Attention Mechanisms

Jacob Andreas / MIT 6.804-6.864 / Spring 2020

HW1 is done! Look out for survey.

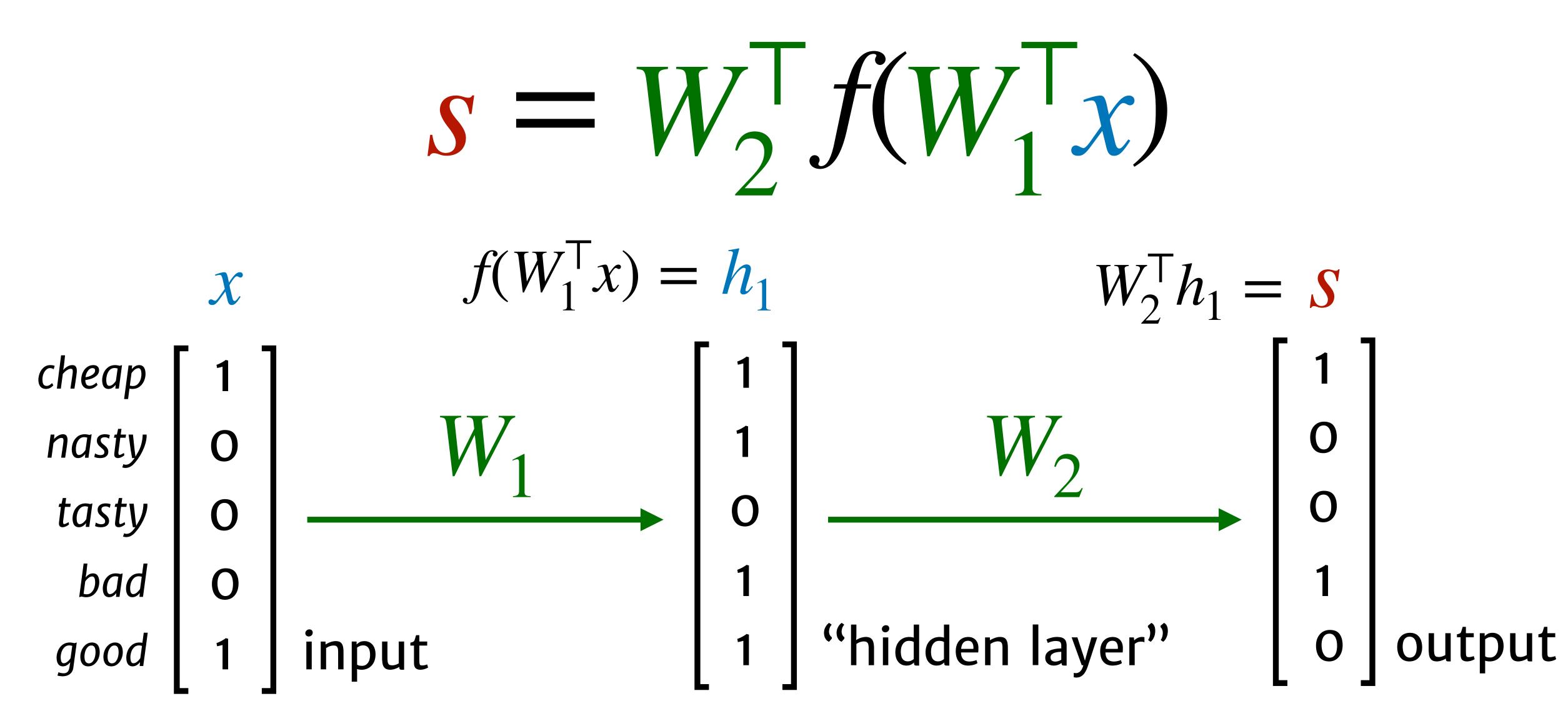
HW2b will be released tonight. 6.864 students only!

Each student will get 2 papers to review. Plan to spend ~15min / paper.

Admin

- Peer reviews will be assigned on OpenReview tomorrow.

Recap: recurrent neural networks



Variable-sized inputs

No ordering information!

X

0

0

cheap nasty good bad 0 tasty 1 input

Variable-sized inputs

No ordering information!

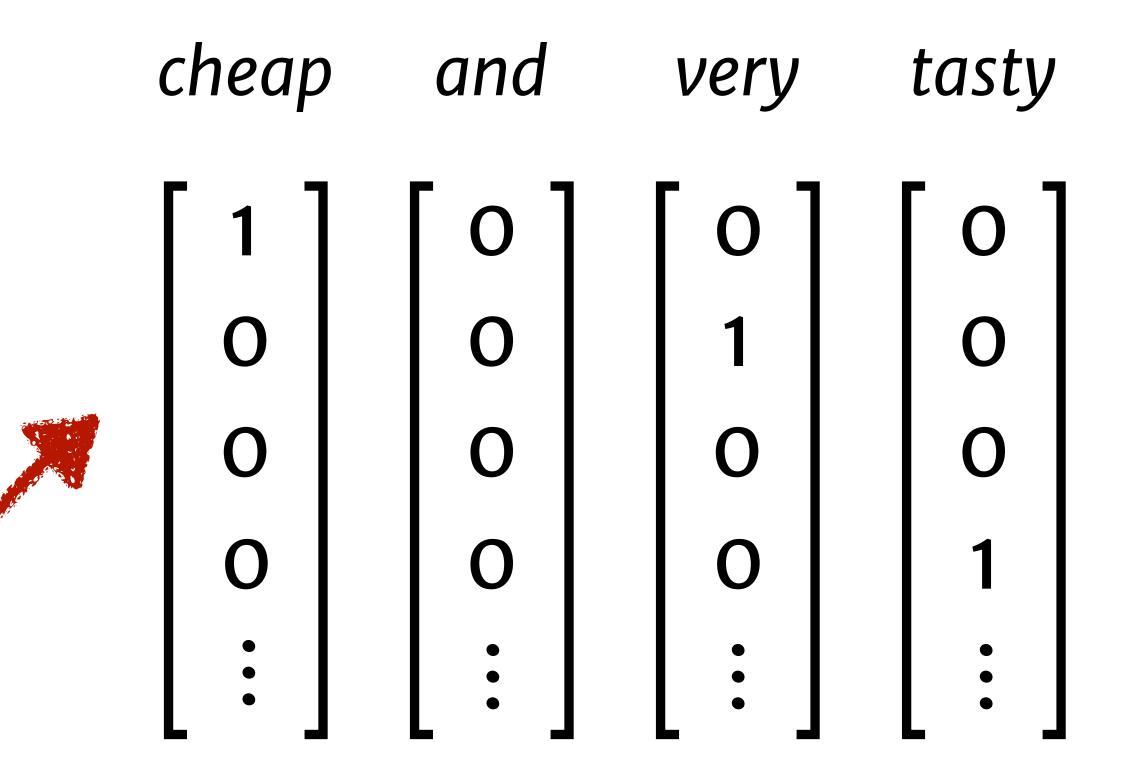
input

X

0

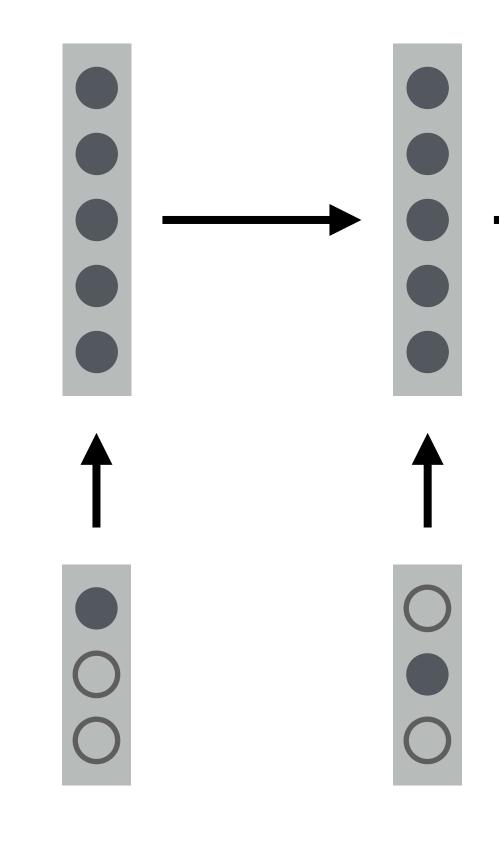
0

cheap nasty good bad 0 tasty 1

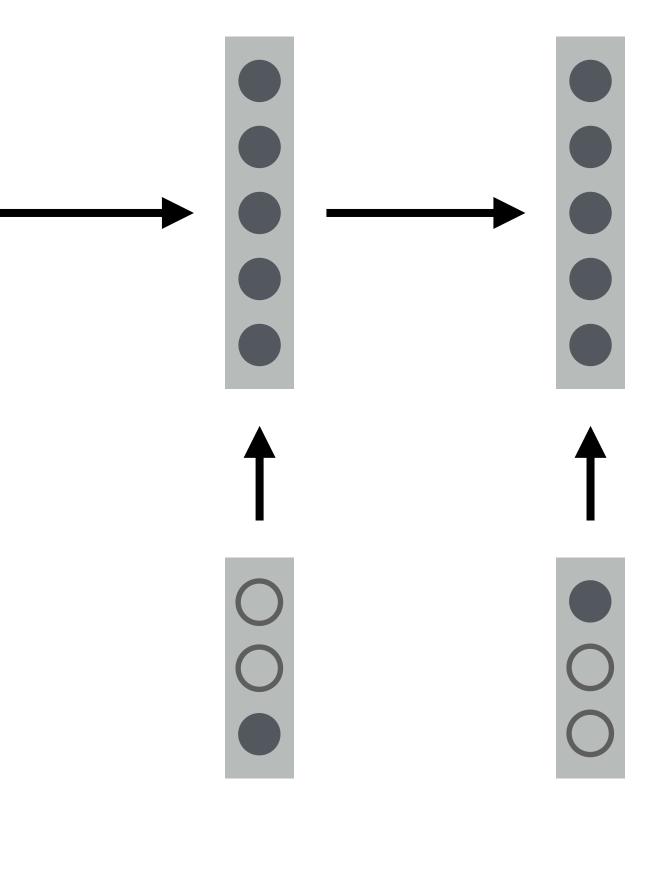


No fixed input dimension!

Recurrent neural networks



cheap and

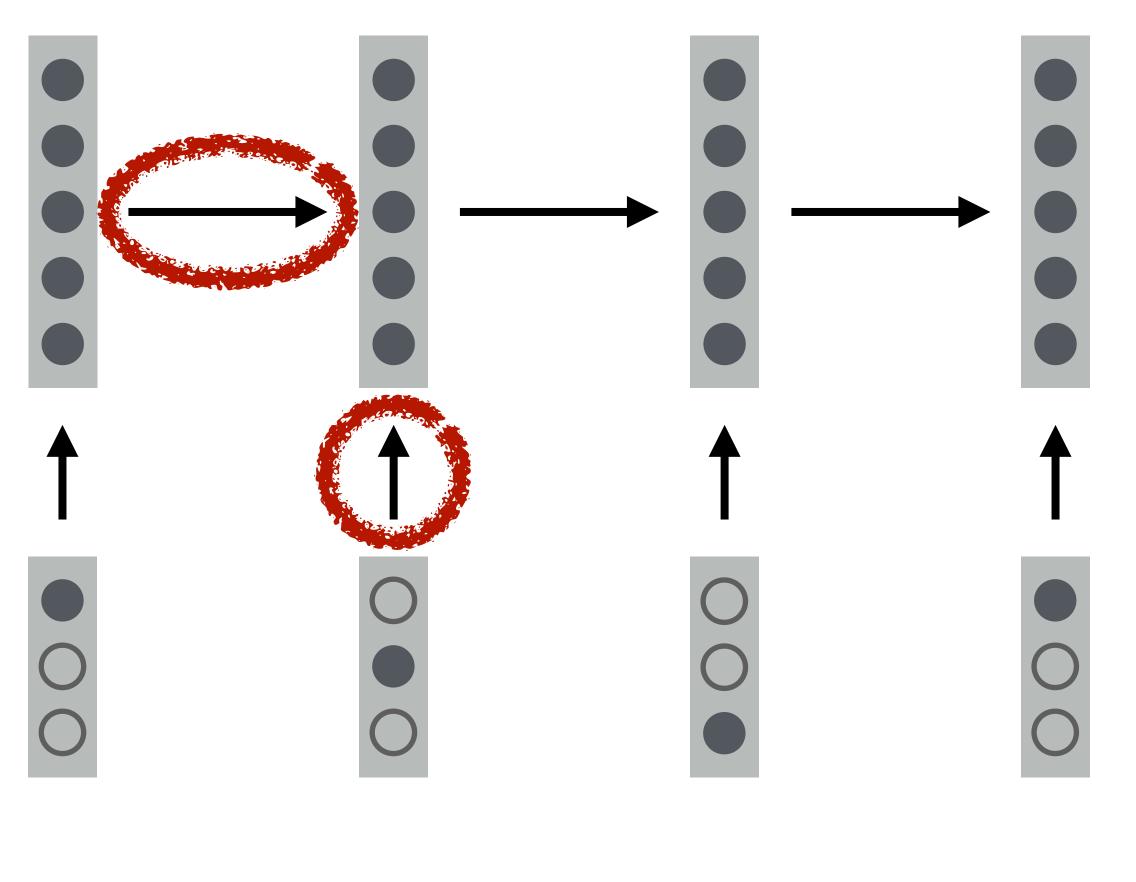


very

tasty

Recurrent neural networks

Hidden states depend on an earlier state and an input



cheap

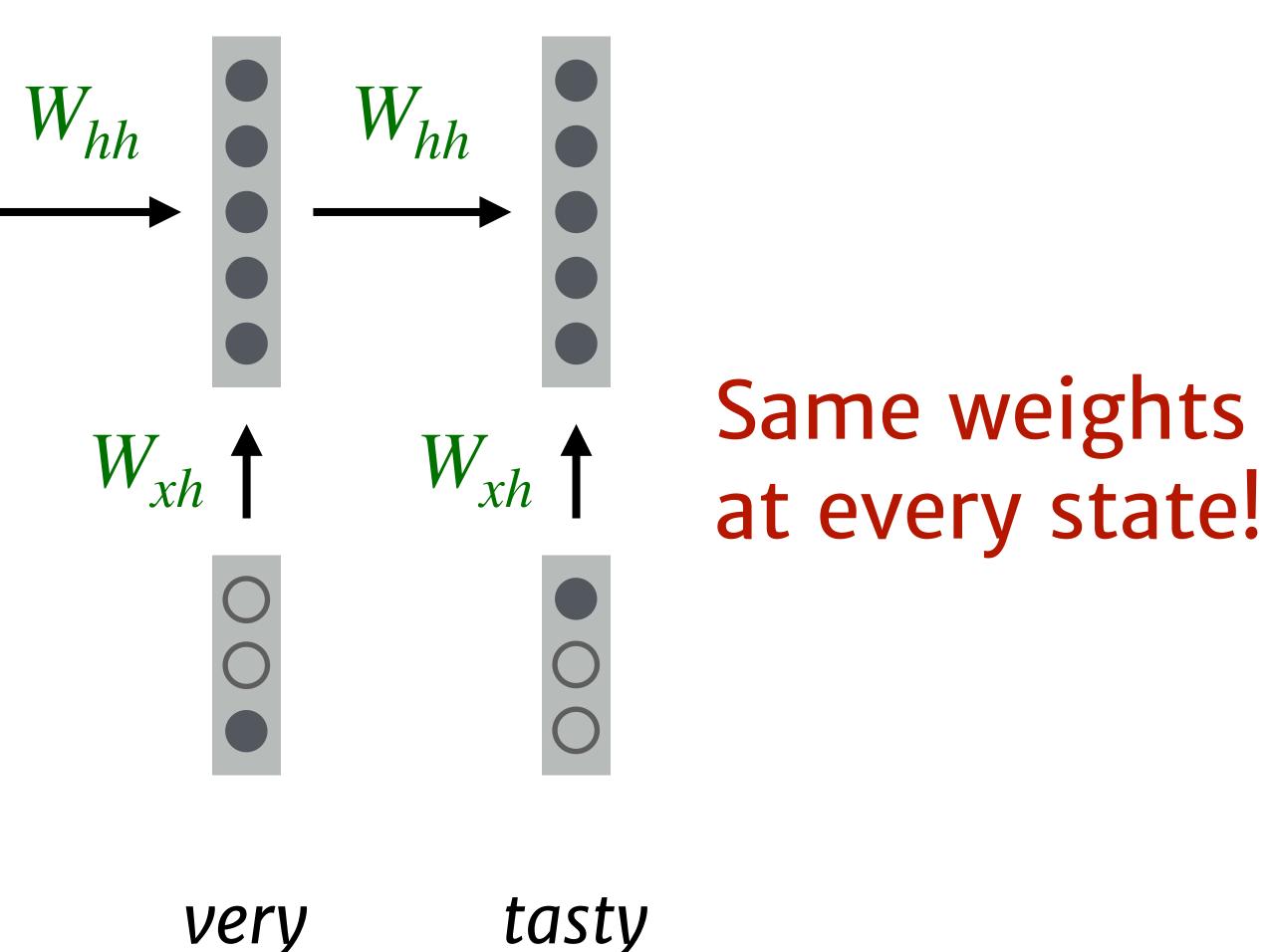
and

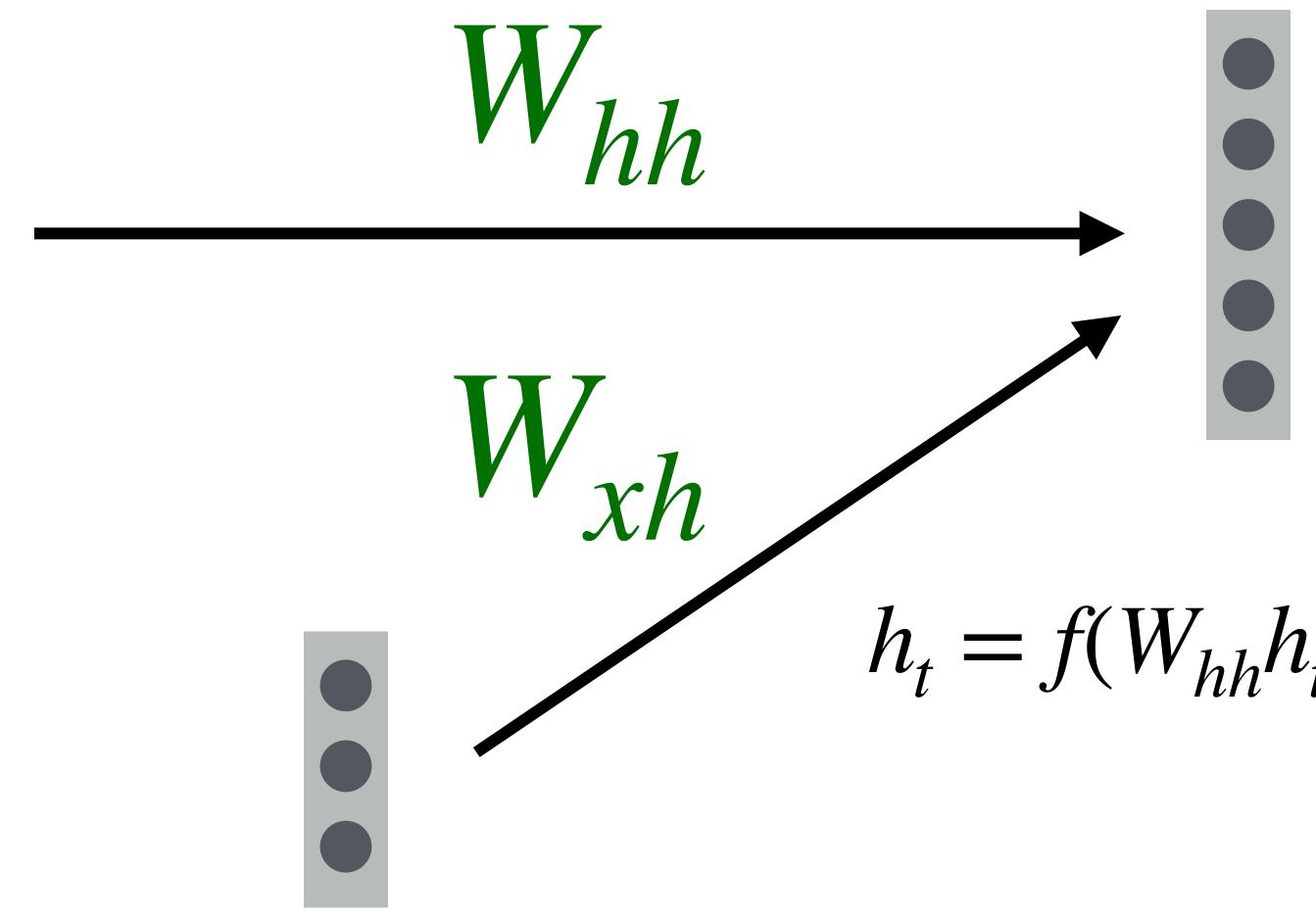
very

tasty

Recurrent neural networks

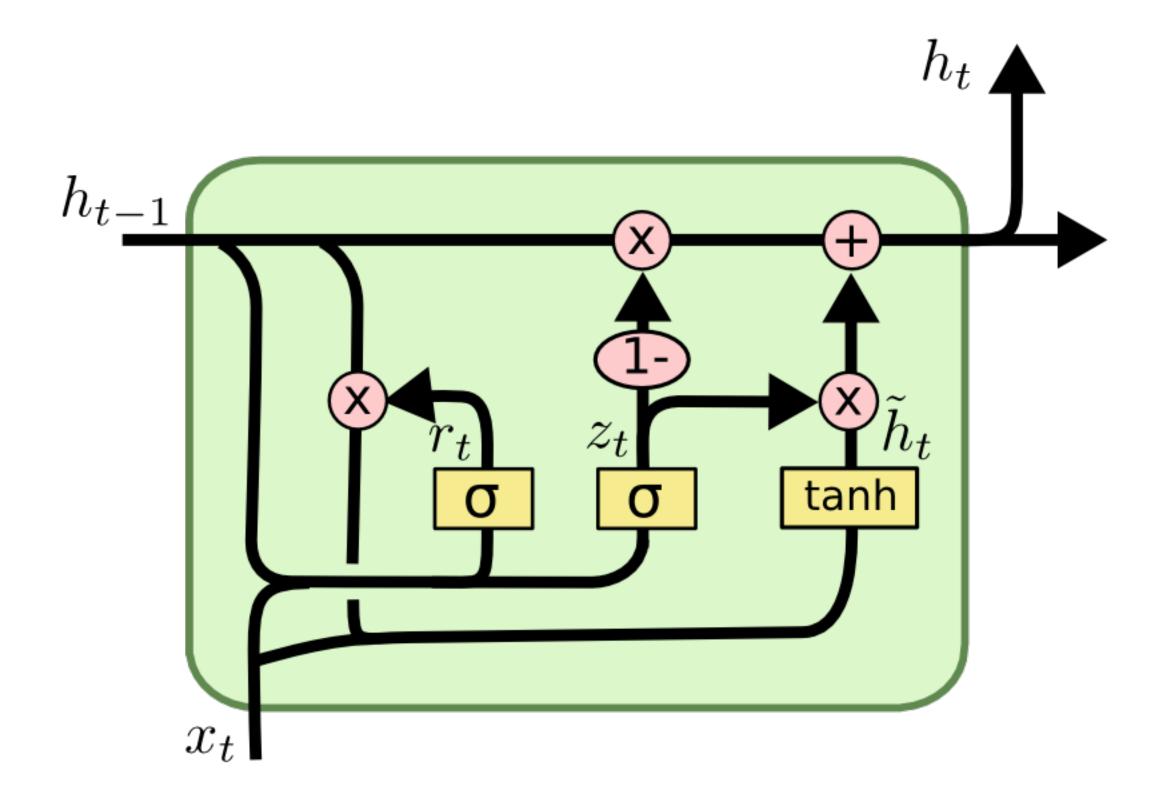
Hidden states depend on an W_{hh} earlier state and an input W_{xh} W_{xh} and cheap





