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Admin

HW1 is done! Look out for survey. 

HW2b will be released tonight. 
6.864 students only! 

Peer reviews will be assigned on OpenReview tomorrow. 
Each student will get 2 papers to review. 
Plan to spend ~15min / paper.



Recap: recurrent neural networks



Neural networks
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No fixed input dimension!



Recurrent neural networks
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Recurrent neural networks

cheap and very tasty

Same weights 
at every state!

Whh Whh Whh

Wxh

Hidden states 
depend on an 
earlier state 
and an input

Wxh Wxh Wxh



“Vanilla” RNNs

Whh

Wxh
ht = f(Whhht−1 + Wxhxi + b)



Gated Recurrent Units

[Image: Cristopher Olah]



Gated Recurrent Units

[Image: Cristopher Olah]



Long Short-Term Memory Units

[Image: Cristopher Olah]



Deeper RNNs
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Bidirectional RNNs
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RNNs and word embeddings
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RNNs and word embeddings

cheap and very tasty

pre-trained word  
embeddings



Text classification

cheap and very tasty

Loss L

class scores s

Positive



Sequence labeling
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Sequence labeling

cheap and very tasty

Adj L1 L2 L3 L4Conj Adv Adj

L = ∑
t

Lt

= − ∑
t

log p(yt |x:t)

e.g.

product of indep.  
conditionals!



A (unidirectional) can compute                   . 

Langauge Modeling

p(yt ∣ x:t)
Suppose for a sequence     we set                 .yt = xt+1x

cheap and very

and L1 L2 L3very tasty

∑
t

log p(xt+1 |x:t) = p(x)then



Language modeling: sampling

How do we sample from ? p(x)

x1 ∼ p(x1 |𝚜𝚝𝚊𝚛𝚝)
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Language modeling: sampling

How do we sample from ? p(x)

x1 ∼ p(x1 |𝚜𝚝𝚊𝚛𝚝)

start

sphinx

sphinx

x2 ∼ p(x2 |sphinx)

of

of

x2 ∼ p(x2 |sphinx of)

black



[Image: egyptianmarketplace.com]

Sphinx of black quartz, judge my vow

http://egyptianmarketplace.com


Language modeling as representation learning

cheap and very tasty

one-hot vectors

word embedding 
matrix

learned word  
embeddings



RNNs as Markov chains
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Adj Conj

I can train this network to predict:
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RNNs as Markov chains

cheap and very

Adj Conj

log p(yt |x:t) = p(qt ∣ O:t)

I can train this network to predict:

same as forward 
algorithm!

x
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RNNs as Markov chains

cheap and very

Adj Conj

log p(yt |x:t) = p(qt ∣ O:t)

I can train this network to predict:

cheap and very

I can train this network to predict:

log p(yt |x) = p(qt ∣ O) forward-  
backward  
algo!



Sequence-to-sequence models



A dataset of math problems

One plus one equals two.

Two times two equals four.

Seven is prime.

One plus two times three equals seven.



A dataset of math problems

One plus one equals two.

Two times two equals four.

Seven is prime.

One plus two times three equals seven.

Two times three times three equals ???



Answering math problems with LMs
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Answering math problems with LMs

x1 ∼ p(x1 | ... times three equals)

twenty

x2 ∼ p(x2 | ... equals twenty)

equals

twenty seven



(don't try this at home)



A dataset of translated sentences

Caecilius est in horto. [SEP] Caecilius is in the garden. 

Caecilius in horto sedet. [SEP] Caecilius sits in the garden. 

Grumio est in atrio. [SEP] Grumio is in the atrium. 

Grumio in atrio laborat. [SEP] ???



(try this at home!)



Sequence-to-sequence models

in horto [SEP] Caecilius

Caecilius

is in

is in
Idea 1: 
only these losses:



Sequence-to-sequence models

in horto [SEP] Caecilius

Caecilius

is in

is in
Idea 2: 
separate encoder/  
decoder params



Sequence-to-sequence models

in horto [SEP] Caecilius is in

ENCODER DECODER



Sequence-to-sequence models

in horto [SEP] Caecilius

Caecilius

is in

is in
Idea 3: 
bidirectional  
encoder

…



Revenge of the vanishing gradients
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Revenge of the vanishing gradients

militibus silvanus [SEP]

First

… (many words) …

Primo
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Backpropagation Through Time

• SGD for RNNs must consider the impact of past inputs and states
– This process is known as Backpropagation Through Time (BPTT)

