alpha(t-1,i) a_{ij}$

Same recurrence relation!

 $Z(T,j,O) = \sum Z(T-1,i) \cdot \exp\{a^{\mathsf{T}}\phi_a(i,j) + b^{\mathsf{T}}\phi_b(j,O)\}$

 $= \exp\{b^{\mathsf{T}}\phi_b(j,O)\} \sum Z(T-1,i) \cdot \exp\{a^{\mathsf{T}}\phi_a(i,j)\}$

The forward algorithm (CRF-style)

Q2: what is the partition function for tag sequences of length T and obs. 0?

 $\alpha(t,j) = \exp\{b^{\mathsf{T}}\phi_b(j,O)\} \sum_i \alpha(t-1,i) \exp\{a^{\mathsf{T}}\phi_a(i,j)\}$ $\alpha(1,j) = \exp\{b^{\mathsf{T}}\phi_b(j,O)\}$

 $Z(O) = \sum Z(T, j, O)$

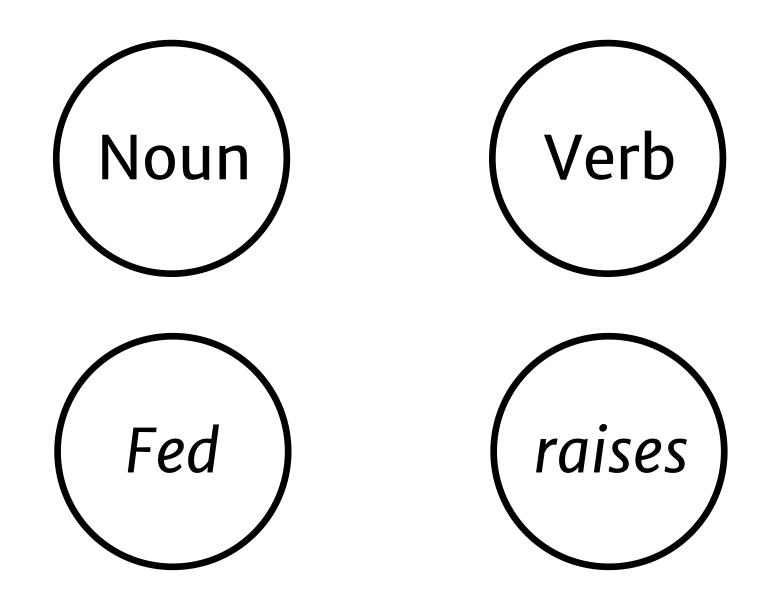
Z(O)

The Viterbi Algorithm (CRF-style)

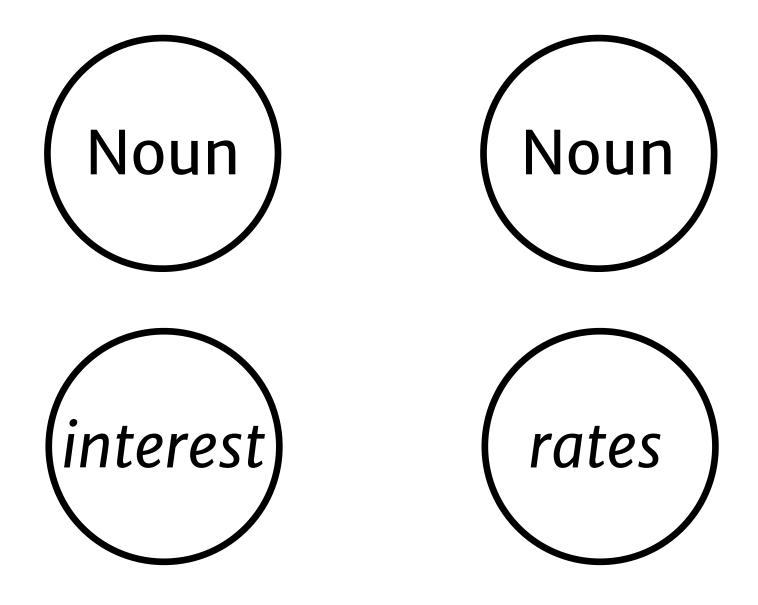
Q2: what is the highest-scoring tag $\max p(Q \mid O)$ sequence?

$\delta(t,j) = \exp\{b^{\mathsf{T}}\phi_b(j,O)\} \max_i \delta(t-1,i) \exp\{a^{\mathsf{T}}\phi_a(i,j)\}$ $\delta(1,j) = \exp\{b^{\mathsf{T}}\phi_b(j,O)\}\$

Supervised training



 $a^{(t+1)} = a^{(t)} + \nabla_a \log P(Q \mid O; a, b)$ (just use autograd!) SGD:



Maximum likelihood estimation: $\min_{a,b} - \sum_{(Q,Q)} \log p(Q \mid O; a, b)$

This looks exactly like text classification.

in O(|Q|²T) time!