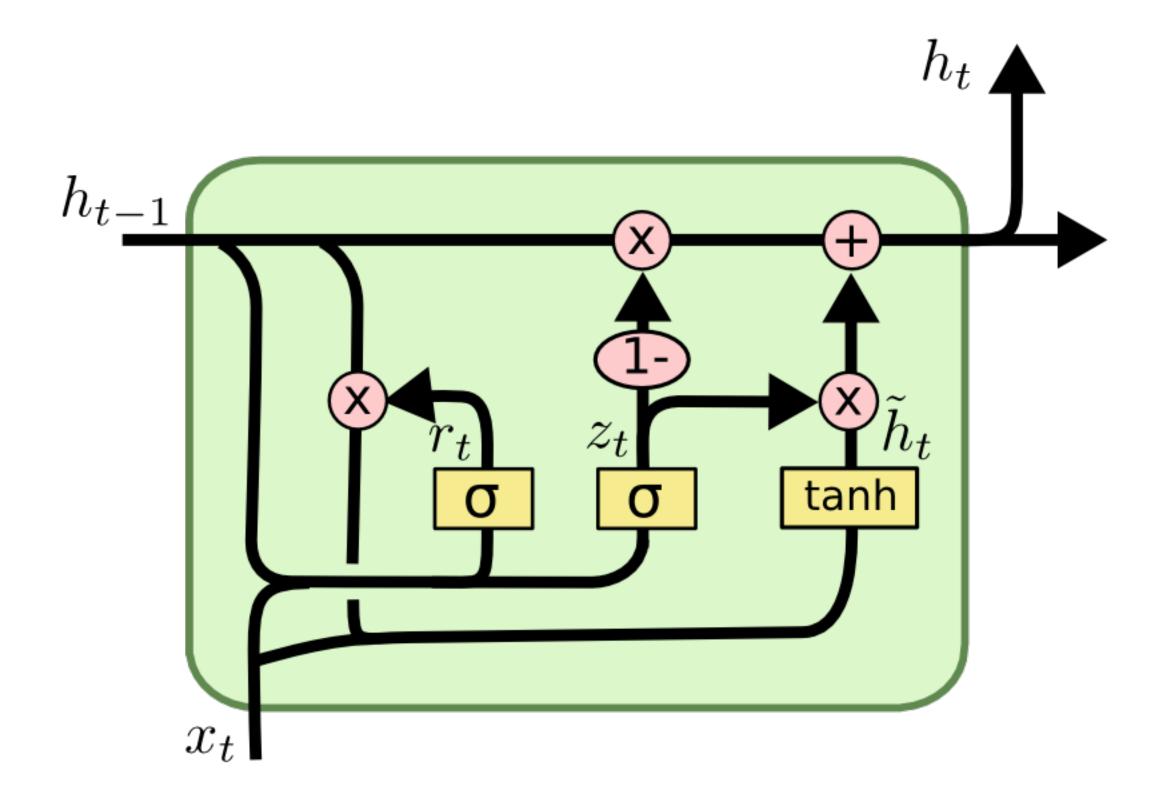
"Vanilla" RNNs

$h_t = f(W_{hh}h_{t-1} + W_{xh}x_i + b)$



$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

[Image: Cristopher Olah]



$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$

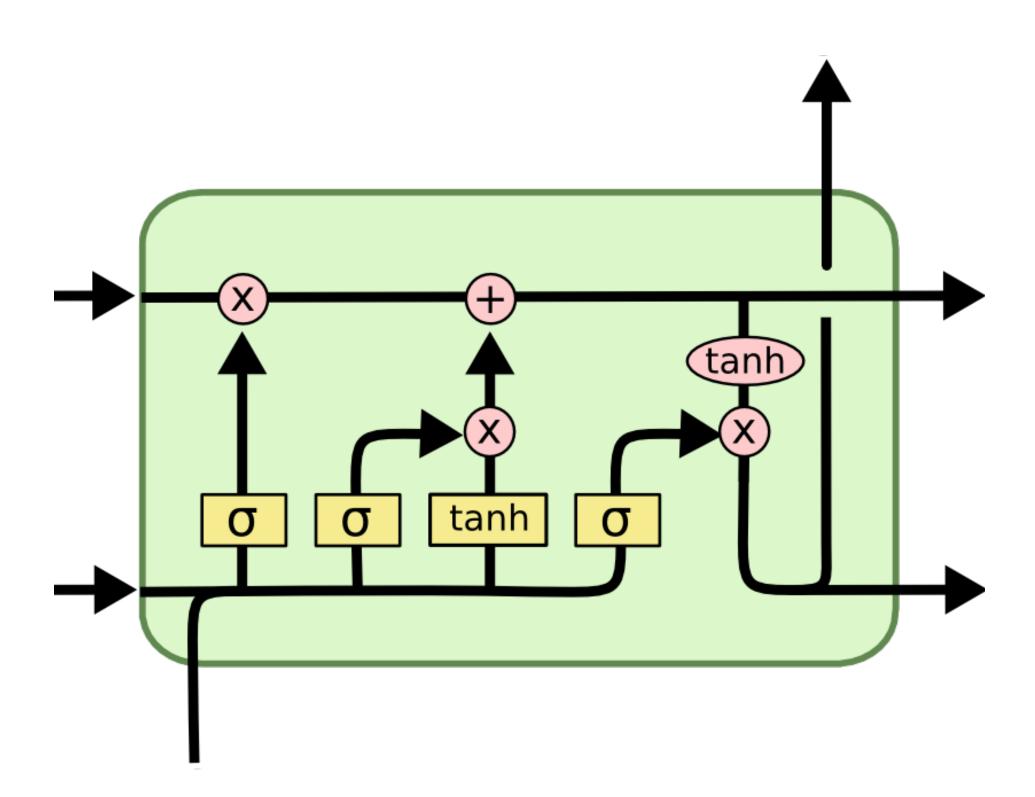
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$

$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$

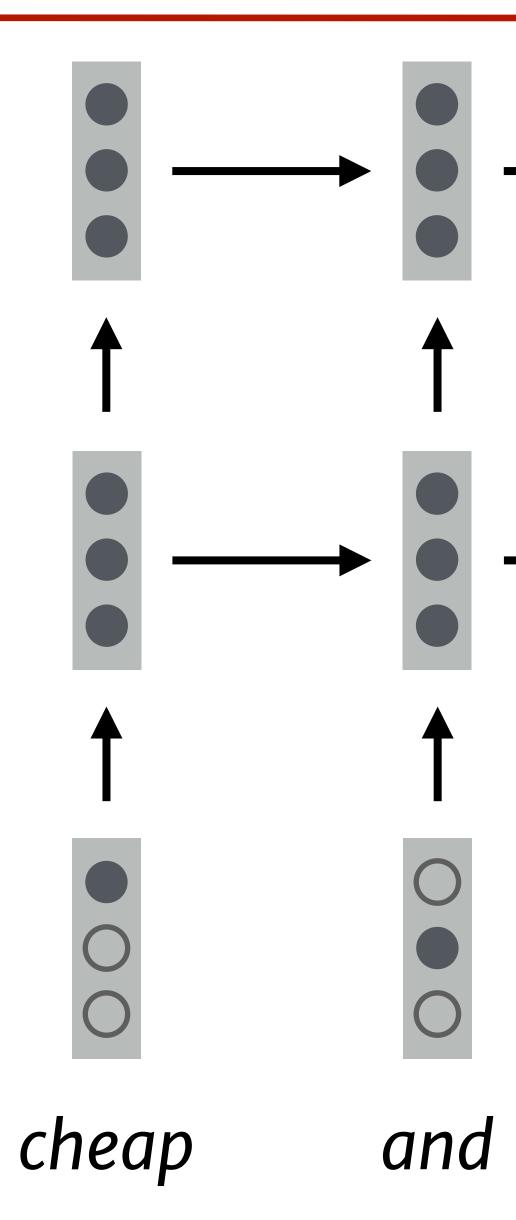
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

[Image: Cristopher Olah]

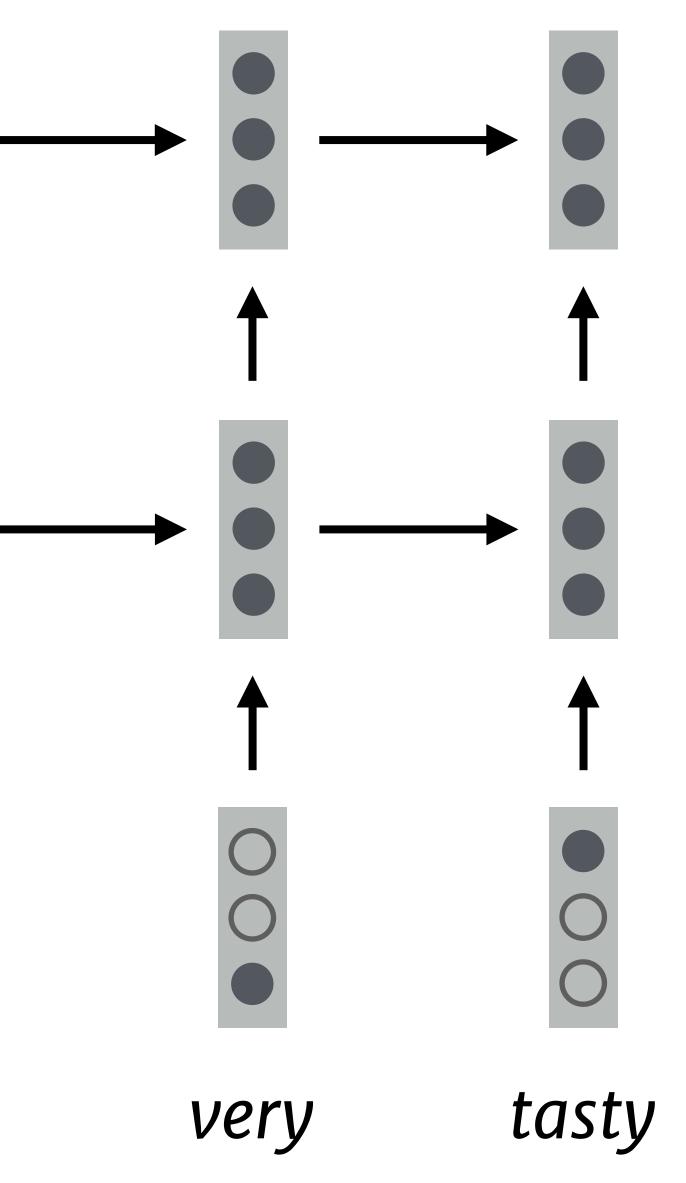
Long Short-Term Memory Units



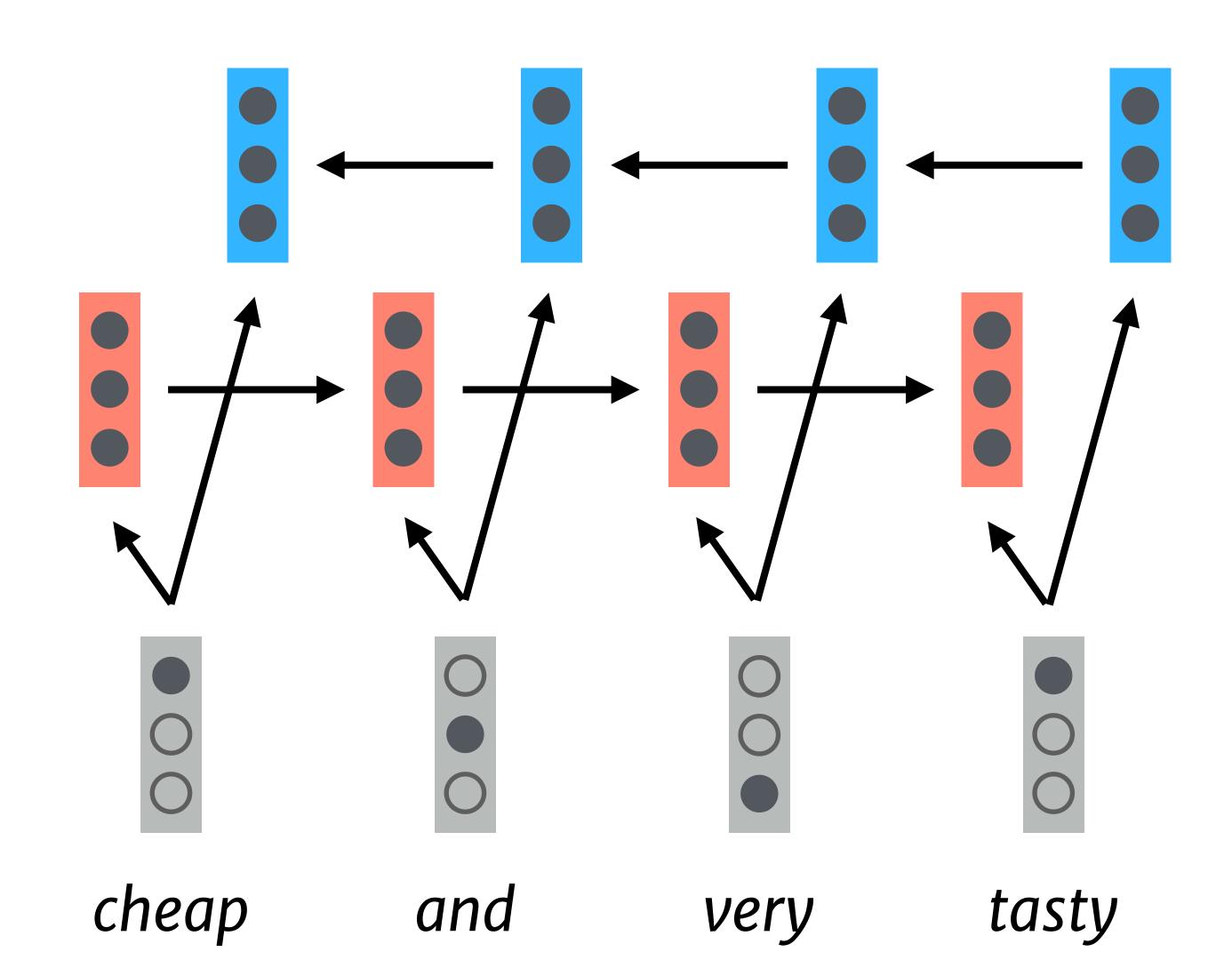
[Image: Cristopher Olah]