• The gradients for longer time spans are exponential, e.g.,

– Potential for exploding gradients or vanishing gradients 
• Since BPTT is computationally intensive for long sequences, 

sometimes truncated BPTT is used to save computation
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Impact of Vanishing Gradients

• Long distance gradients 
are weaker and have less 
impact than local gradients

• Model parameters primarily 
learn local dependencies

• This motivated the search 
for RNNs that could better 
model long distance 
dependencies by some 
internal memory state
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Attention mechanisms



Gated Recurrent Units

[Image: Cristopher Olah]



Shortcuts



Shortcuts

Direct "copying" between hidden states makes it easy 
to propagate information.



Can we go farther?

Primo
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Can we go farther?

Primo

First

Not super useful: no selectivity for the relevant word 
(since we don’t know which word is relevant when we 
add connections)



Can we hard-code connections?

Porta aquam ad casa

Carry
water to



Can we hard-code connections?

Aquam porta ad casa

Carry
water to

Words aren't one-to-one (and order can change!)



Can we learn connections?

Primo

First



Sentence representations

Aquam Aquam 
porta

Aquam 
porta 

ad

Aquam 
porta 

ad 
casa

This vector represents the whole sentence!



You can’t cram the 
meaning of a whole  

%&!$# sentence into a 
single $&!#* vector!

[Ray Mooney, ca. 2014] 



You can’t cram the 
meaning of a whole  

%&!$# sentence into a 
single $&!#* vector!

[Ray Mooney, ca. 2014] 

Actually you can!  
(But you usually shouldn’t.)



Attention mechanisms

Aquam porta ad casa

1. When predicting output , assign a weight  to each encoder state i αij hj

i

αi1 αi2 αi3 αi4
0.1 0.7 0.1 0.1

(weights sum to 1)
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Attention mechanisms

Aquam porta ad casa

1. When predicting output , assign a weight  to each encoder state i αij hj

i

2. Compute a pooled input ci = ∑
j

αijhj

3. Use  to update the decoderci

ci



Design decision: how to compute ?αij

1. When predicting output , assign a weight  to each encoder state i αij hj

eij = tanh(W[hi, hj]) eij = h⊤
i Whj

αi: = softmax(ei:)

[Bahdanau 2014] [Luong 2015]



Design decision: how to use ?ci

3. Use  to update the decoderci

hi−1 hi hi−1 hi

outputs outputs



Why does this work?
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Why does this work?

Aquam porta ad casa

MAIN VERB 
INDEX 2 
IMPERATIVE

SUBJECT? 
IMP. VERB?



A8enPon

‣ Decoder	hidden	states	are	now	
mostly	responsible	for	selecPng	
what	to	a8end	to

‣ Doesn’t	take	a	complex	hidden	
state	to	walk	monotonically	
through	a	sentence	and	spit	
out	word-by-word	translaPons

‣ Encoder	hidden	states	capture	
contextual	source	word	idenPty

[Example from Greg Durrett]



Multi-headed attention

Look two places at once!

ea
ij = h⊤

i Wahj

eb
ij = h⊤

i Wbhj hi−1 hi

ca
i cb

i

etc.



Self-attention

h(1)
i−1 h(1)

i h(1)
i+1

Attention to lower RNN layers (instead of decoder → encoder)

h(2)
i−1 h(2)

i h(2)
i+1



Non-textual attention

a desk behind
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Copying

hi

Caecilius in

Caecilius probably isn’t 
in the training set. a

in

s1

s23



Copying

hi

Caecilius in

Caecilius probably isn’t 
in the training set.

We want the ability to  
generate in via copying 
and direct prediction.

a

in

s1

s23



Copying

hi

a

Caecilius in

in

Caecilius
in
horto

ei1
ei2
ei3

s1

s23



Copying

hi

Caecilius in

in

ei1
ei2
ei3

s1

s23

In is double-counted: 
just add scores together

s23 + ei2



Hard attention

1. When predicting output , assign a weight  to each encoder state i αij hj

eij = tanh(W[hi, hj]) eij = h⊤
i Whj

αi = argmax(ei:)

[Bahdanau 2014] [Luong 2015]

ci = hαi

attention

context repr

nondifferentiable!

but sometimes better generalization



(now you know how to 
build anything)



Self-attention revisited

h(1)
i−1 h(1)

i h(1)
i+1

h(2)
i−1 h(2)

i h(2)
i+1



Next class: transformers