SGD:

Supervised training

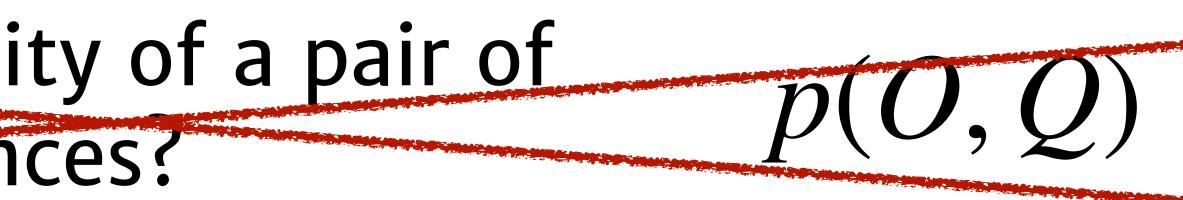
- But, by designing our features carefully, we can do "classification" with an O(|Q|^T)-sized output space

- Maximum likelihood estimation: $\min_{a,b} \sum_{(Q,Q)} \log p(Q \mid O; a, b)$
 - $a^{(t+1)} = a^{(t)} + \nabla_a \log P(Q \mid O; a, b)$ (just use autograd!)

Unsupervised training

Q1: what is the joint probability of a pair of (observation, tag) sequences?

In CRFs, there is no generative model of 0 and no joint probability.



Nothing to optimize!

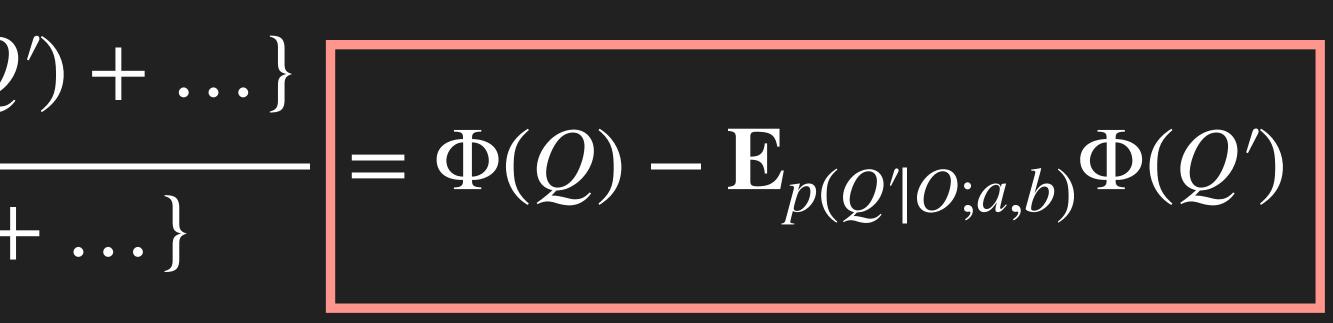
Actually, what is $\nabla_a \log P(Q \mid O; a, b)$?

stuff that's multiplied by $a \longrightarrow othe$ $\nabla_a \log p(Q \mid O; a, b) = \nabla_a \log \frac{\exp\{a^{\mathsf{T}} \Phi(Q) + \dots\}}{\sum_{Q'} \exp\{a^{\mathsf{T}} \Phi(Q') + \dots\}}$ other stuff

$\nabla_a \log p(Q \mid O; a, b) = \nabla_a \log \frac{\exp\{a^{\mathsf{T}} \Phi(Q) + \dots\}}{\sum_{Q'} \exp\{a^{\mathsf{T}} \Phi(Q') + \dots\}}$ $= \nabla_a(a^{\mathsf{T}}\Phi(Q) + \dots) - \nabla_a \log \sum \exp\{a^{\mathsf{T}}\Phi(Q') + \dots\}$

$= \Phi(Q) - \frac{\nabla_a \sum_{Q'} \exp\{a^{\mathsf{T}} \Phi(Q) + \dots\}}{\sum_{Q'} \exp\{a^{\mathsf{T}} \Phi(Q') + \dots\}}$

 $\sum_{Q'} \Phi(Q') \exp\{a^{\top} \Phi(Q') + \dots\}$ $= \Phi(Q)$ $\sum_{Q'} \exp\{a^{\mathsf{T}} \Phi(Q') + \dots\}$



The gradient of the log-partition function is the expected feature vector under the current predictive distribution (!)

Actually, what is $\nabla_a \log P(Q \mid O; a, b)$?

 $\nabla_a \log p(Q \mid O; a, b) = \nabla_a \log \frac{\exp\{a^{\mathsf{T}} \Phi(Q) + \dots\}}{\sum_{O'} \exp\{a^{\mathsf{T}} \Phi(Q) + \dots\}}$

 $= \Phi(Q) - \mathbf{E}_{p(Q'|O;a,b)} \Phi(Q')$

Next class: recurrent neural networks