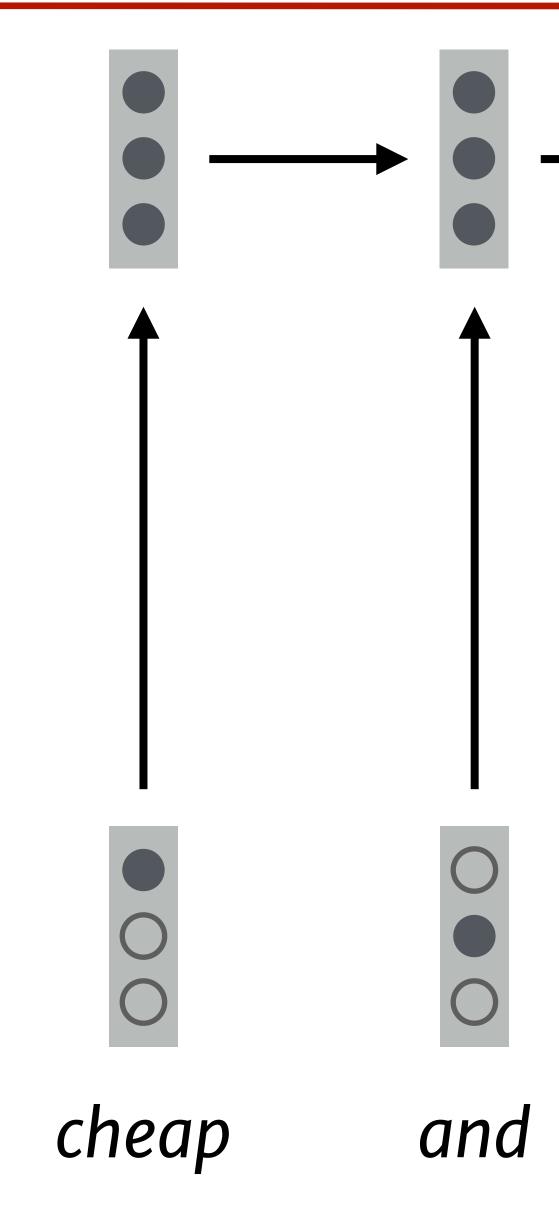


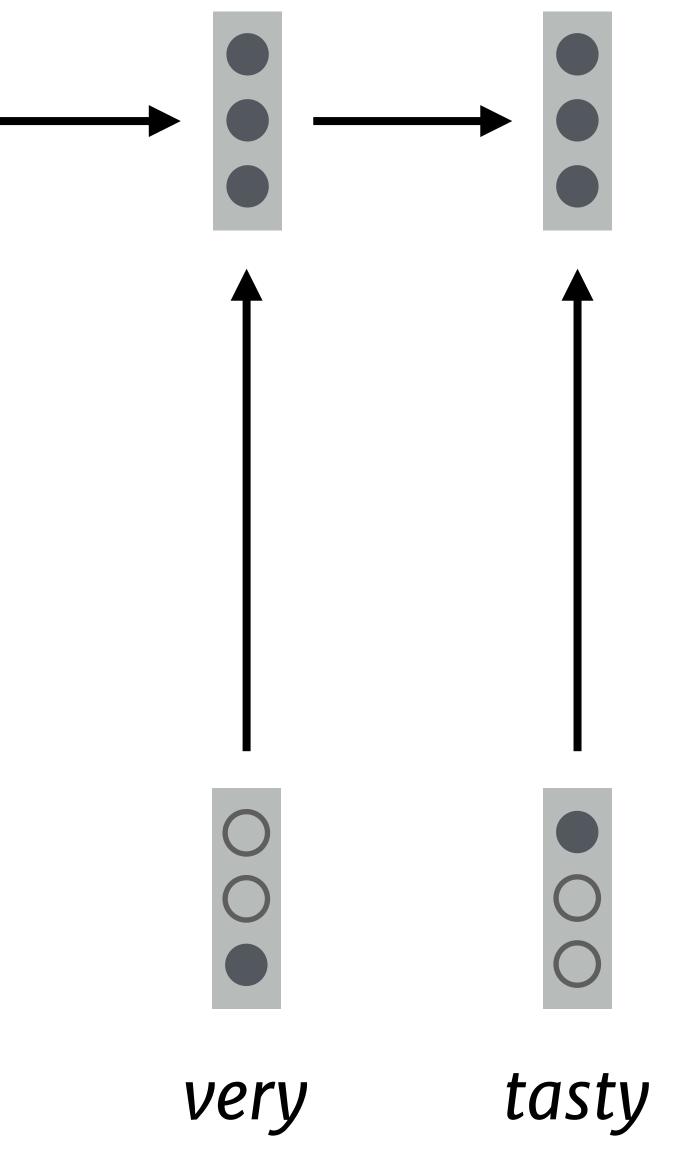
Deeper RNNs

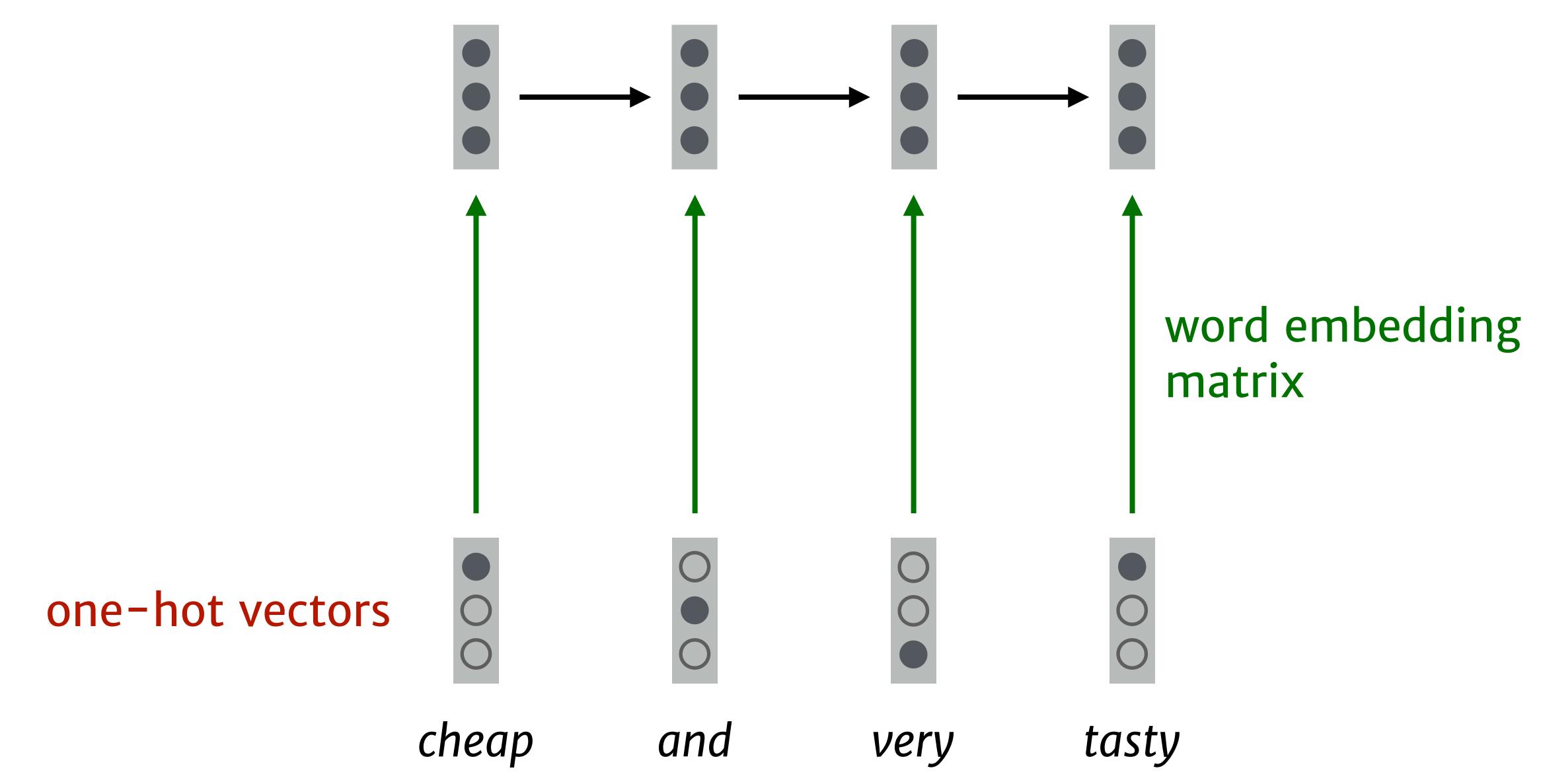


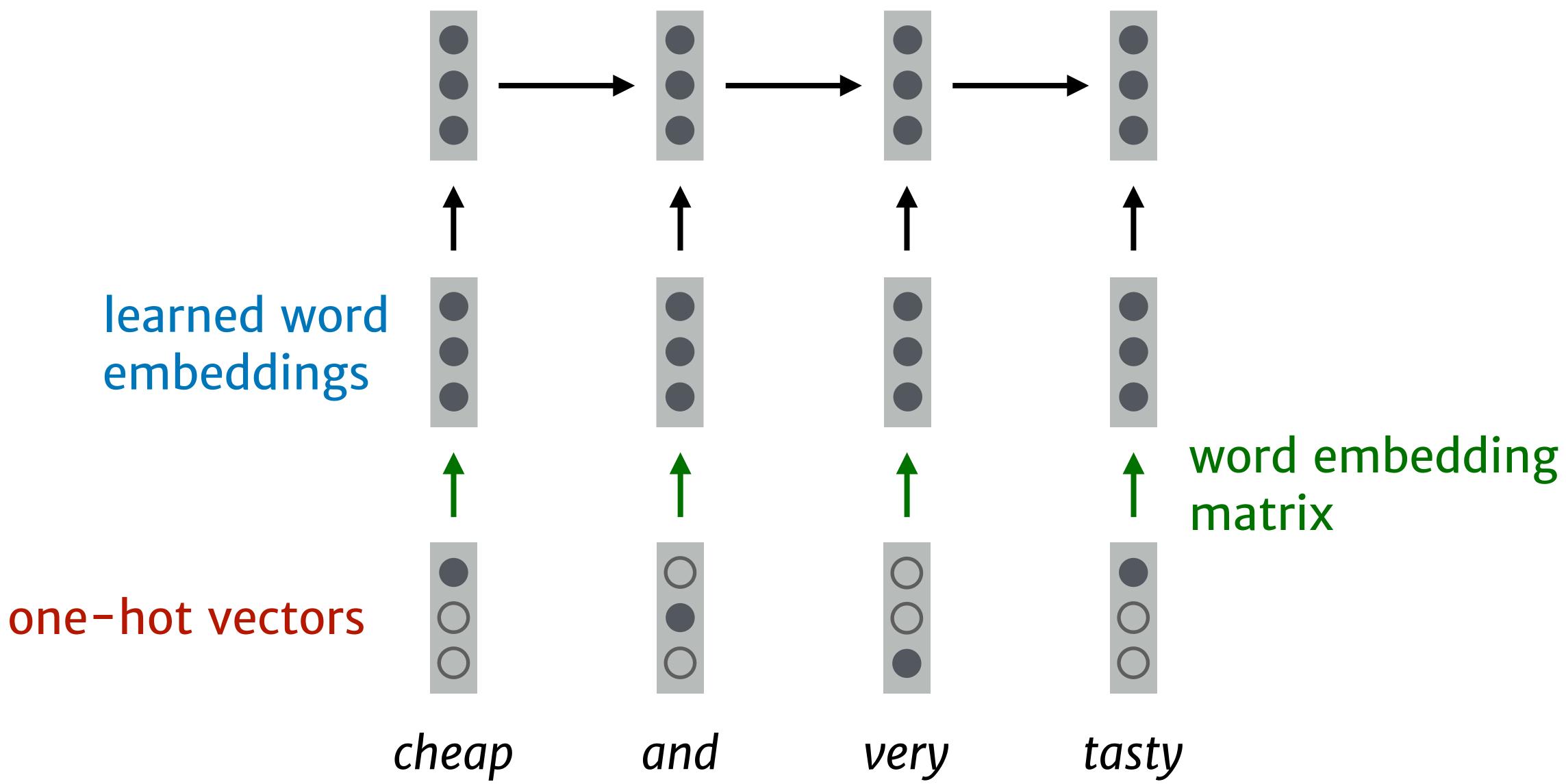
Bidirectional RNNs

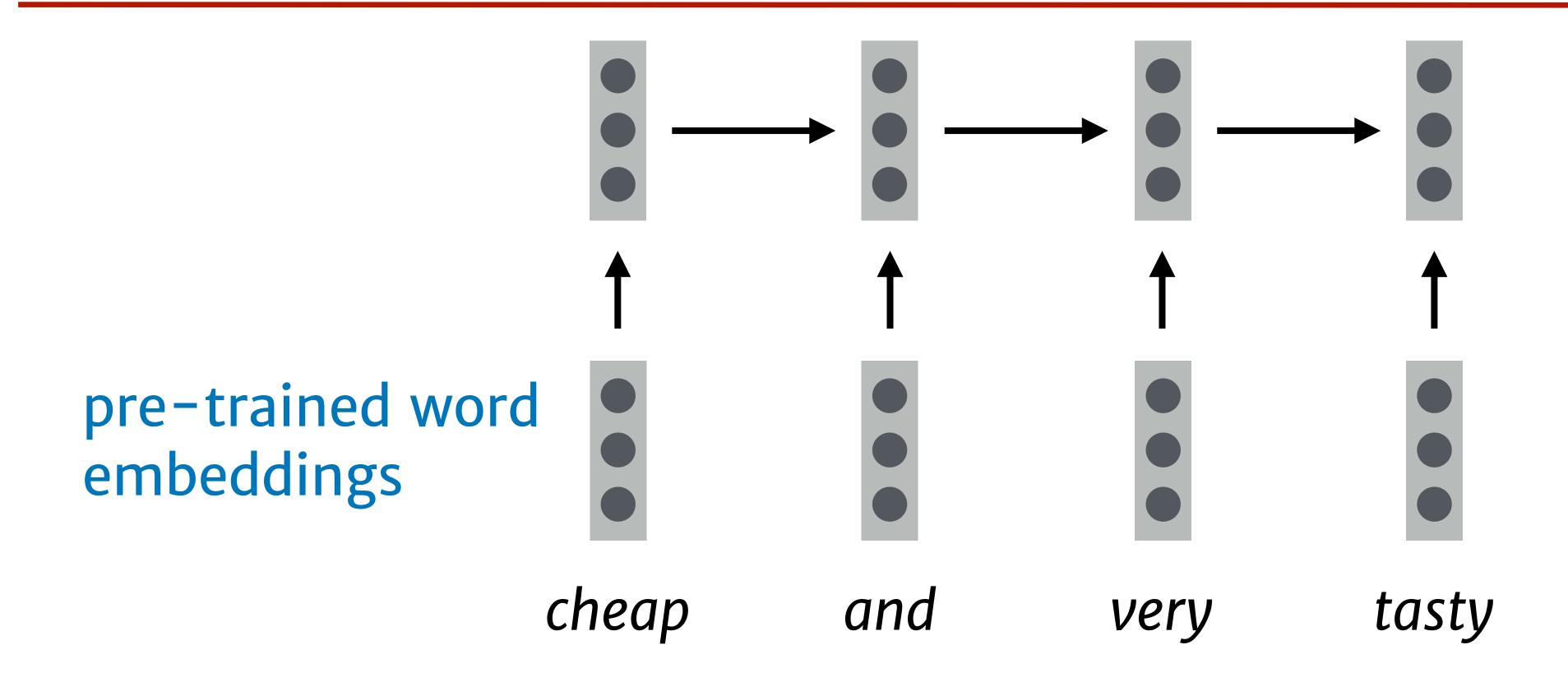




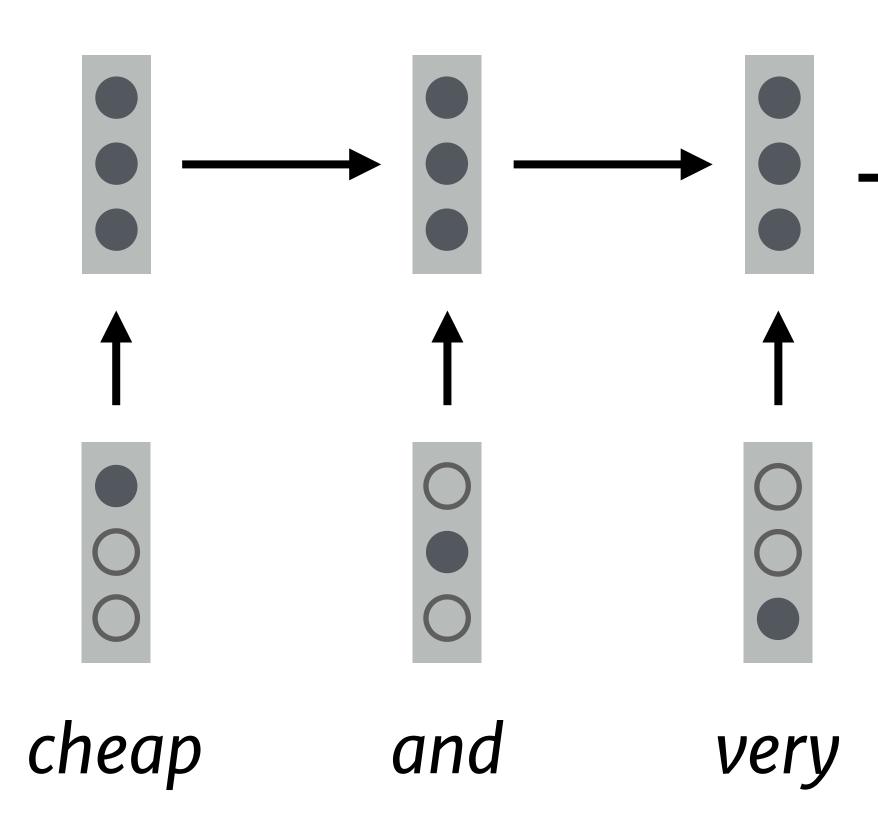


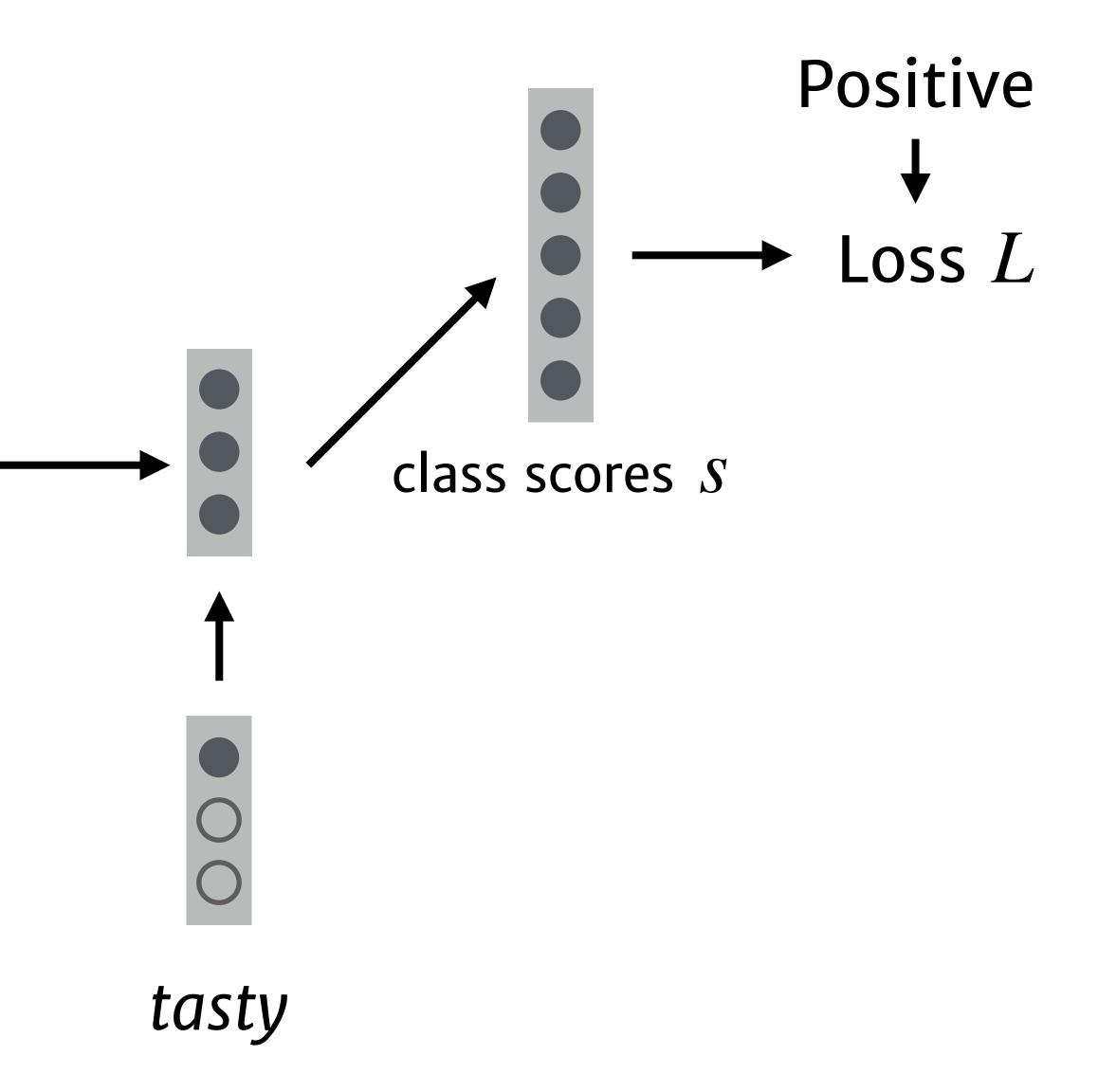




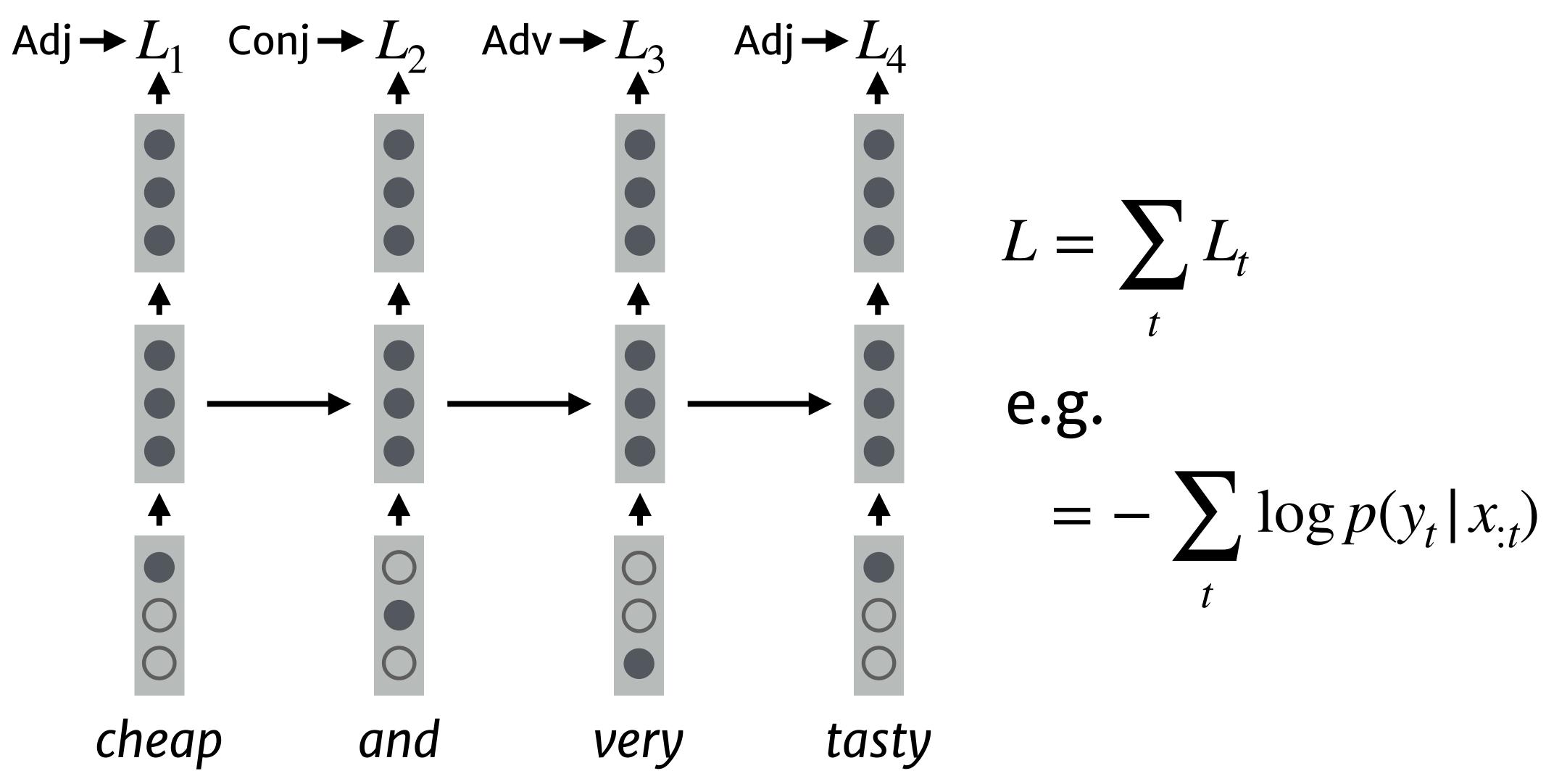


Text classification

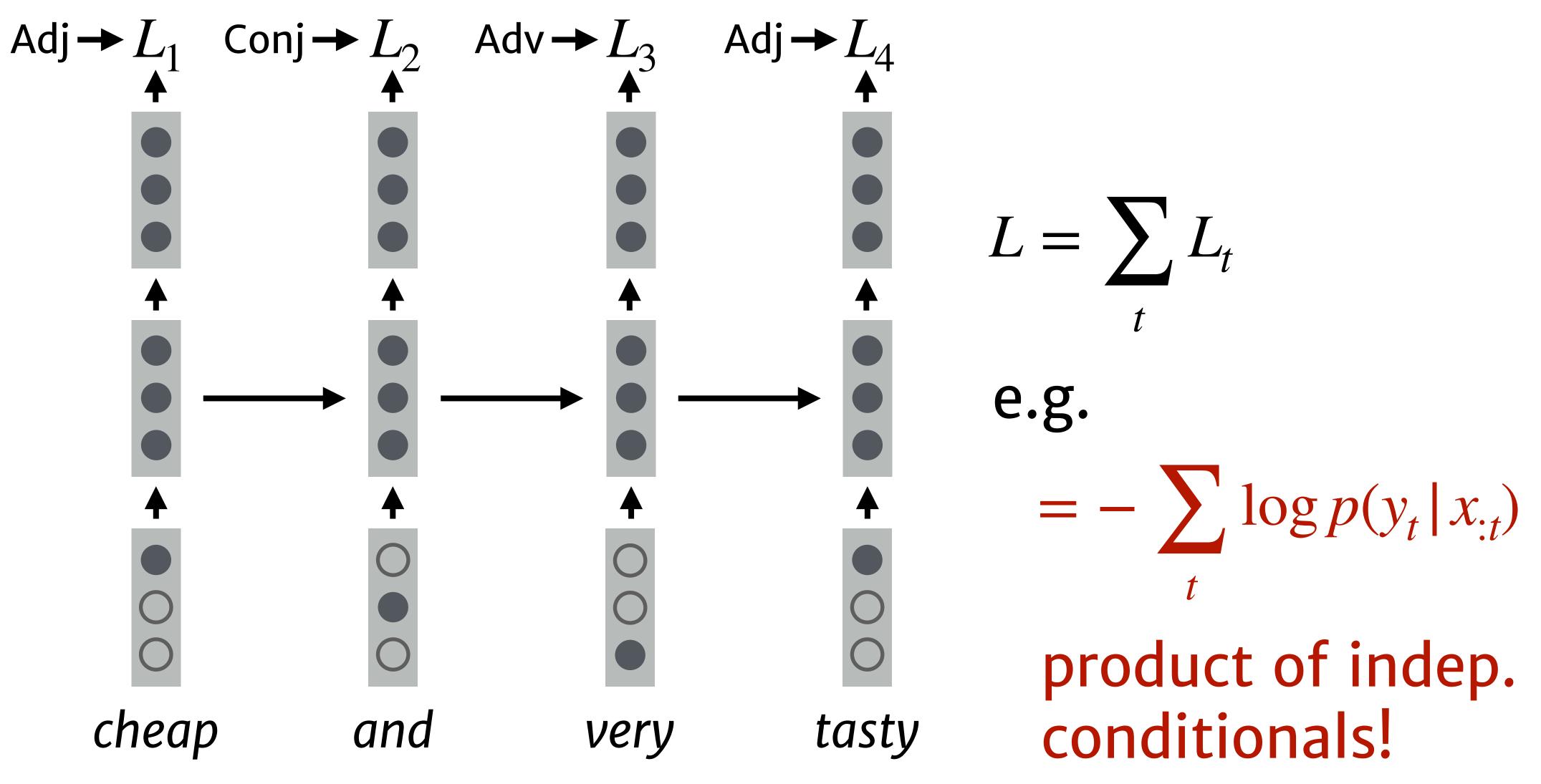




Sequence labeling



Sequence labeling



Langauge Modeling

and $\rightarrow L_1$ very $\rightarrow L_2$ tasty $\rightarrow L_3$ chead

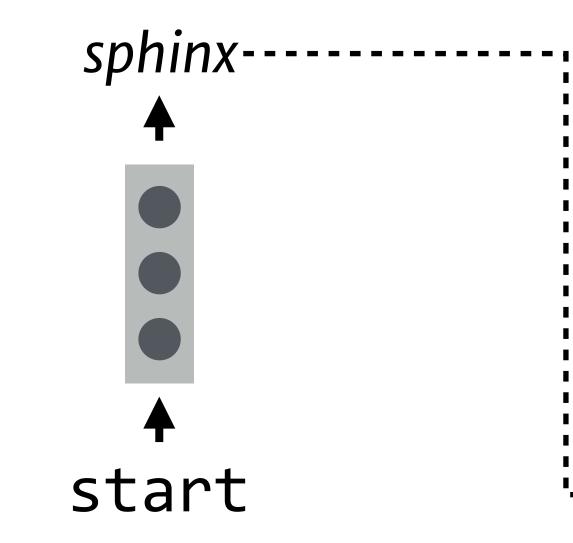
A (unidirectional) can compute $p(y_t | x_{t})$. Suppose for a sequence x we set $y_t = x_{t+1}$. and verv

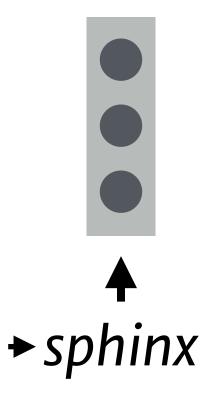
then $\sum \log p(x_{t+1} | x_{t+1}) = p(x)$

How do we sample from p(x)?

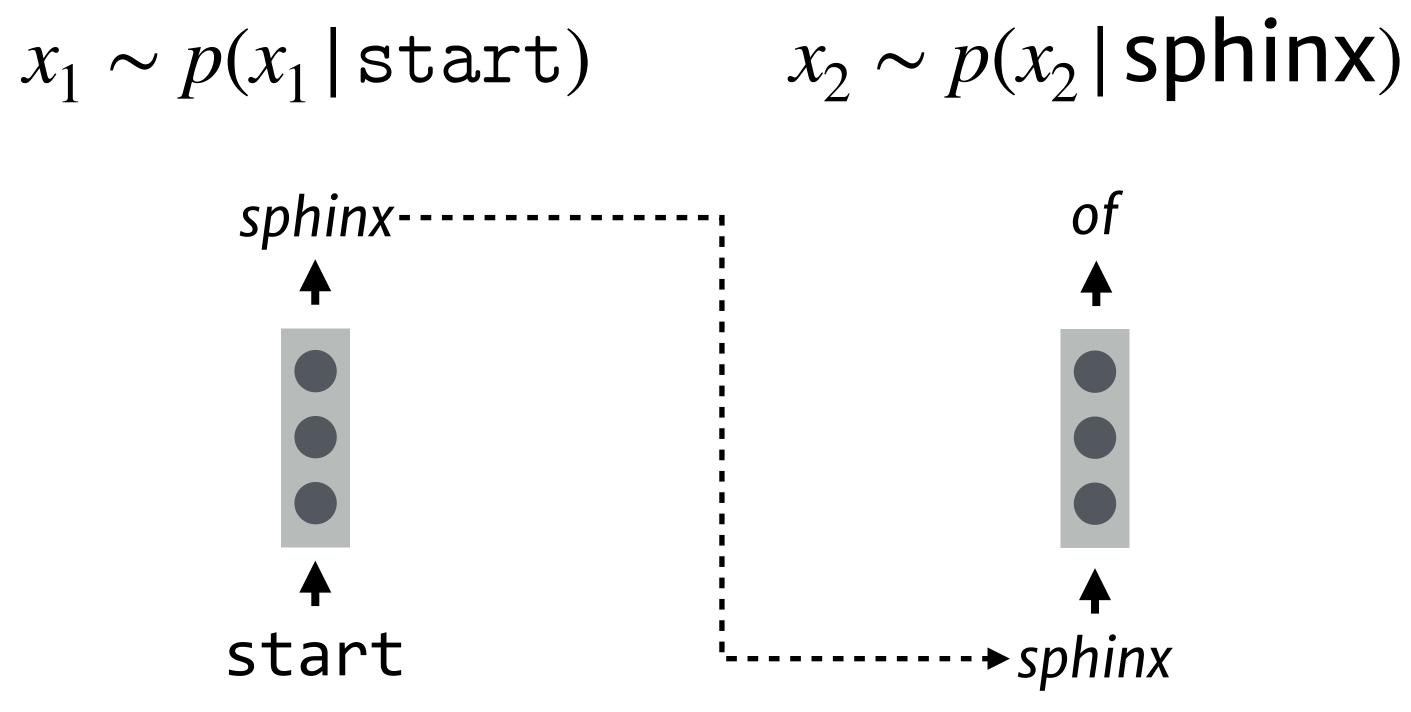
How do we sample from p(x)?

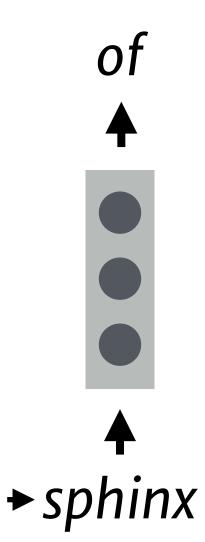
 $x_1 \sim p(x_1 | \text{start})$

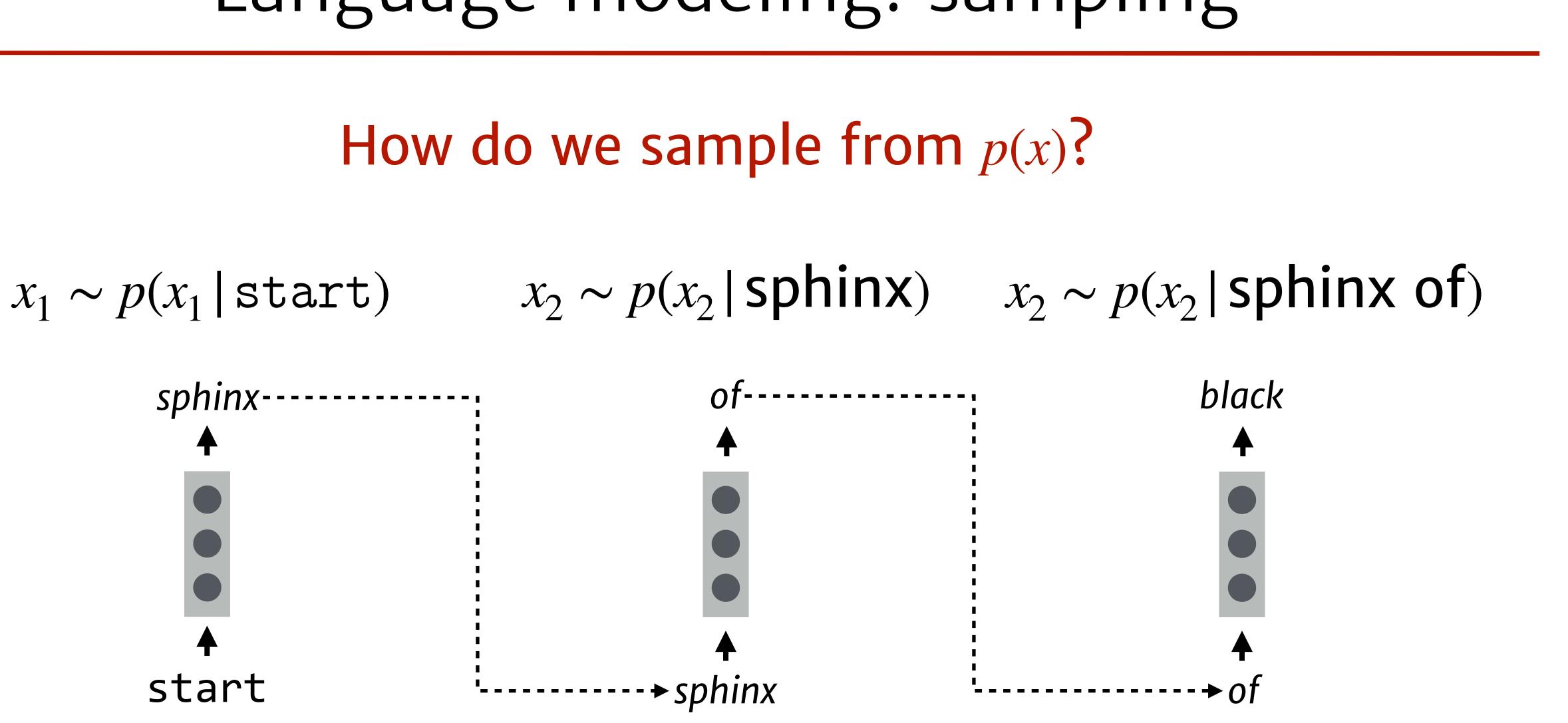




How do we sample from p(x)?

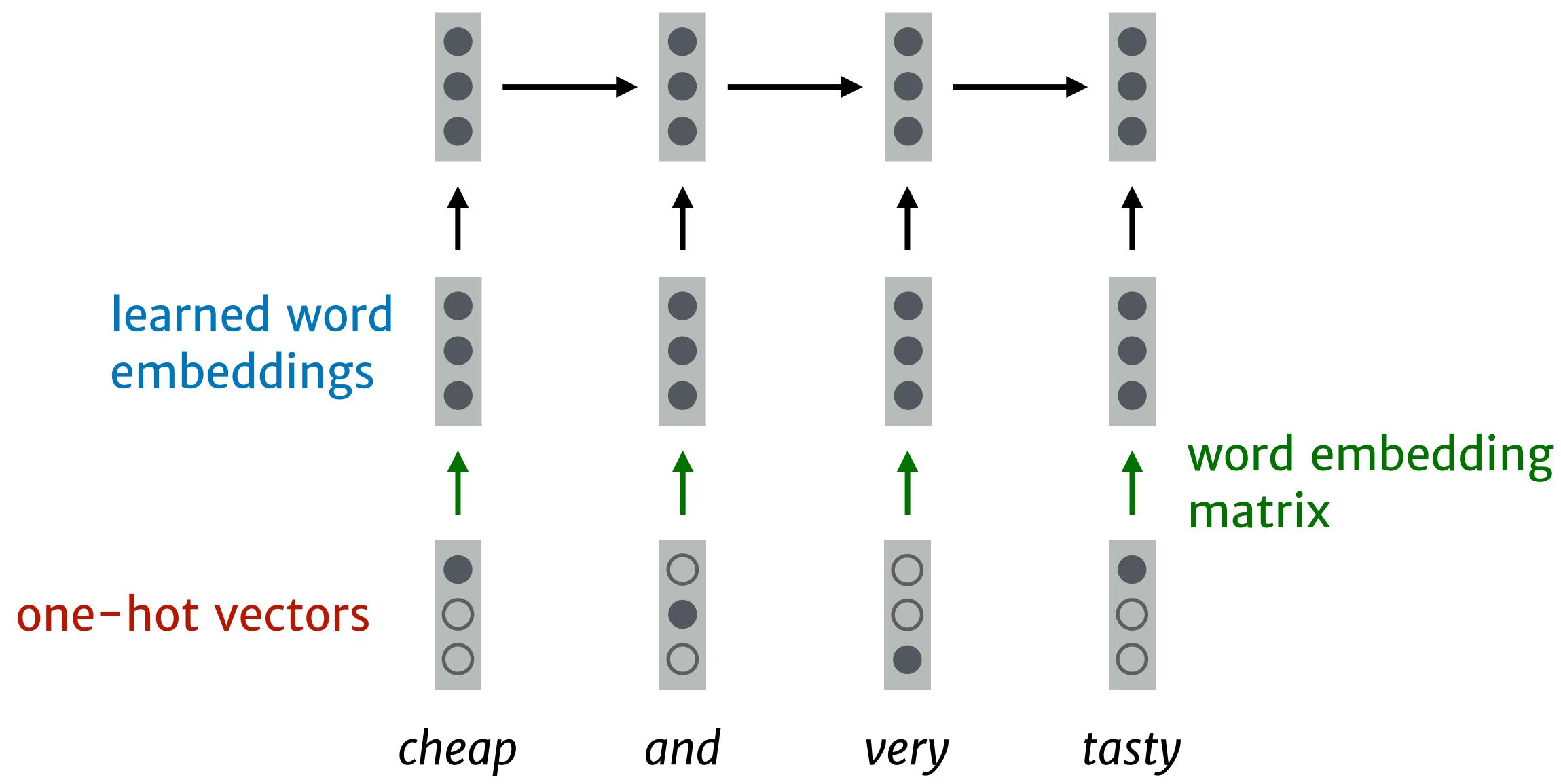






SPHINX OF BLACK QUARTZ, JUDGE MY VOW

Language modeling as representation learning



RNNs as Markov chains

I can train this network to predict:

 $\log p(y_t | x_{:t})$

Y
Adj
Conj

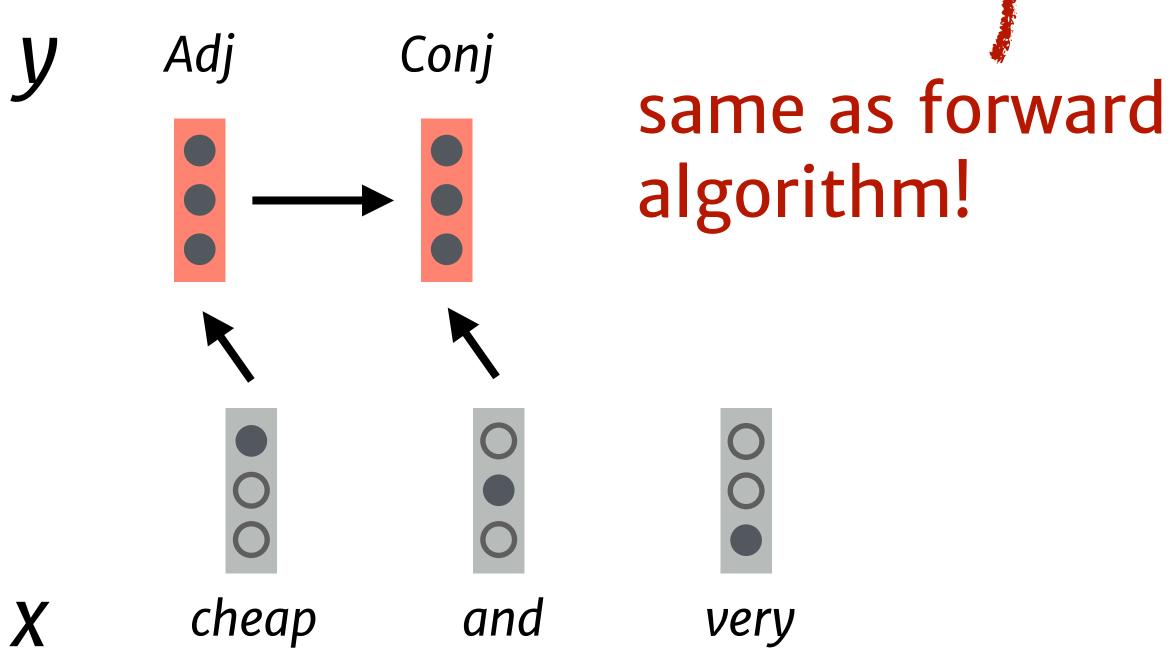
Conj
Conj

<

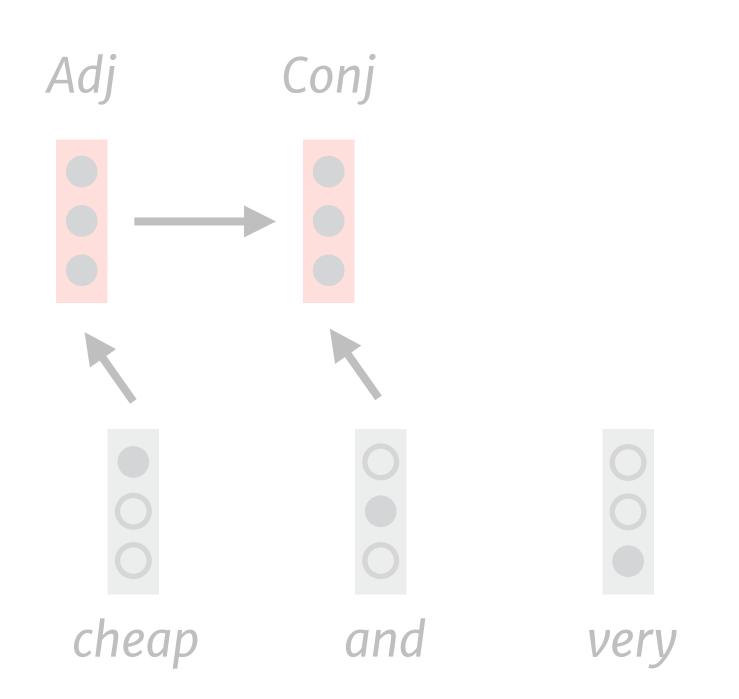
RNNs as Markov chains

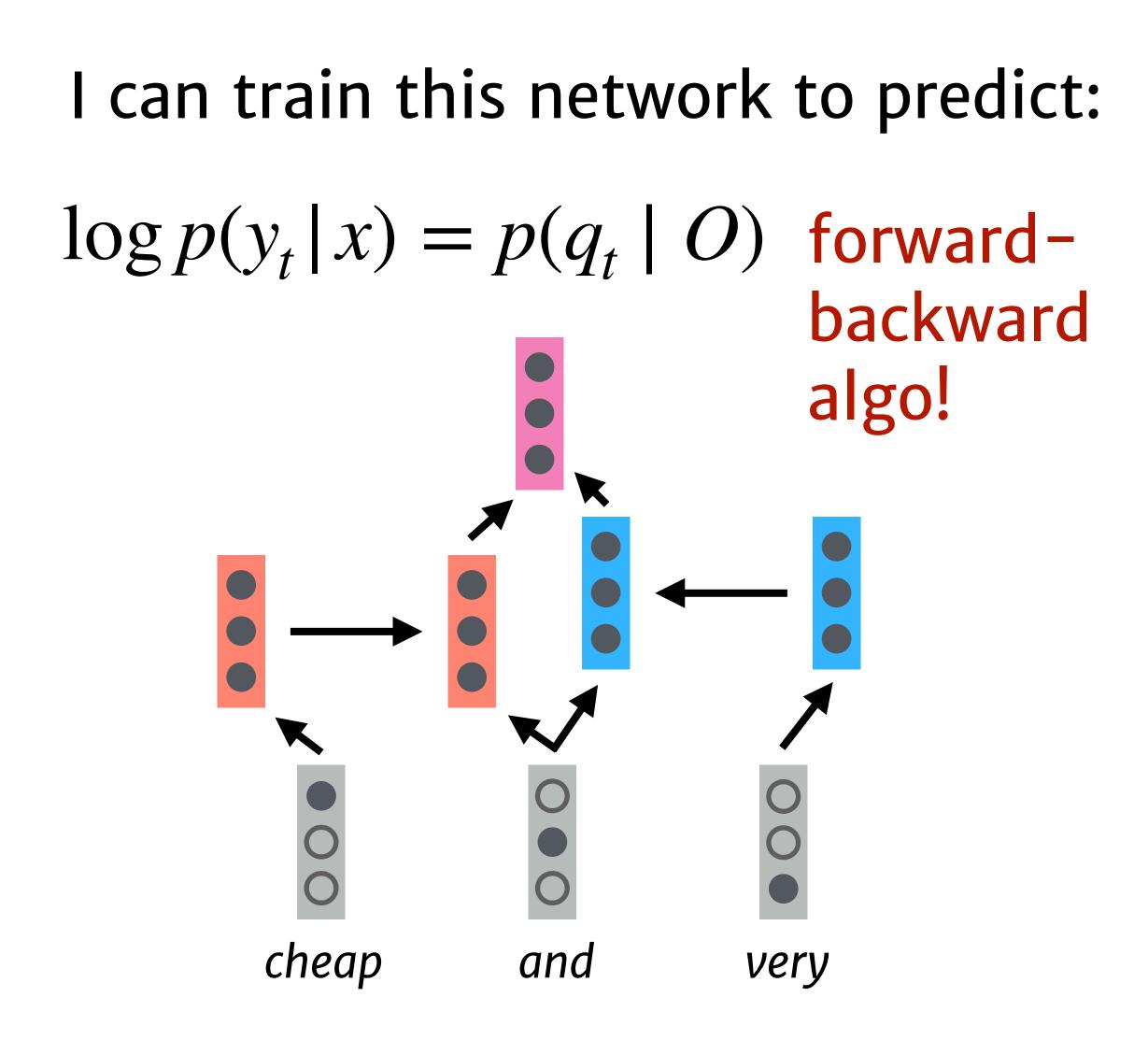
I can train this network to predict:

 $\log p(y_t | x_{:t}) = p(q_t | O_{:t})$



I can train this network to predict: $\log p(y_t | x_{t}) = p(q_t | O_{t})$





Sequence-to-sequence models

One plus one equals two.

Two times two equals four.

Seven is prime.

One plus two times three equals seven.

A dataset of math problems

One plus one equals two.

Two times two equals four.

Seven is prime.

One plus two times three equals seven.

Two times three times three equals ???

A dataset of math problems

$x_1 \sim p(x_1 | \dots \text{ times three equals})$

equals

Answering math problems with LMs

$x_1 \sim p(x_1 | \dots \text{ times three equals})$ twenty equals

Answering math problems with LMs

twenty equals

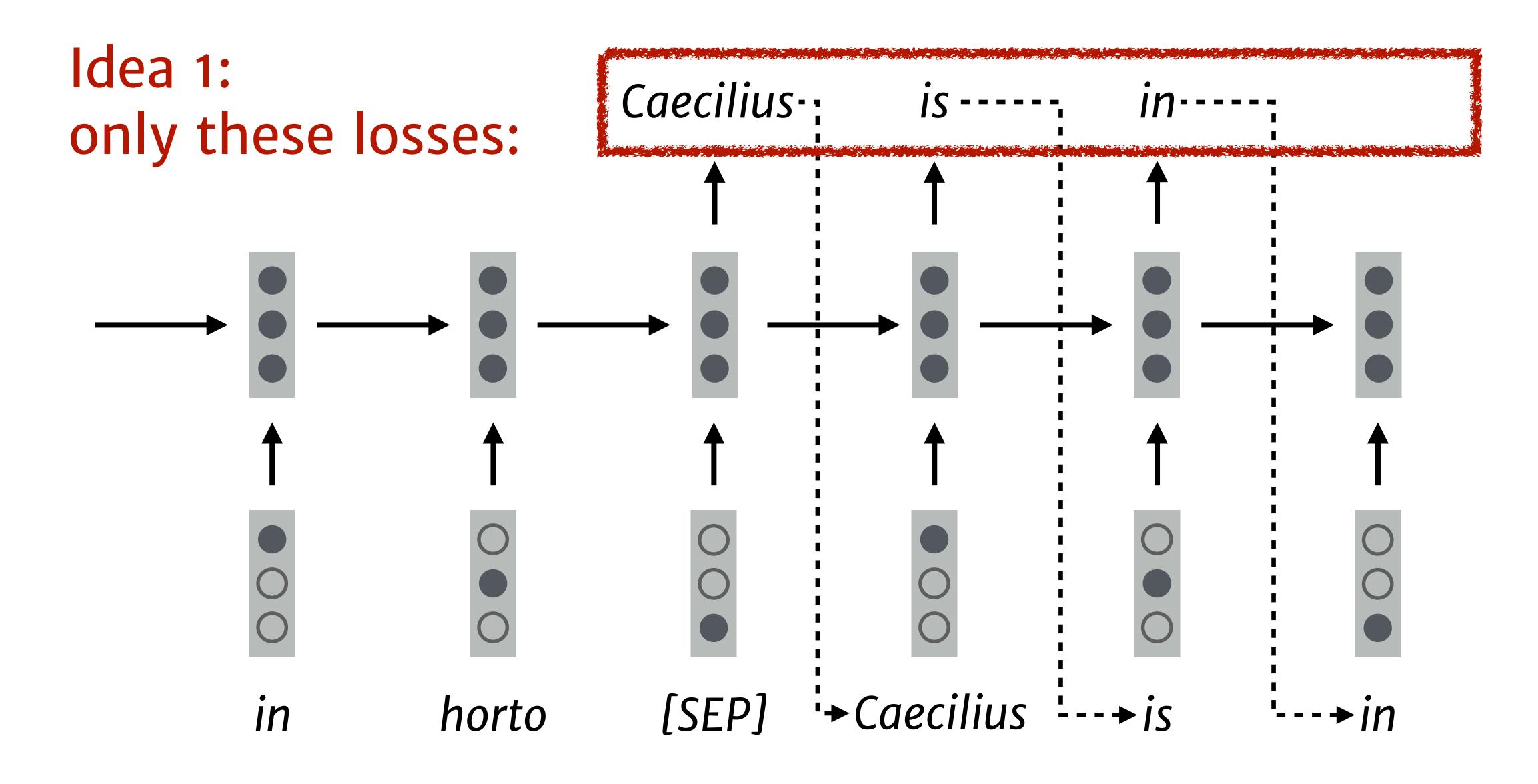
Answering math problems with LMs

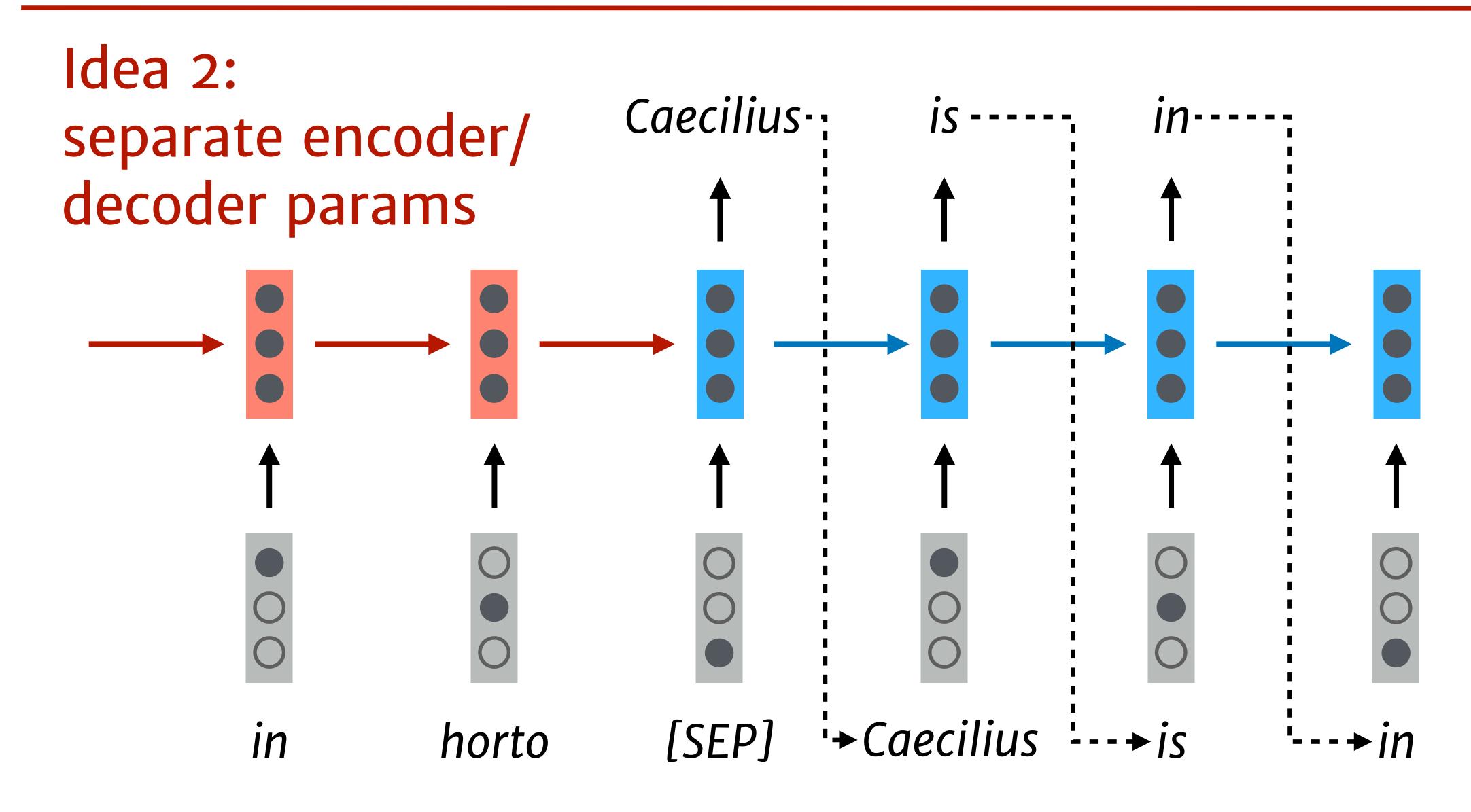


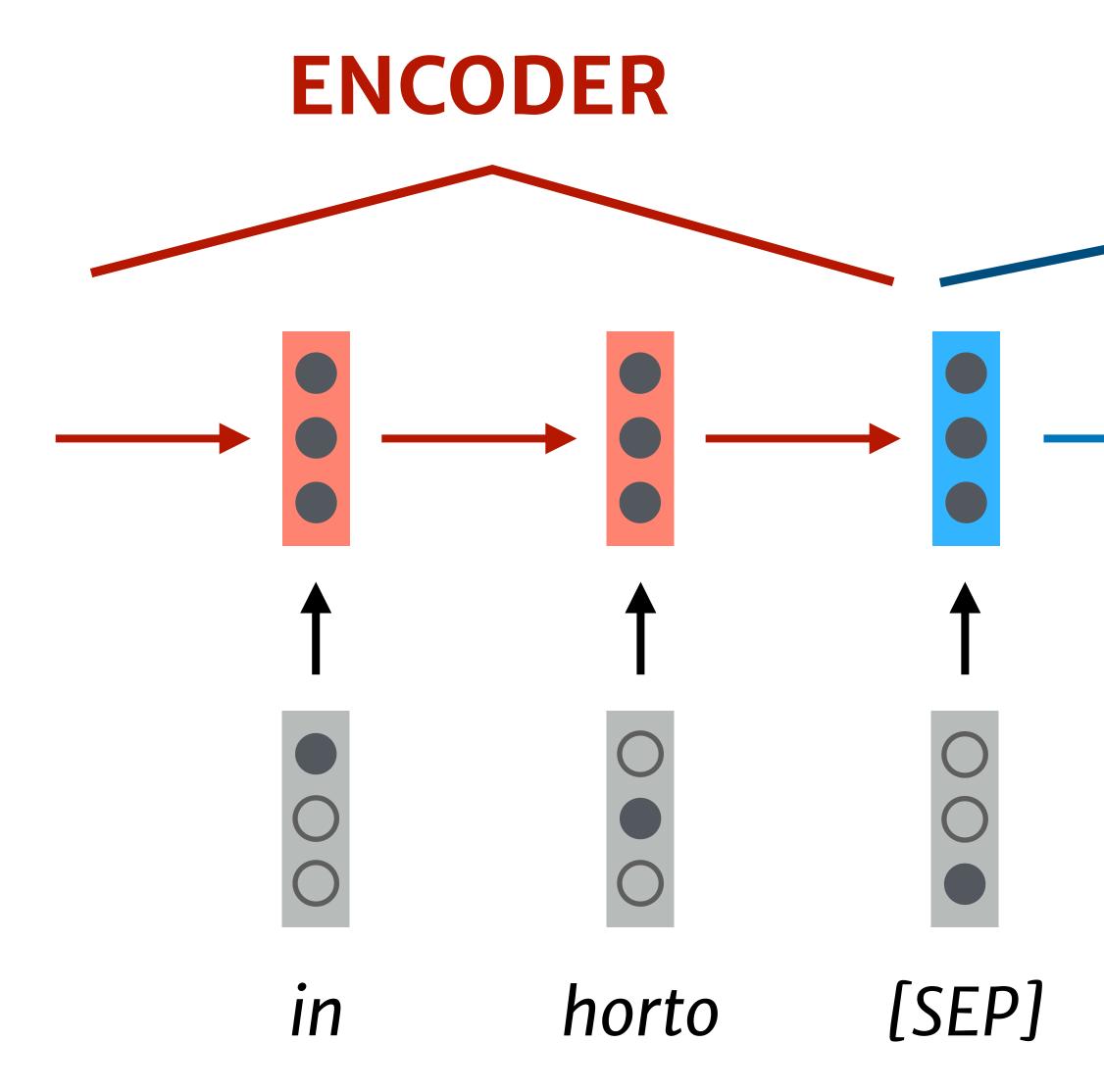
(don't try this at home)

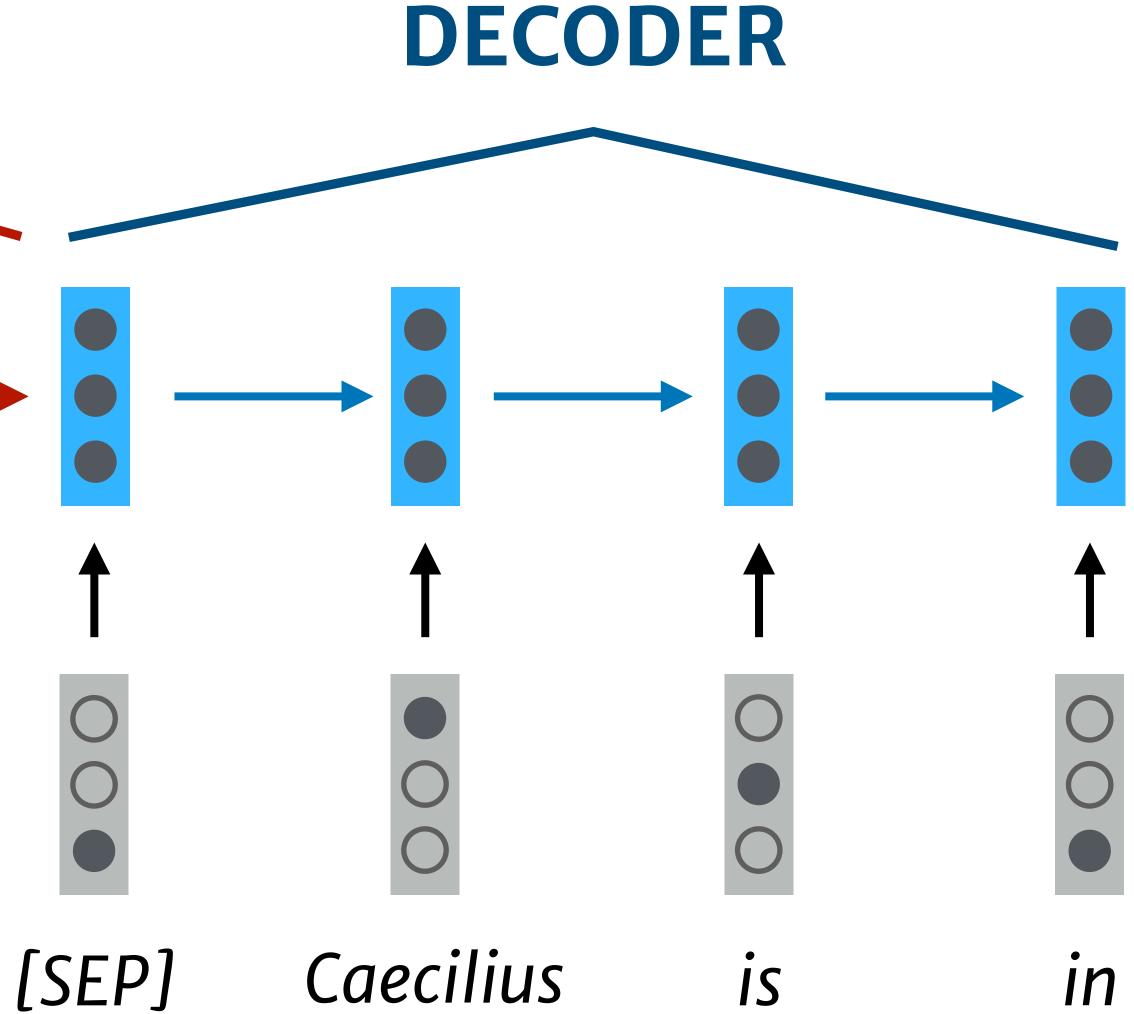
Caecilius est in horto. [SEP] Caecilius is in the garden. Caecilius in horto sedet. [SEP] Caecilius sits in the garden. Grumio est in atrio. [SEP] Grumio is in the atrium. Grumio in atrio laborat. [SEP] ???

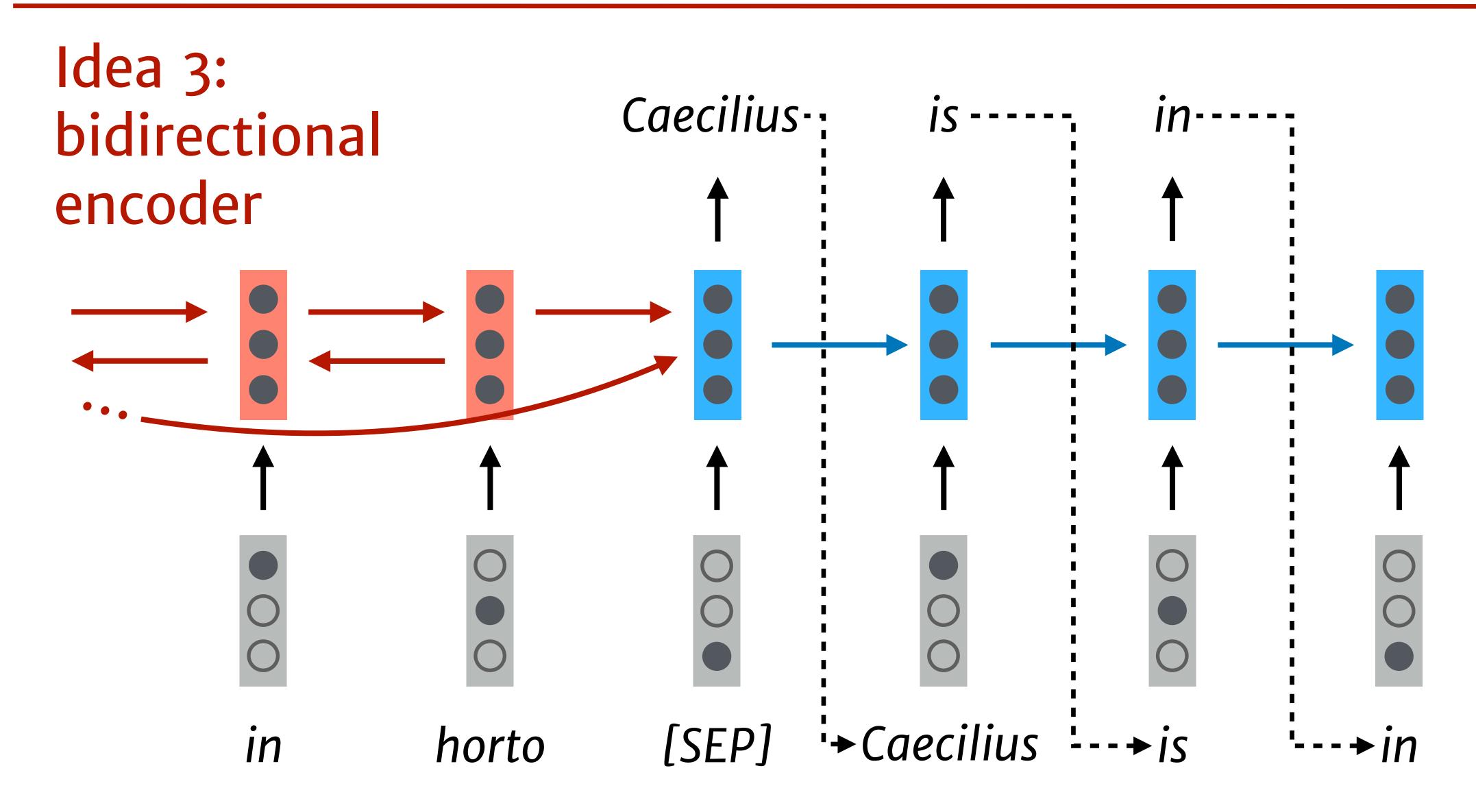
(try this at home!)



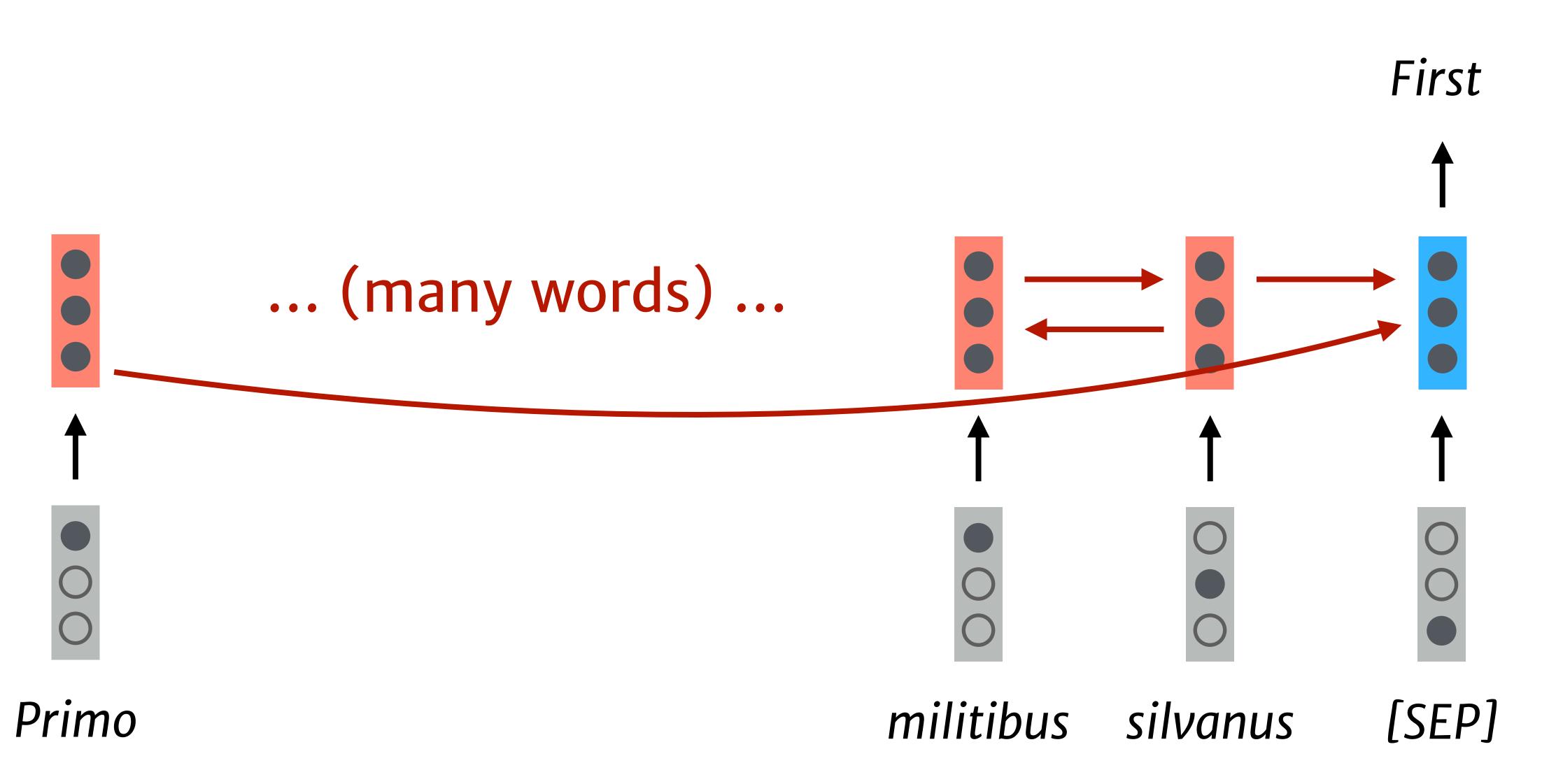




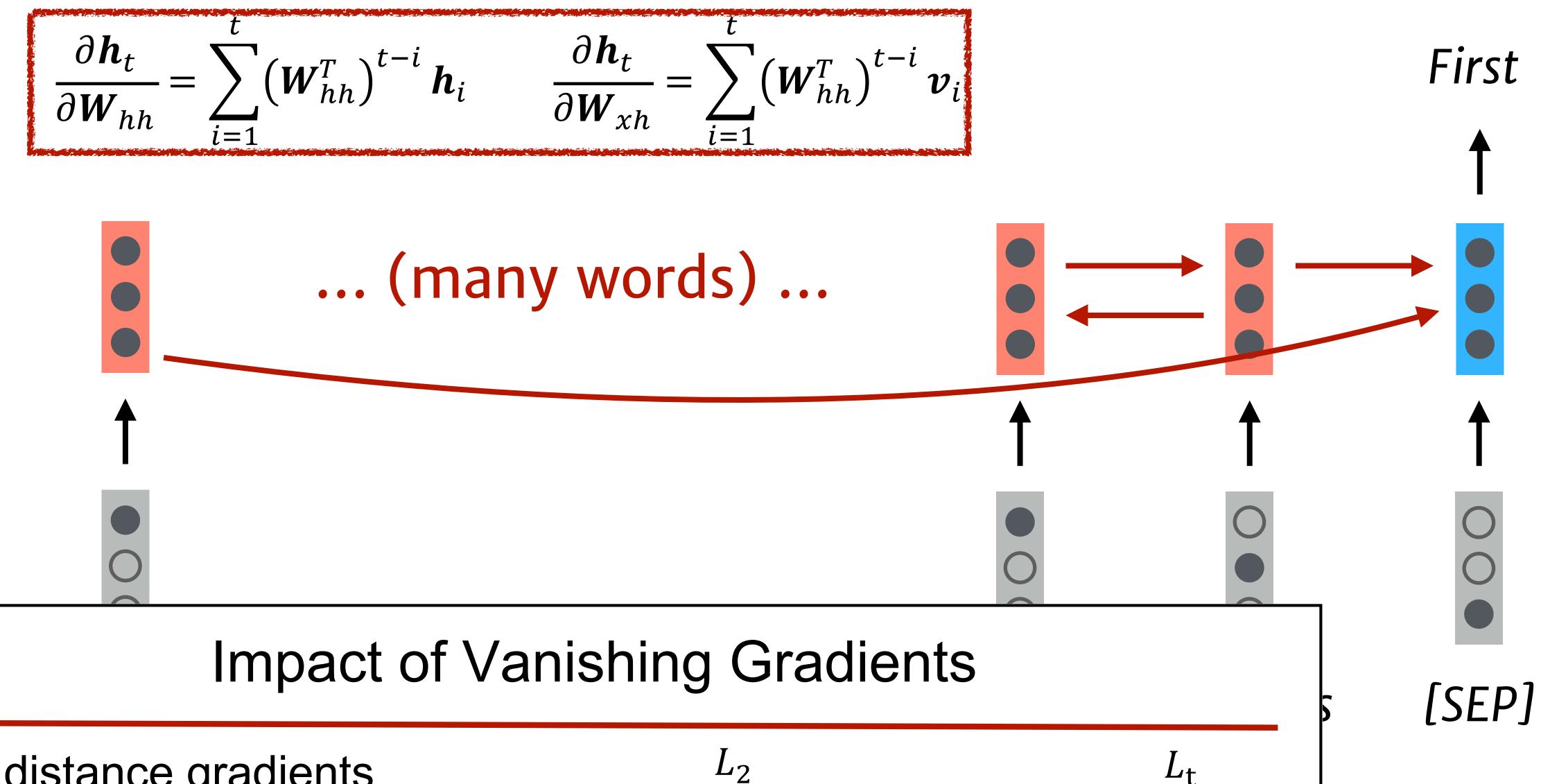




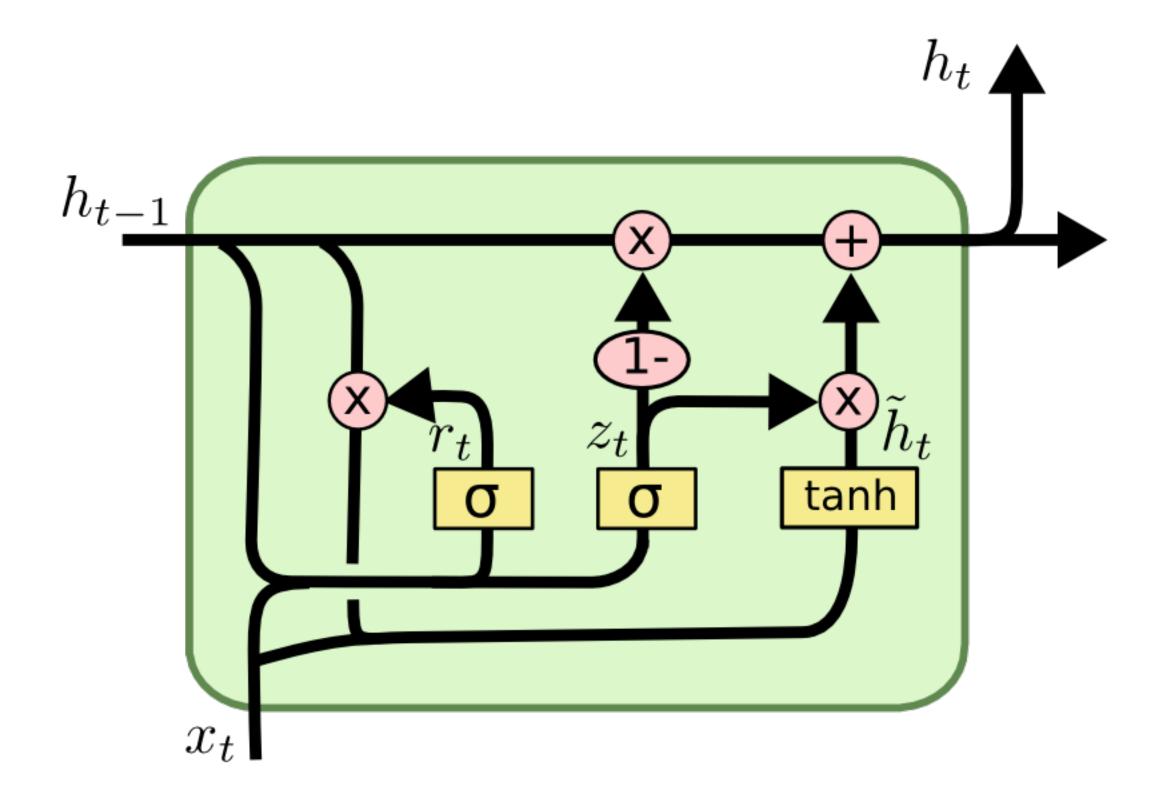
Revenge of the vanishing gradients



Revenge of the vanishing gradients



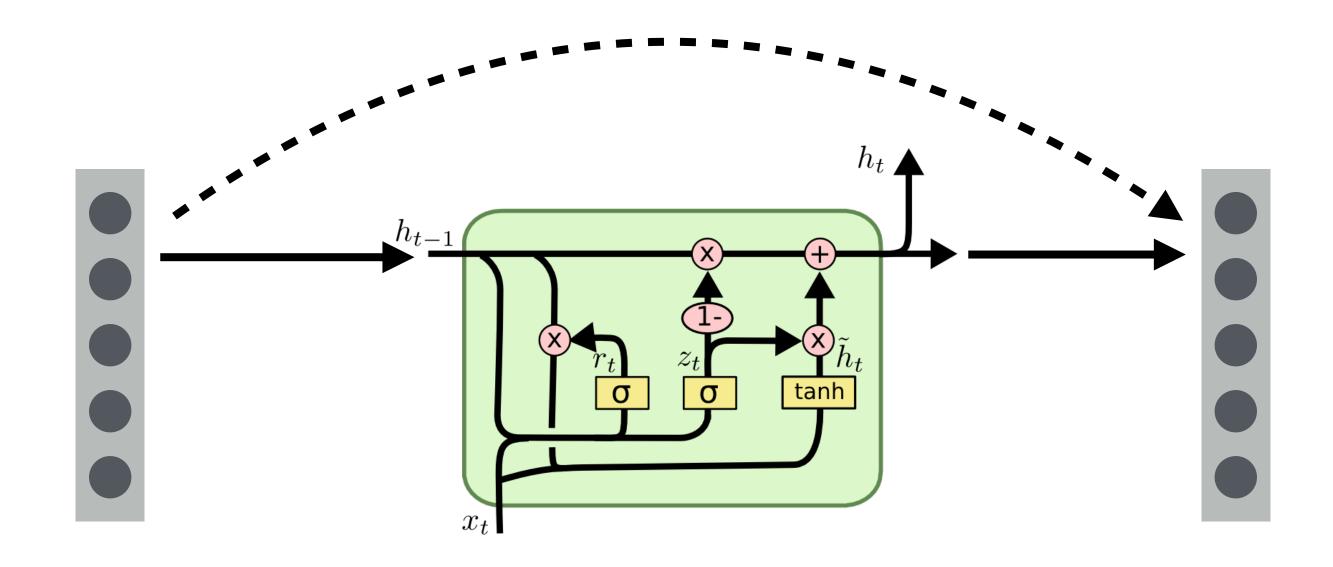
ong distance gradients



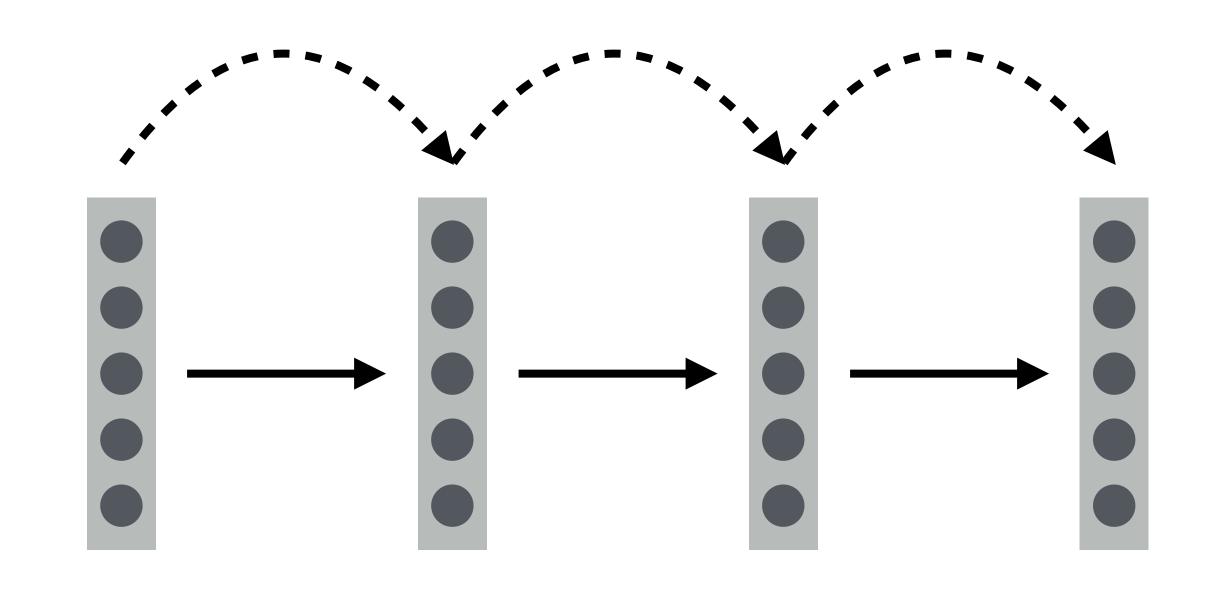
$$z_t = \sigma \left(W_z \cdot [h_{t-1}, x_t] \right)$$
$$r_t = \sigma \left(W_r \cdot [h_{t-1}, x_t] \right)$$
$$\tilde{h}_t = \tanh \left(W \cdot [r_t * h_{t-1}, x_t] \right)$$
$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

[Image: Cristopher Olah]

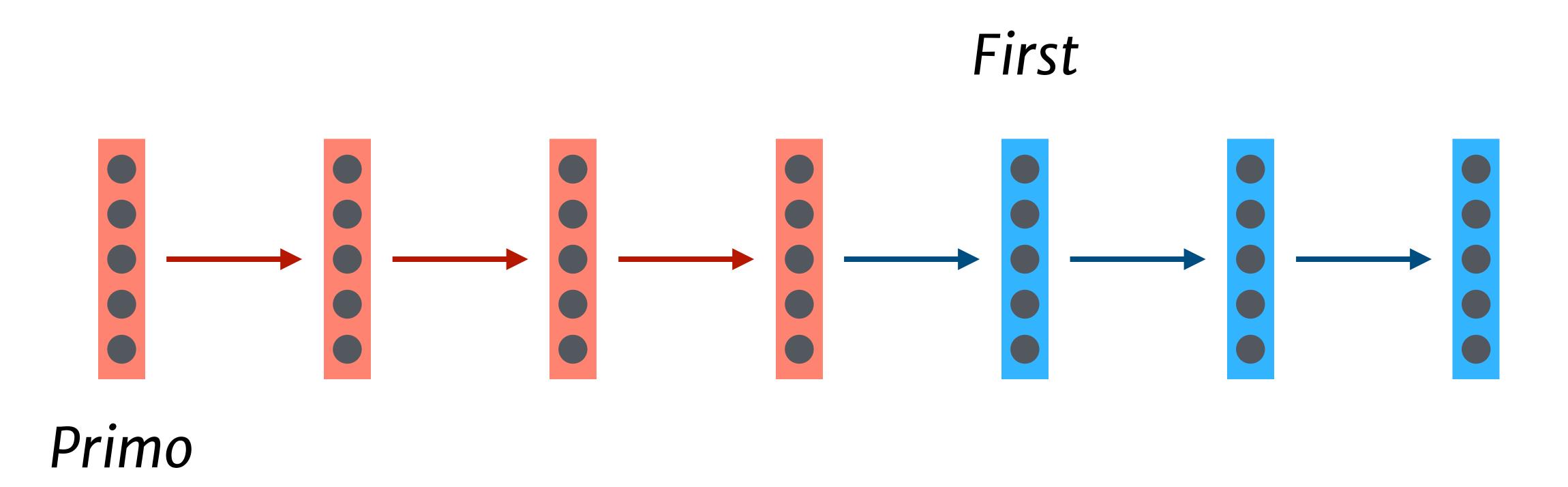
Shortcuts



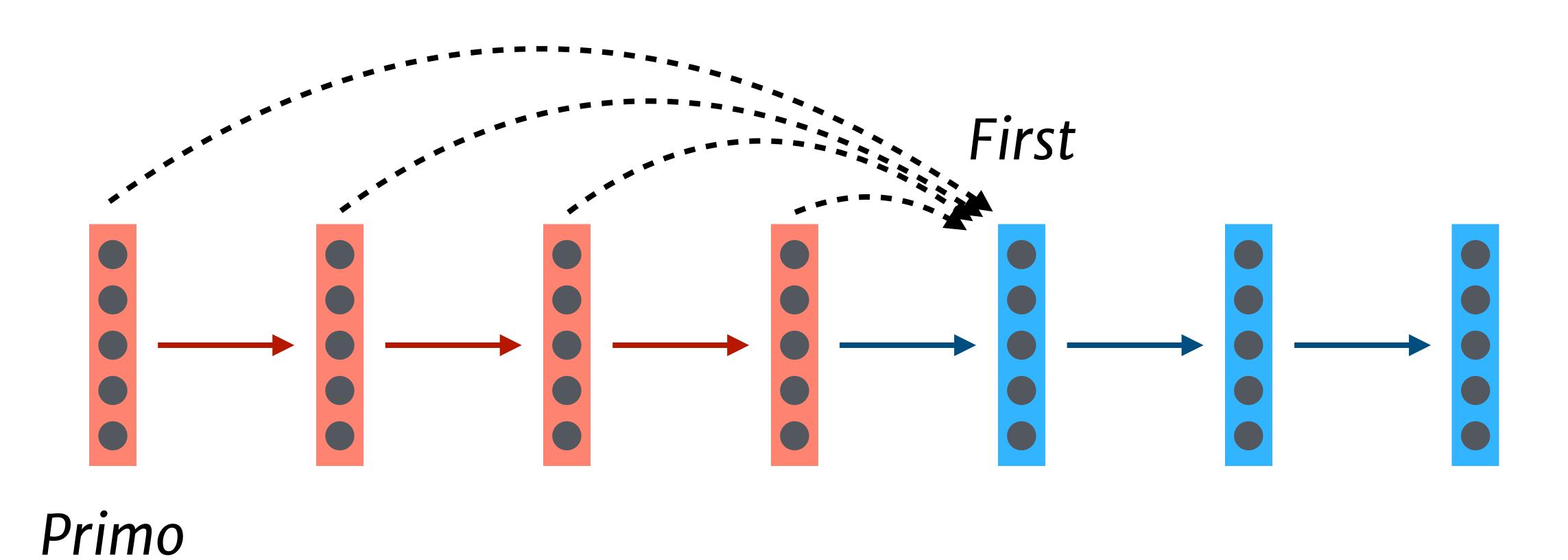
Shortcuts



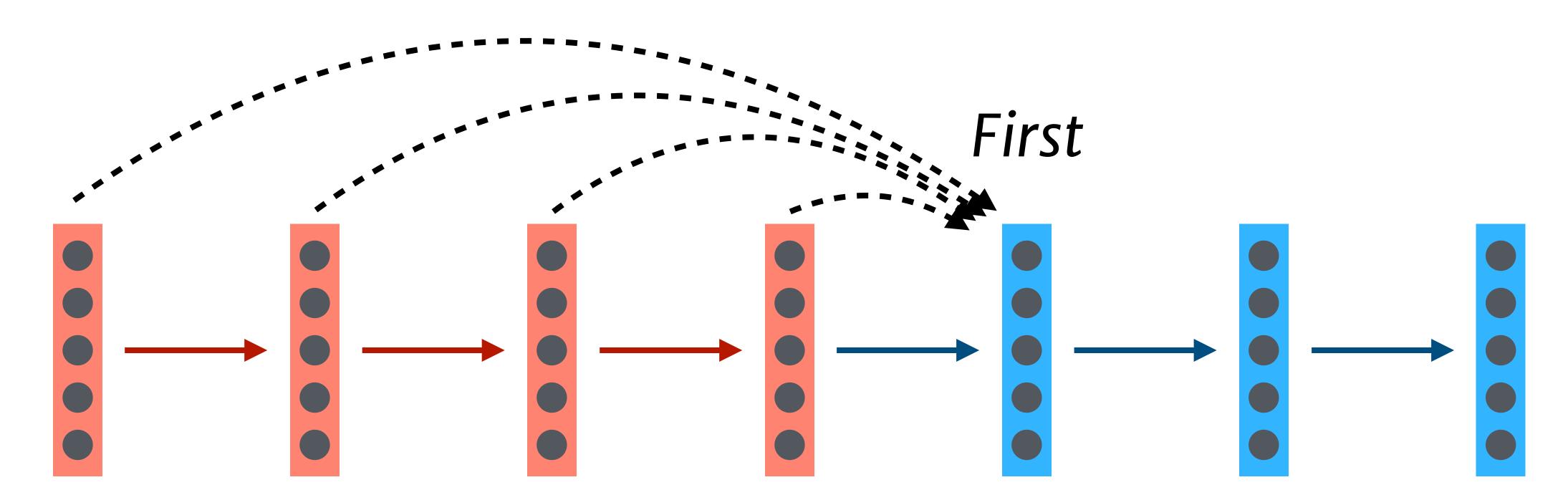
Direct "copying" between hidden states makes it easy to propagate information.



Can we go farther?



Can we go farther?

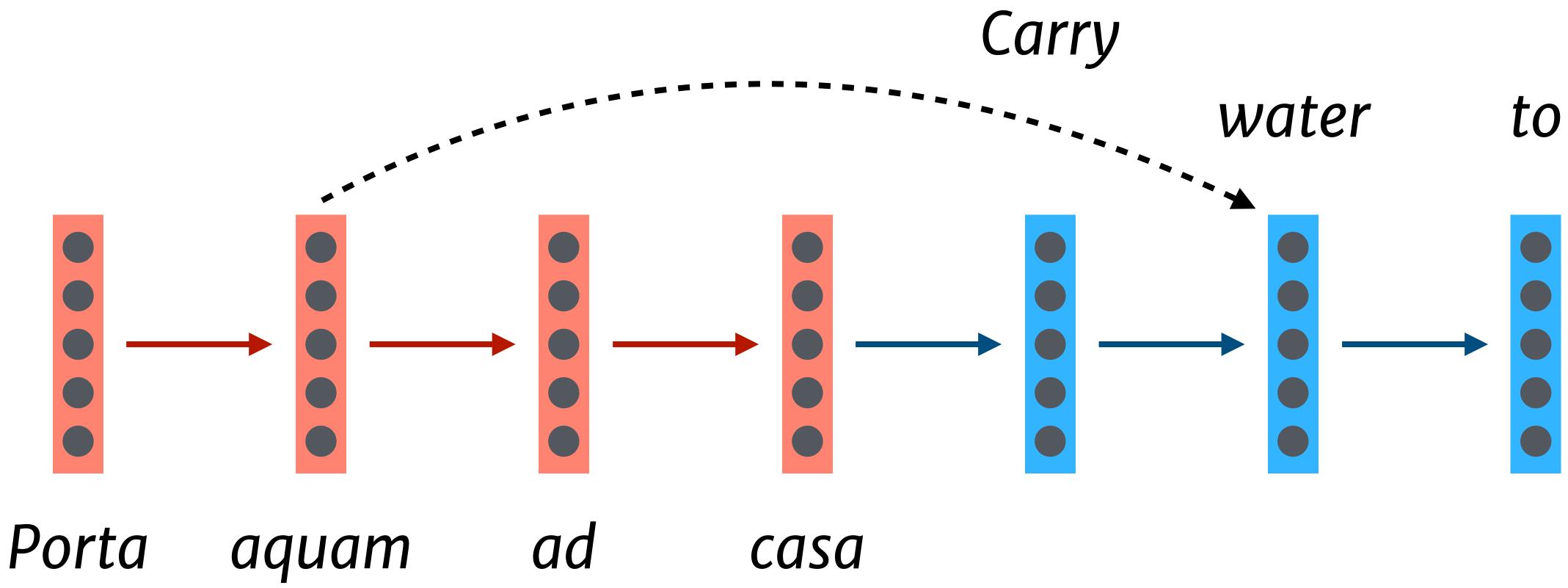


Primo

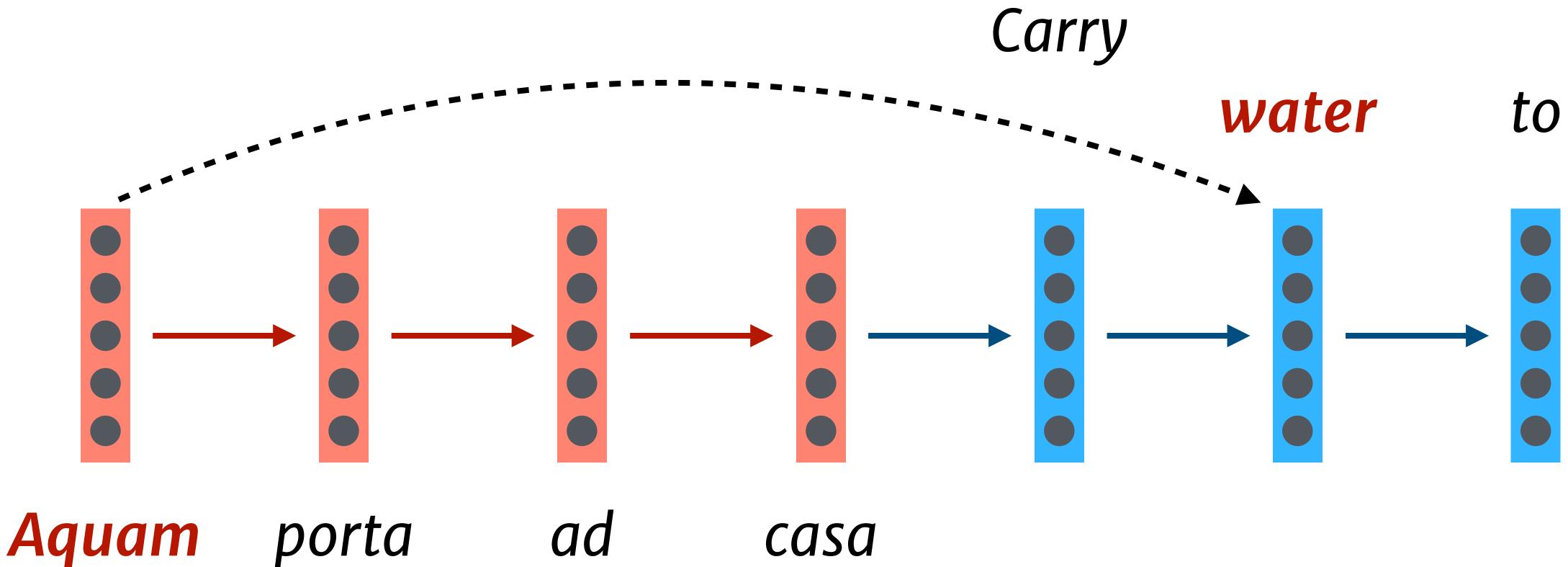
Not super useful: no selectivity for the relevant word (since we don't know which word is relevant when we add connections)

Can we go farther?

Can we hard-code connections?

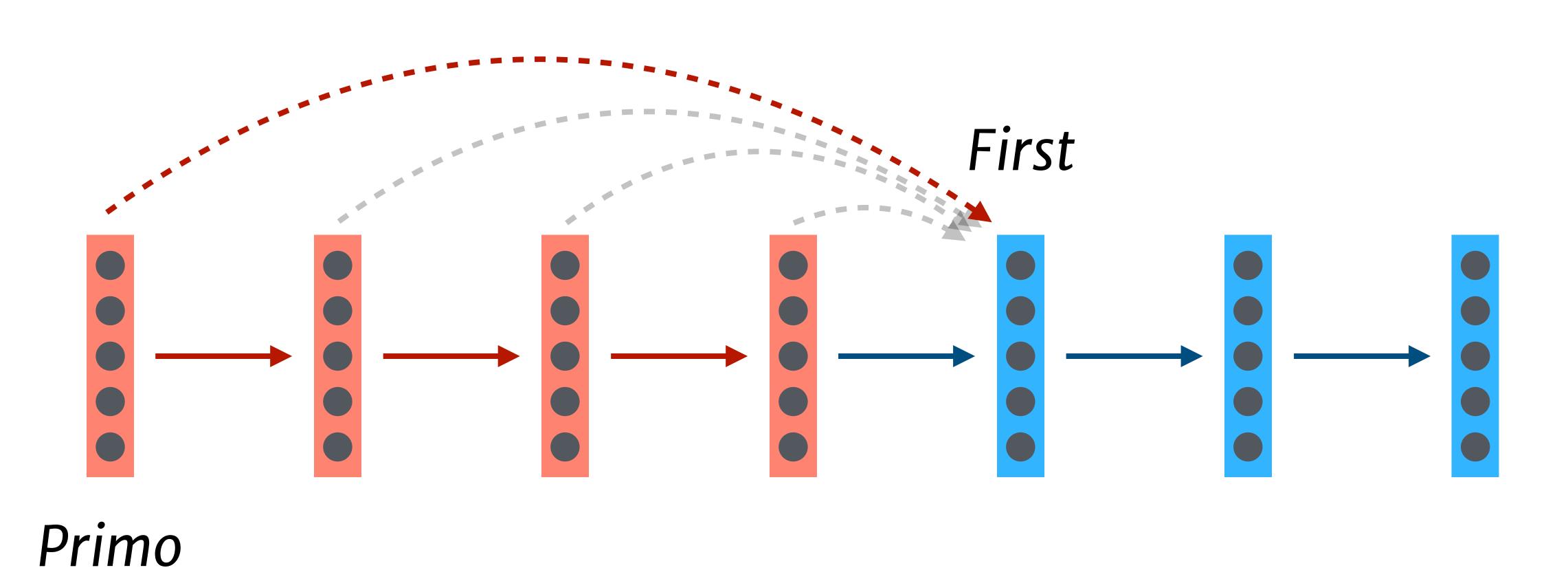


Can we hard-code connections?



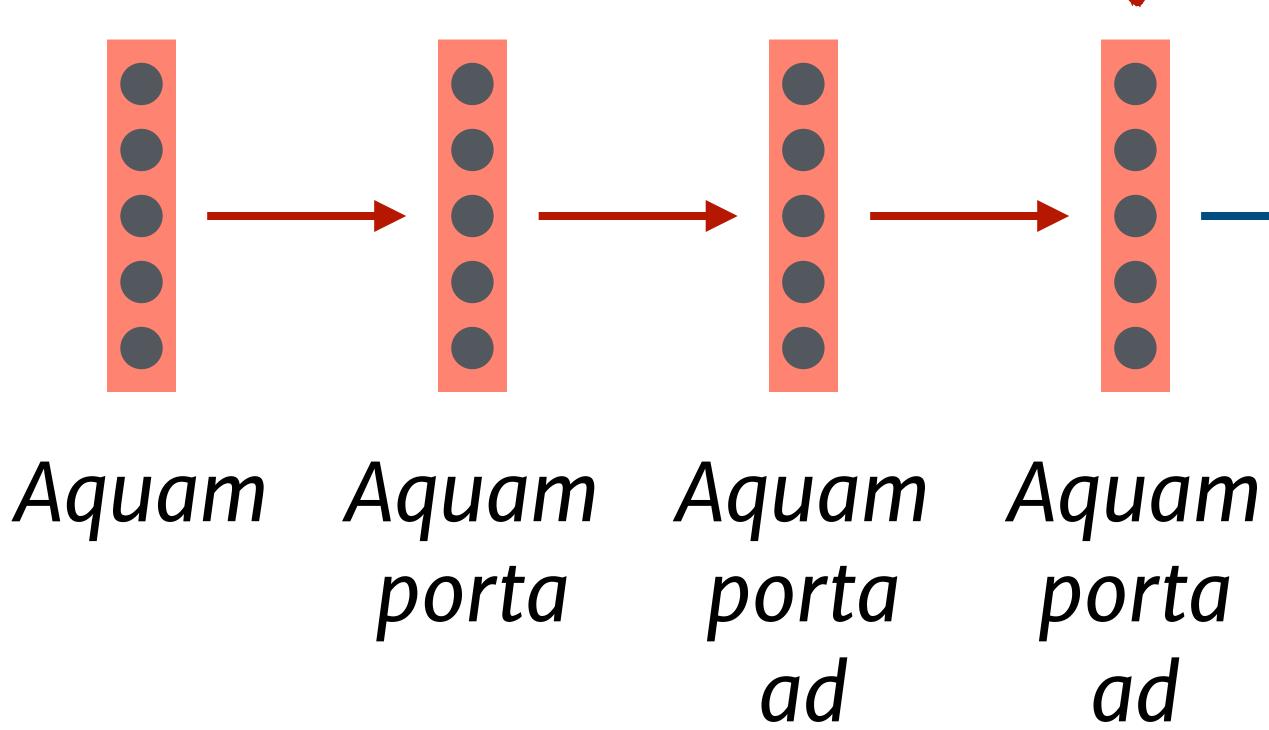
Words aren't one-to-one (and order can change!)

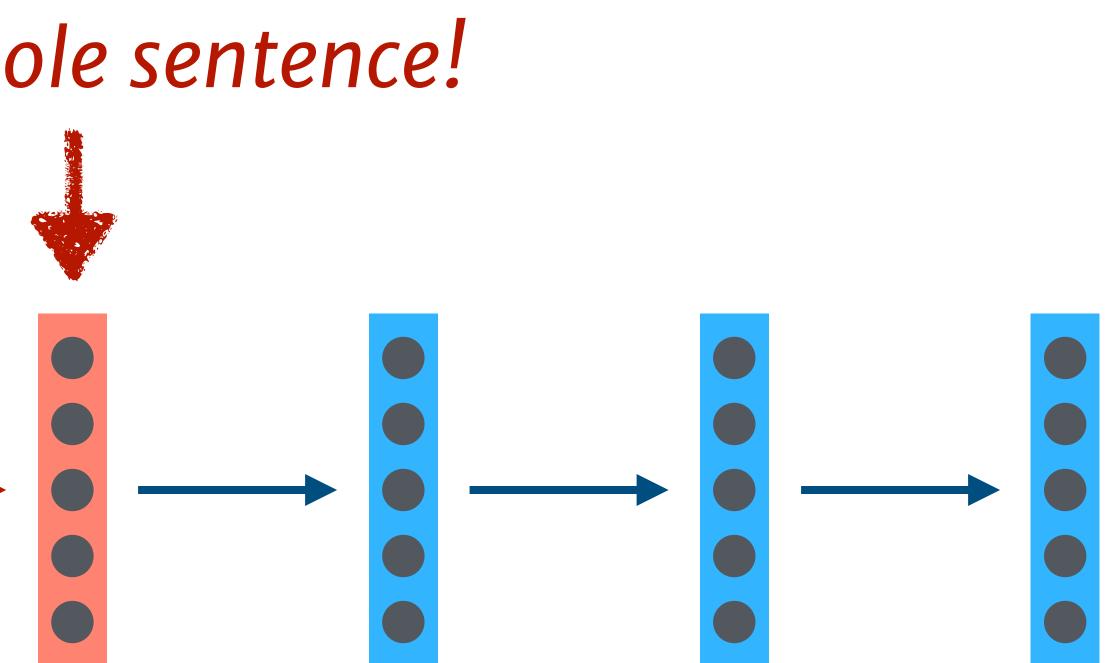
Can we learn connections?



Sentence representations

This vector represents the whole sentence!





porta ad casa

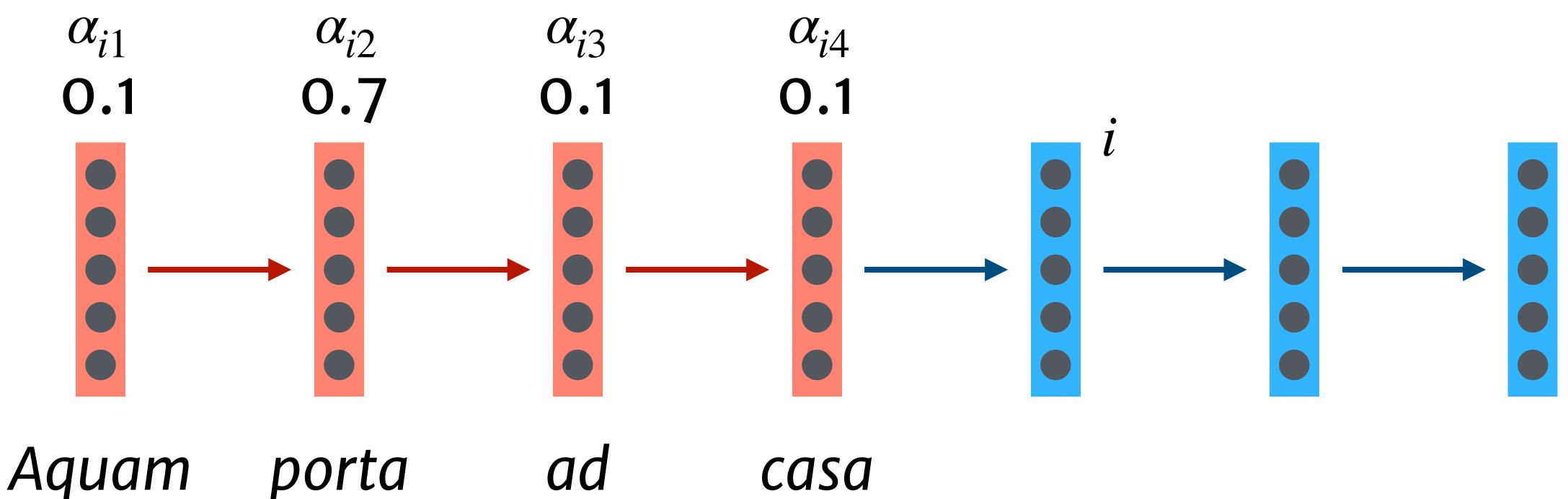
You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!

[Ray Mooney, ca. 2014]

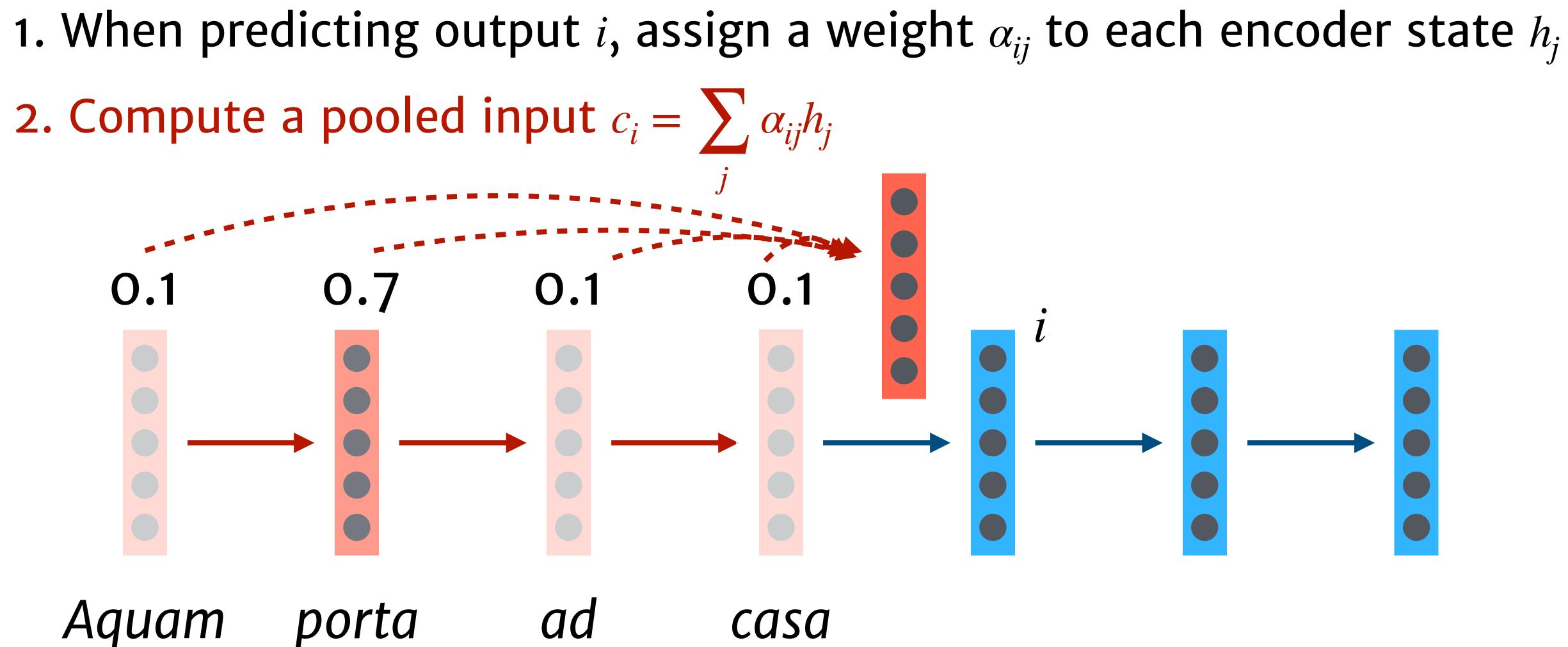
You can't cram the meaning of a whole %&!\$# sentence into a single \$&!#* vector!

Actually you can! (But you usually shouldn't.)

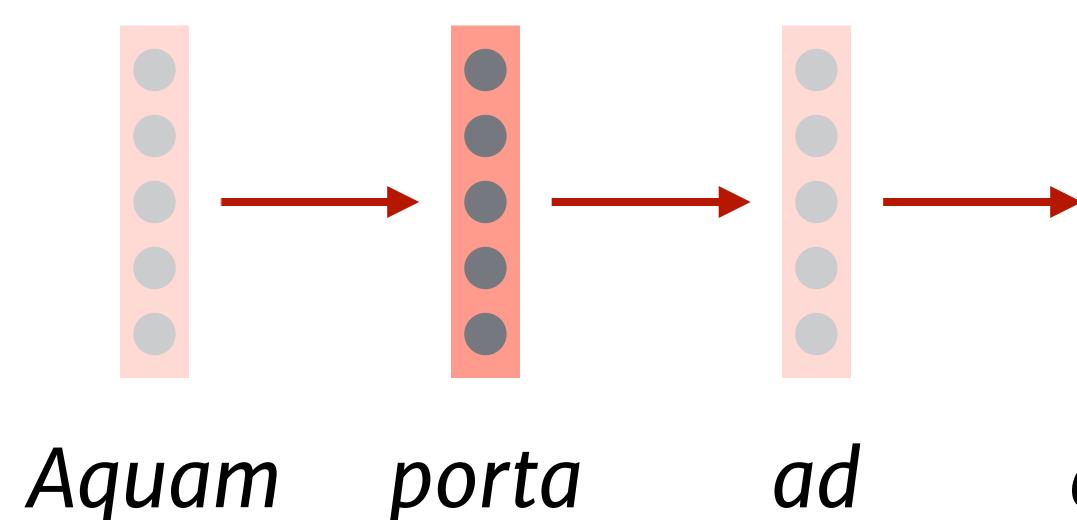
[Ray Mooney, ca. 2014]



1. When predicting output *i*, assign a weight α_{ij} to each encoder state h_j (weights sum to 1)



- **2.** Compute a pooled input $c_i = \sum \alpha_{ij} h_j$
- 3. Use *c_i* to update the decoder



1. When predicting output *i*, assign a weight α_{ii} to each encoder state h_i

- casa

$e_{ij} = \tanh(W[h_i, h_j])$ [Bahdanau 2014]

ι.

Design decision: how to compute α_{ii} ?

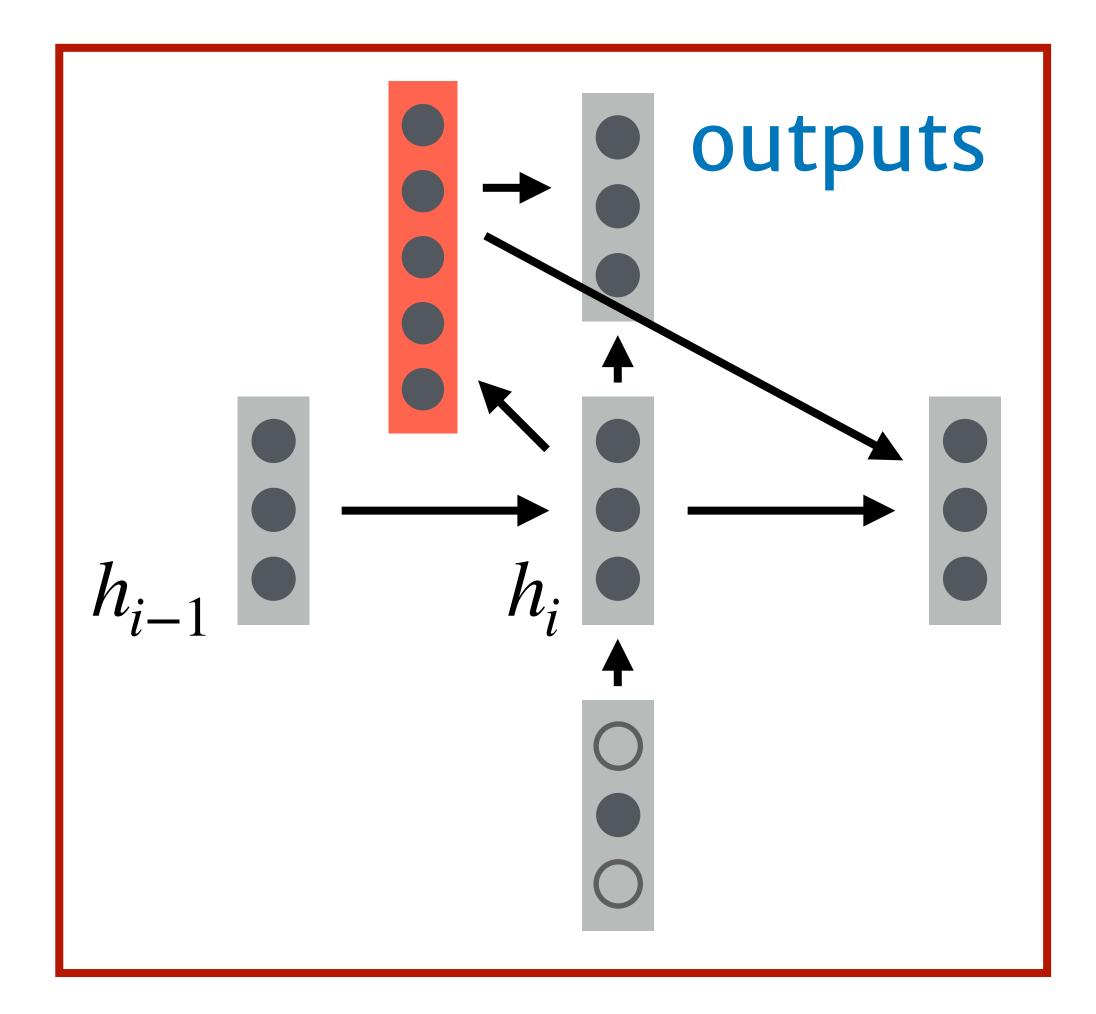
1. When predicting output *i*, assign a weight α_{ii} to each encoder state h_i

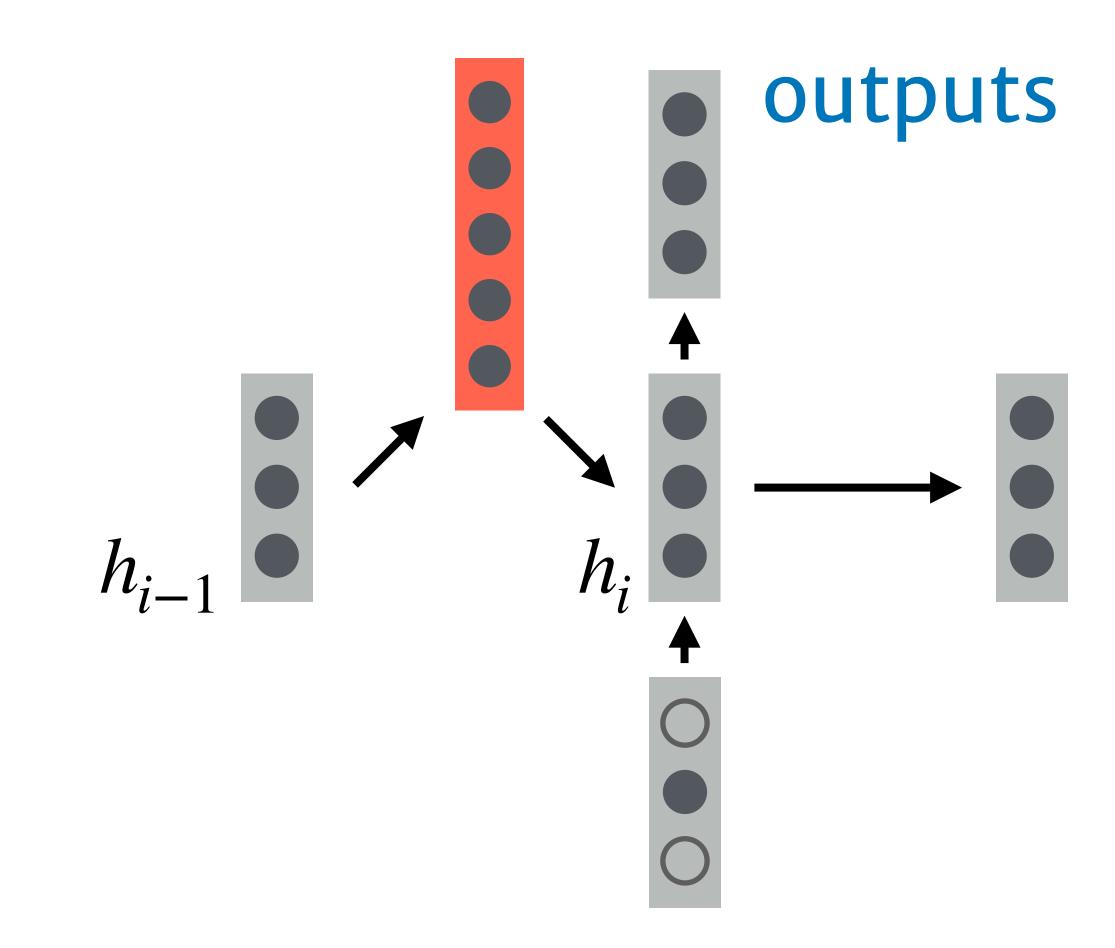
 $e_{ij} = h_i^{\mathsf{T}} W h_j$ [Luong 2015]

 $\alpha_i = \operatorname{softmax}(e_i)$ ι.,

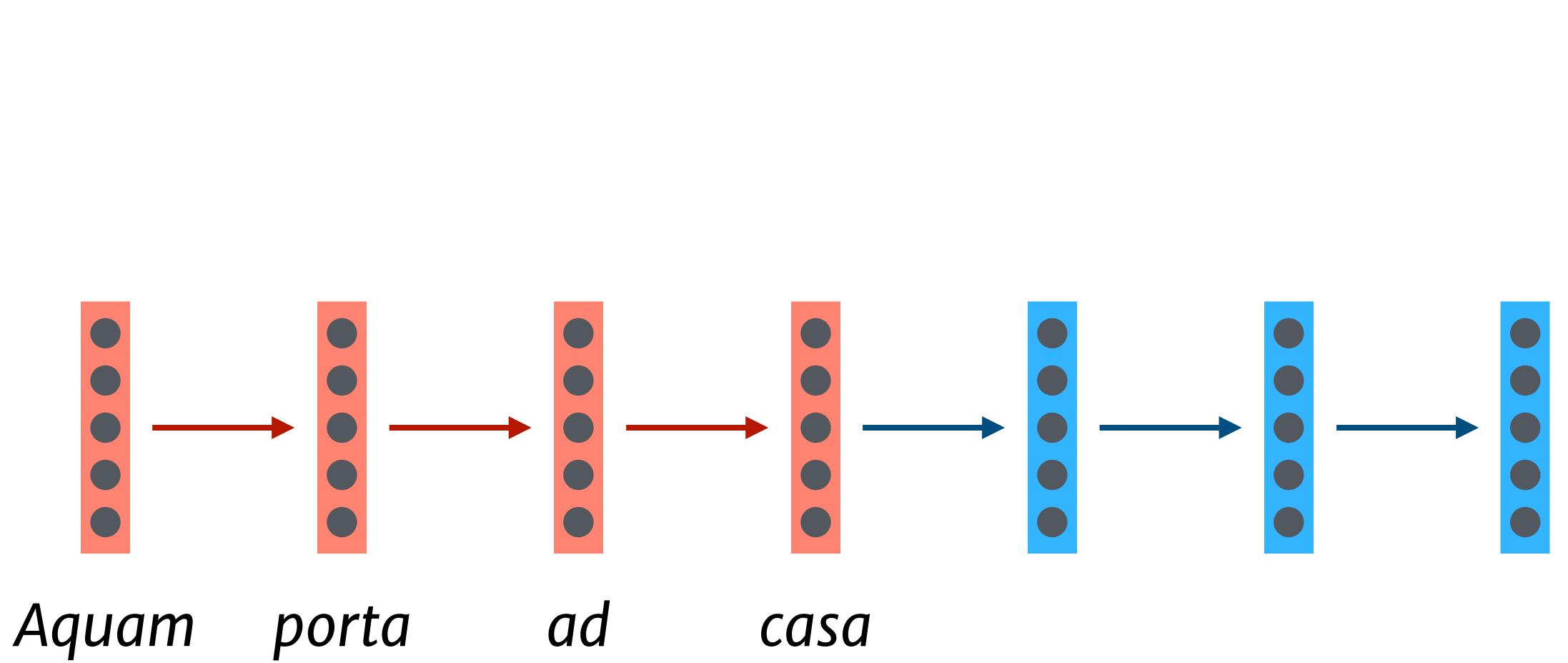
Design decision: how to use c_i ?

3. Use c_i to update the decoder

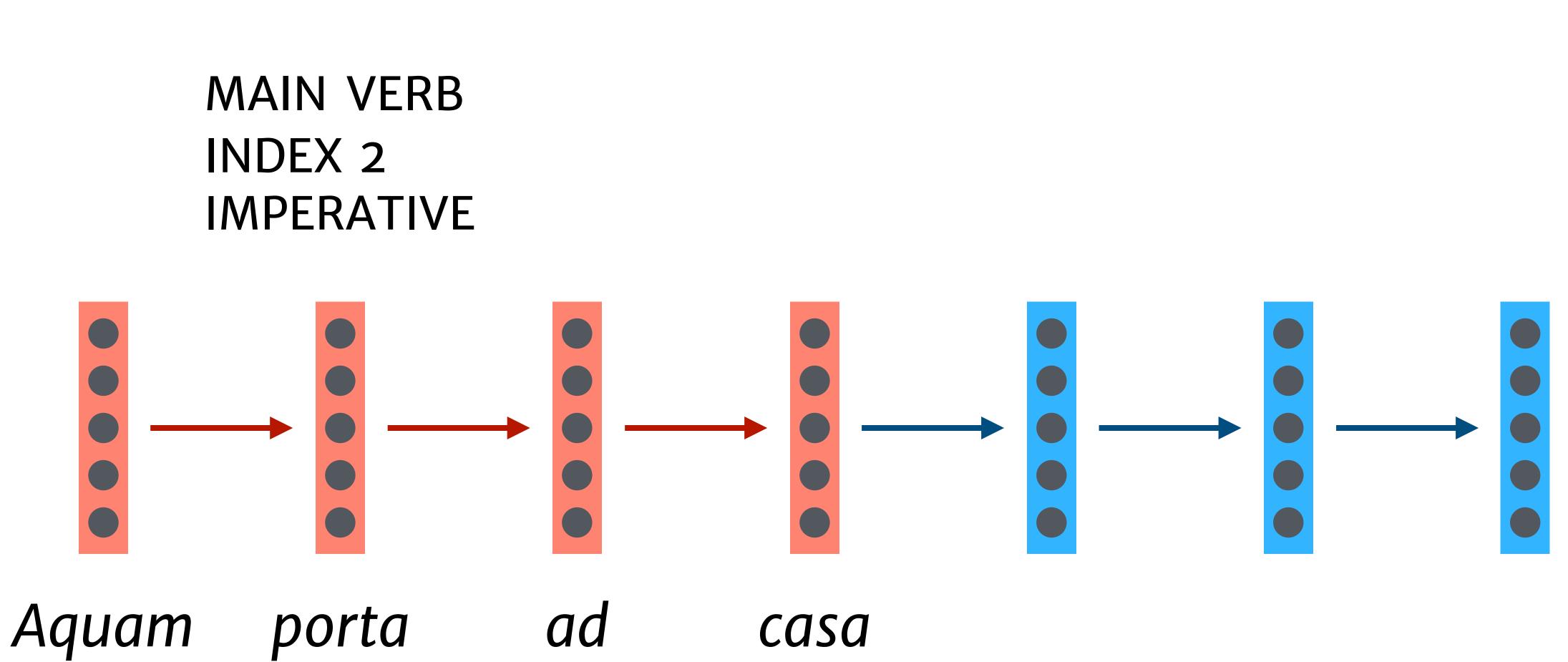




Why does this work?



Why does this work?



Why does this work?

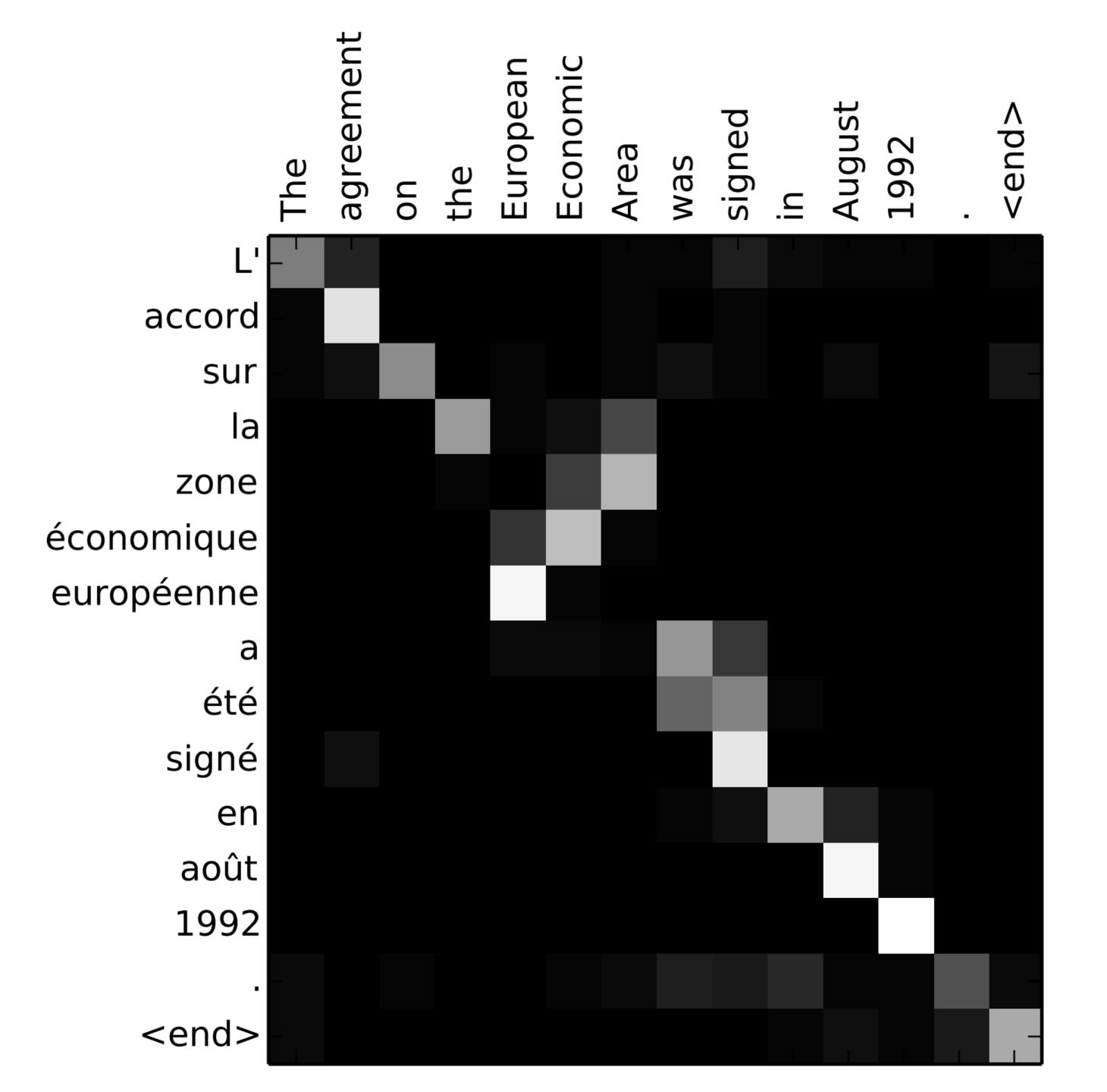
MAIN VERB INDEX 2 IMPERATIVE



Aquam porta ad

SUBJECT? IMP. VERB?

casa



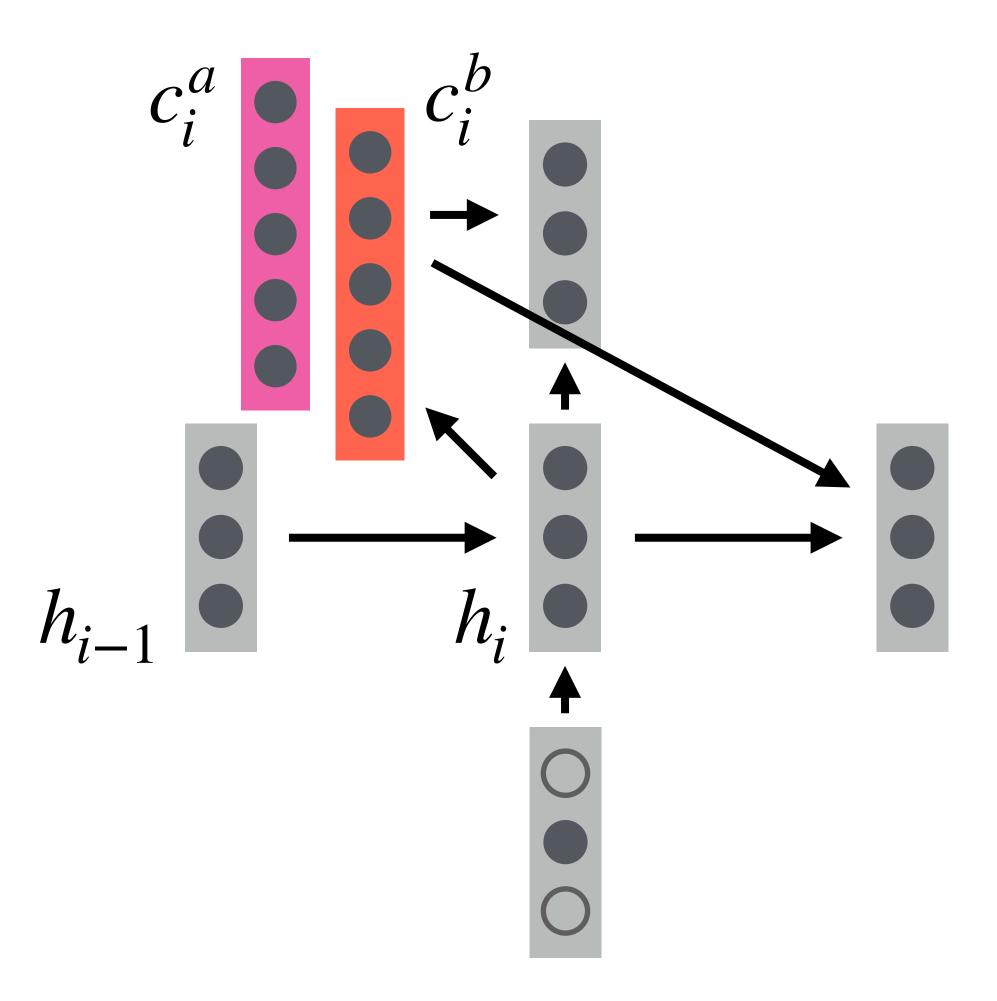
[Example from Greg Durrett]

Multi-headed attention

Look two places at once!

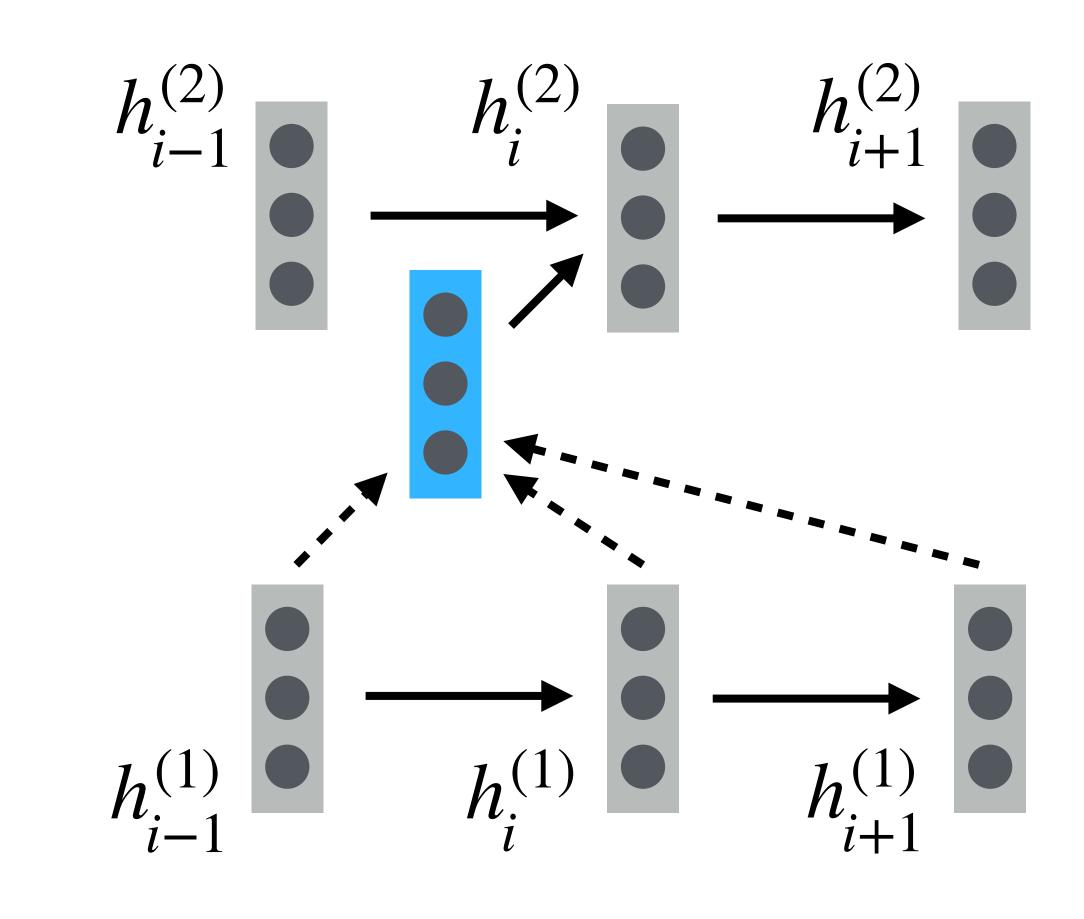
 $e_{ij}^a = h_i^{\mathsf{T}} W_a h_j$ $e_{ij}^b = h_i^{\mathsf{T}} W_b h_j$

etc.

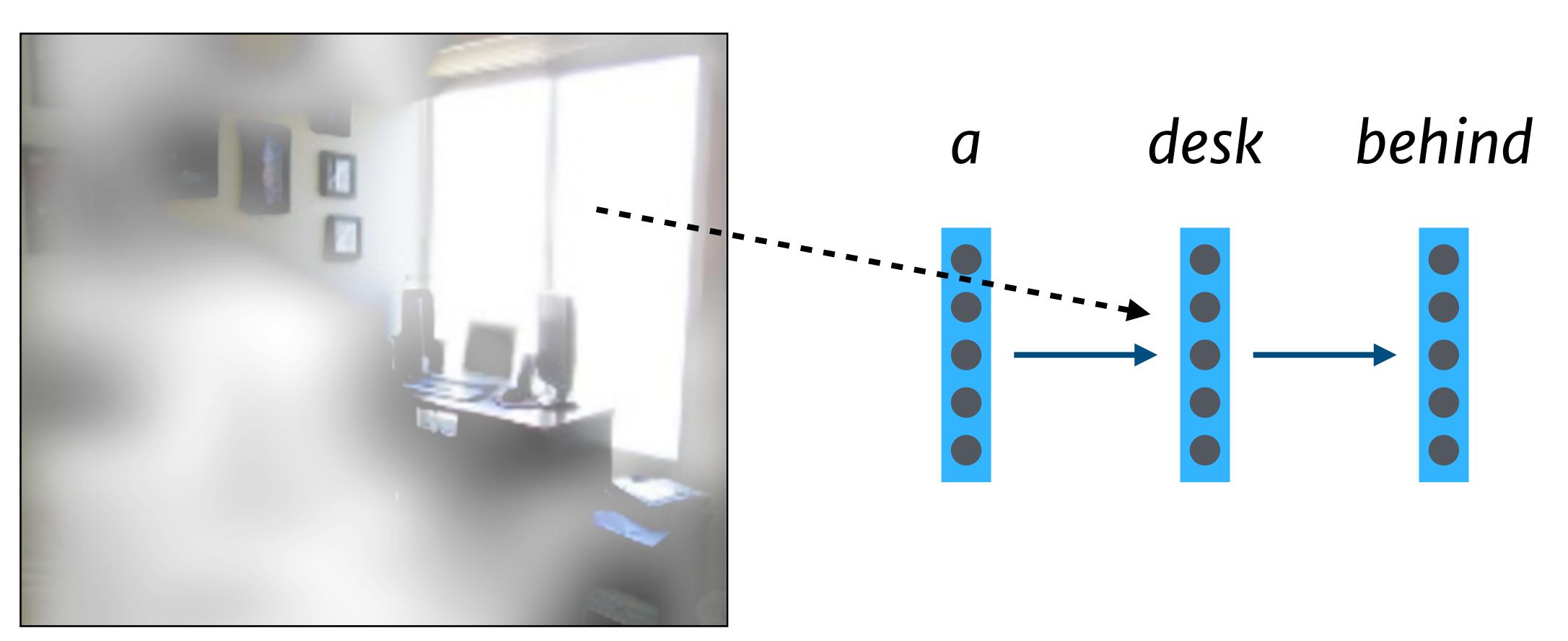


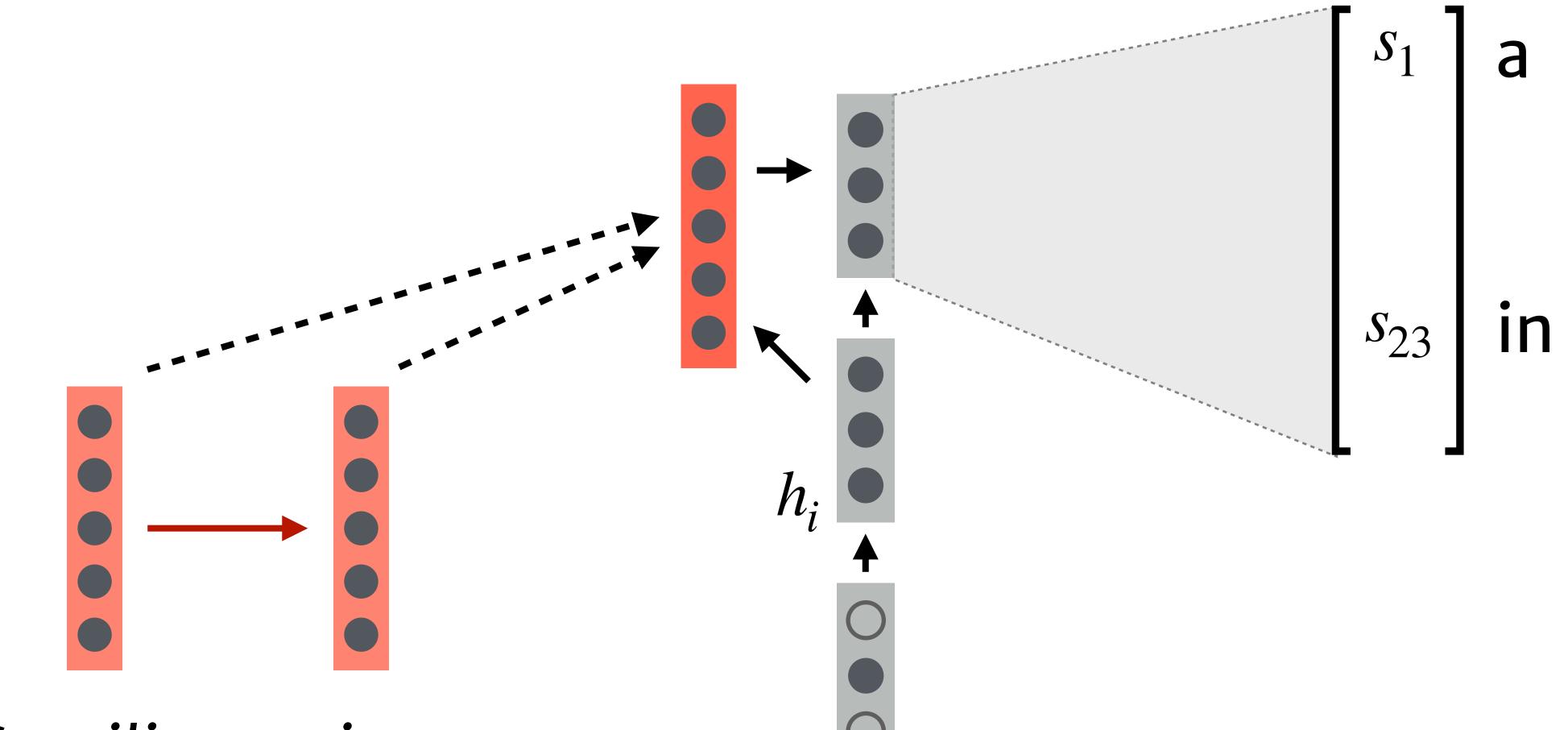
Self-attention

Attention to lower RNN layers (instead of decoder \rightarrow encoder)



Non-textual attention





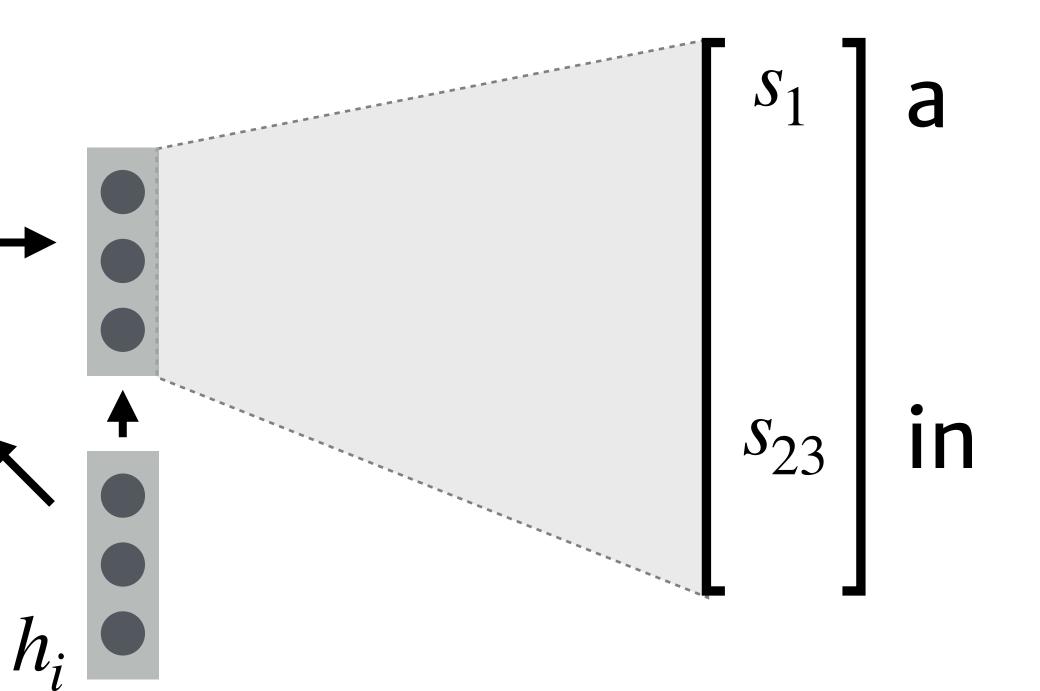
Caecilius in

Copying

Caecilius probably isn't in the training set.

Caecilius in

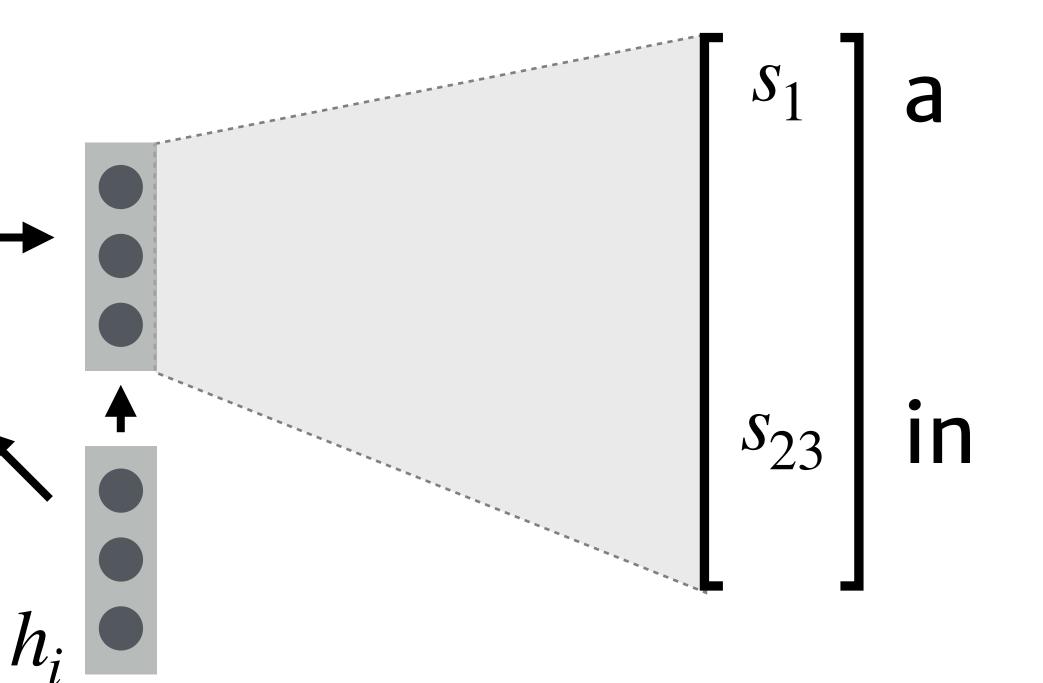
Copying



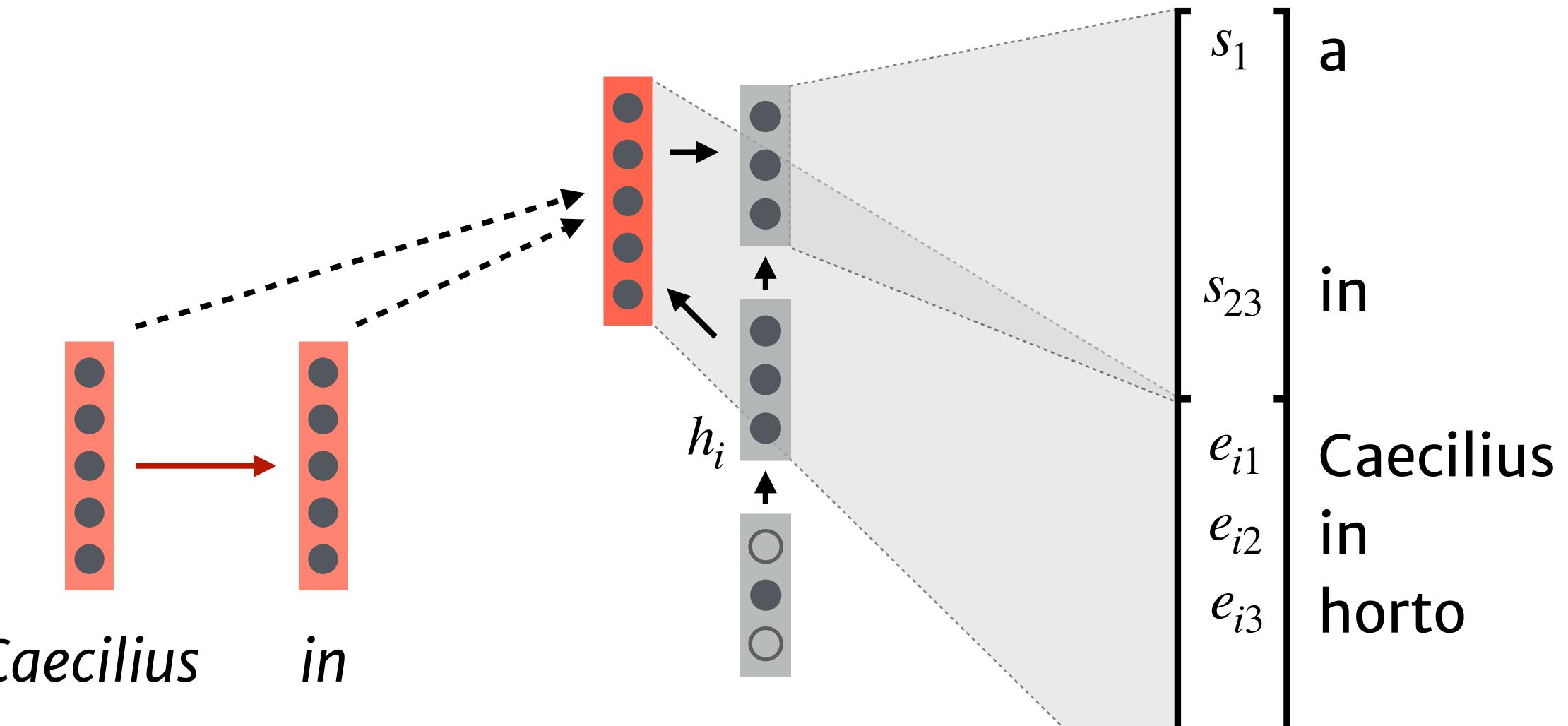
Caecilius probably isn't in the training set.

Caecilius IN

Copying



We want the ability to generate in via copying and direct prediction.



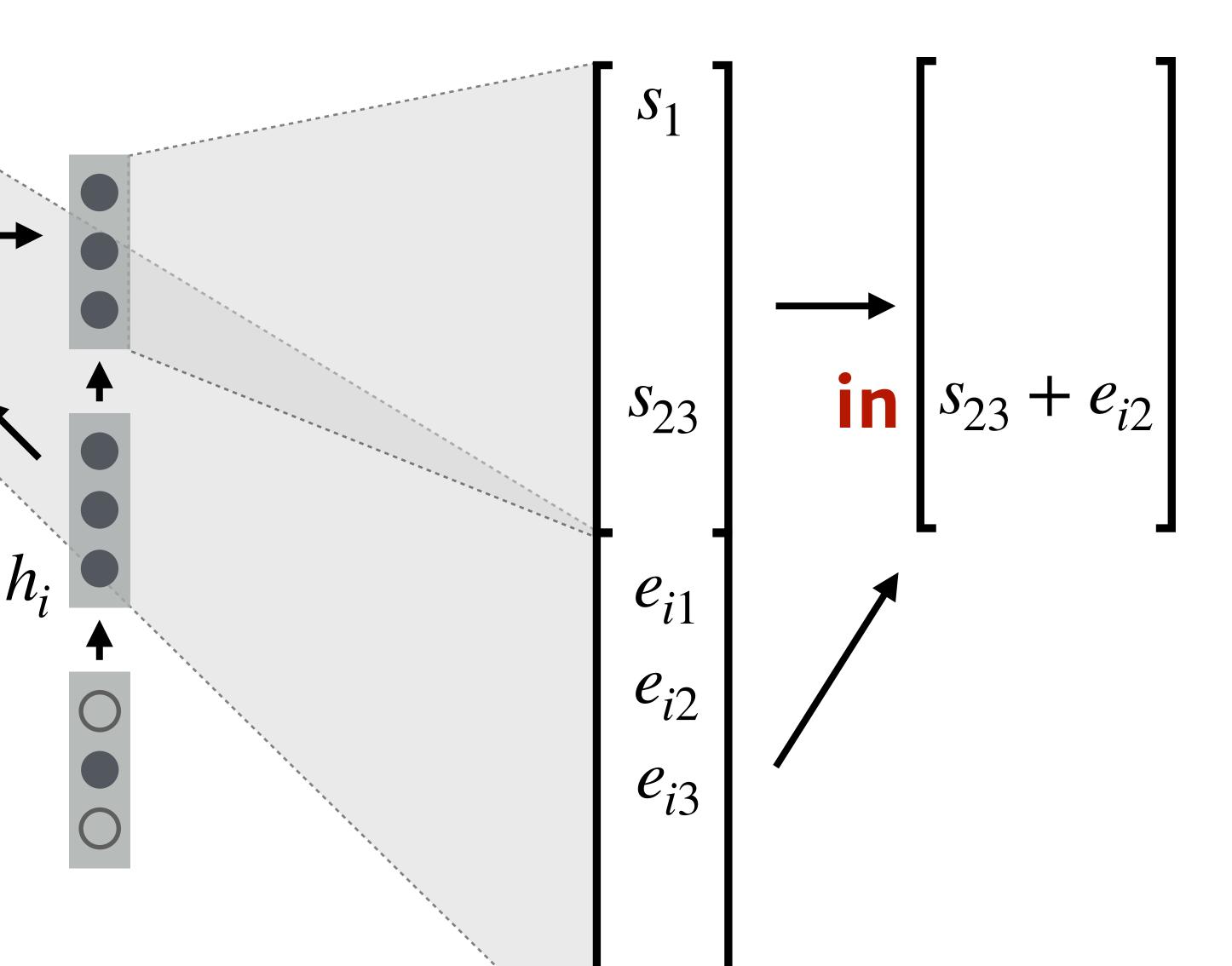
Caecilius

Copying

In is double-counted: just add scores together

Caecilius in

Copying



$e_{ii} = \tanh(W[h_i, h_i])$ [Bahdanau 2014]

attention $\alpha_i = \operatorname{argmax}(e_i)$ context repr $c_i = h_{\alpha_i}$

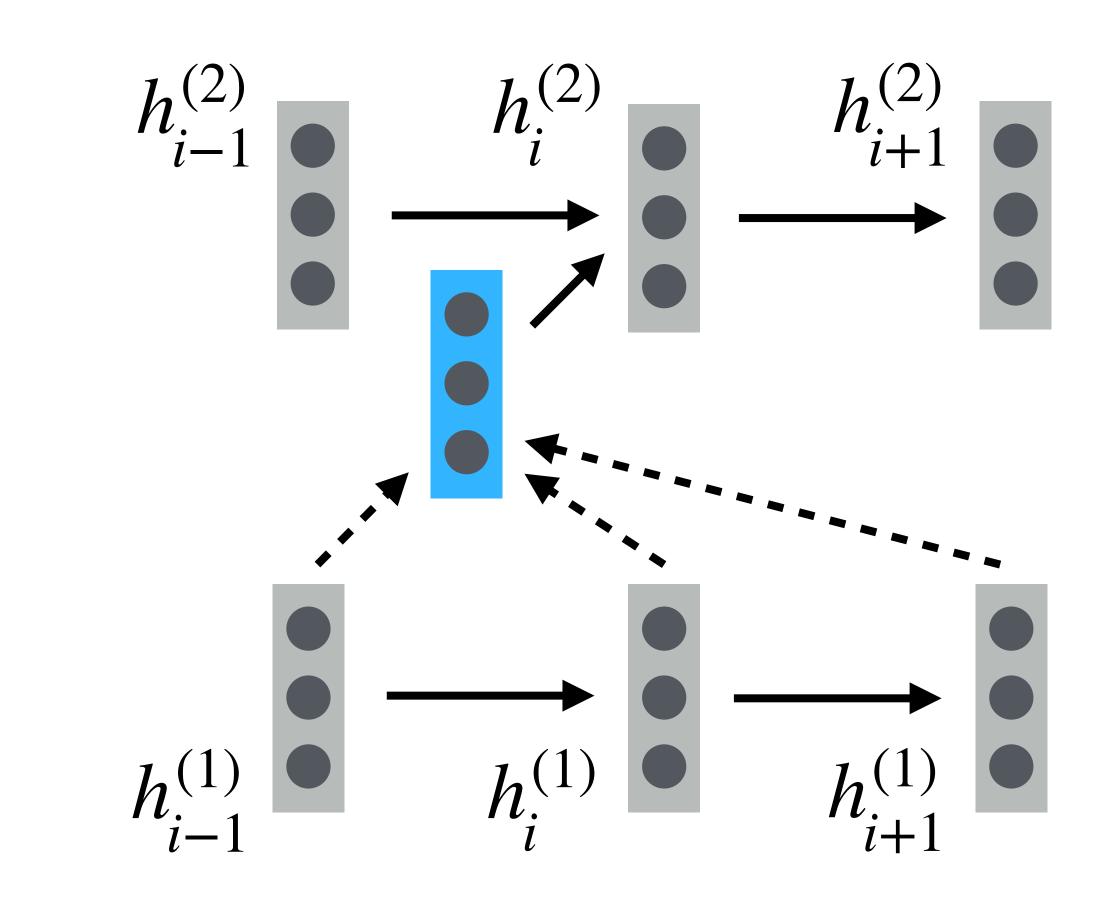
nondifferentiable! but sometimes better generalization

1. When predicting output *i*, assign a weight α_{ii} to each encoder state h_i

$e_{ij} = h_i^{\top} W h_j$ [Luong 2015]

(now you know how to build anything)

Self-attention revisited



Next class: transformers