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Interaction of Transmission Network and Load
Phasor Dynamics in Electric Power Systems

Eric H. Allen and M. D. Ilić

Abstract—This paper is concerned with modeling and analysis
of an interconnected electric power system for frequency ranges
in which phasor dynamics of transmission lines and loads may be
important to include. In most studies, only phasor dynamics of gen-
erators are taken into account. Dynamics of all other system com-
ponents (transmission lines, loads, and generator stator windings)
are assumed stable and instantaneous (static). While several papers
have examined phasor dynamics of the transmission lines, particu-
larly when these are equipped with FACTS devices, no systematic
investigation has been carried out concerning validity of static load
models in this case. It is shown in this paper that problems may
arise in particular when a static constant power load model is used
at the same time that phasor dynamics of transmission lines are in-
cluded. Standard singular perturbation-based arguments for ne-
glecting load dynamics are shown not to be applicable in this case.
More generally, the paper raises a general concern about consis-
tency of electric power system models in frequency ranges where
phasor dynamics of the devices typically assumed to be static must
be taken into consideration.

Index Terms—Electric power systems, flexible AC transmission
systems (FACTS) control, load modeling, modeling, phasor
dynamics.

I. INTRODUCTION

A POWER system may be described as a combination of el-
ements—generators, loads, and transmission lines—all of

which are dynamic in nature. The collective dynamics of these
various elements may be written mathematically as a set of ordi-
nary differential equations (ODE’s). For most dynamic studies,
the dynamics of the transmission lines and the loads are ne-
glected and replaced by a set of algebraic constraints. This sub-
stitution replaces the ODE description of the system with one
consisting of differential-algebraic equations (DAE’s) [1]. Al-
though the substitution reduces the order of the system, DAE
descriptions are in general harder to study and simulate than
ODE’s, and system control design is also harder.

Recently, the phasor-based modeling of the dynamics of
the network components has been applied to the analysis of
power systems phenomena, such as subsynchronous resonance
[2]–[5]. Additions to the transmission grid, including series
capacitor compensation and recent technological advances such
as Flexible AC Transmission System (FACTS) controls, change
the nature of the dynamics of the transmission lines. Given
these changes and the difficulty with the DAE description of
the system, it is often convenient to include the transmission
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line dynamics for simulations1 ; however, it is then necessary to
also include dynamics of the loads as well. The combination of
static load models with line dynamics often leads to some er-
roneous conclusions; more complete models of the load which
include dynamic properties are therefore needed. For example,
a load which has a shunt capacitor for reactive power balance
may have dynamics which behave much differently from a
simple series resistance and inductance. Most conventional
load models [9], such as the ZIP model [10], do not provide a
detailed or accurate description of the phasor dynamics, and
hence do not model these fast dynamics in the power system
adequately. Some dynamic load models [11], [12] which are
used to study other phenomena are also unsuitable for the
analysis of phasor dynamics.

In this paper, we examine how these network dynamics in-
teract with two load models which represent two of the three
components of the ZIP model. The first model is to treat the
load as a constant impedance. The second model represents the
load as a device which draws constant real and reactive power.
The inclusion of the phasor dynamics leads to some interesting
results regarding the viability of the constant power load
model. The combination of a constant current load (the third
component of the ZIP model) with a transmission line in which
the current is a state variable is not a well-posed problem when
using phasor dynamics. A third load model which includes dy-
namics is also examined in order to provide some insight into
the observed stability results of the two static load models.

As is well known, the constituent voltage-current relations for
the basic circuit elements (R, L, and C respectively) in the time
domain are

(1)

(2)

(3)

A phasor is simply a complex number which represents a
voltage or current as a sinusoid with a magnitude and phase.
Mathematically, the phasor is related to the time domain

by

(4)

Note that a phasor carries no frequency information.

1In this paper only the lumped parameter representation of electric power
system components is assumed. Phenomena for which truly distributed param-
eter modeling is required are treated elsewhere [6]–[8]. The issue of conditions
under which lumped parameter modeling is valid is not a subject of this paper.
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If we convert the basic circuit element equations (1)–(3) into
phasor form by applying (4), we have

(5)

(6)

(7)

where , , and . For most
power systems analysis, such as load flow, the time derivatives
in these equations are assumed to be negligible and are ignored.
However, in certain cases, such as subsynchronous resonance
[13]–[15], these time derivatives are significant. For example, a
60-Hz phasor representation of a subsynchronous current of 30
Hz will include a time-varying component

(8)

Therefore, in these situations, the time derivatives can not be
neglected.

This paper is organized as follows: Section II illustrates the
phasor dynamics for the simple case of a single slack bus con-
nected to one load of constant impedance by one transmission
line. It will be seen that for this case, the phasor dynamics are
always stable. Section III examines the dynamics for the same
system, except that the constant impedance load is replaced by
a constant load. In this case, the phasor dynamics are not
always stable. Section IV examines the phasor dynamics if the
load is represented by a simple dynamic model. Section V ex-
amines all three types of load models in a three bus system with
one generator and one slack bus. Finally, conclusions are drawn
in Section VI.

II. CONSTANT IMPEDANCE LOAD MODEL

The first system we will examine is shown in Fig. 1. It simply
consists of a constant voltage source (infinite bus) connected
to a load by a single transmission line. Using (6), the phasor
dynamics of this system are

(9)

The phasors may be represented by their realand imaginary
parts

(10)

(11)

We now consider the case where the load is of constant
impedance. For simplicity, we assume the load is totally
resistive; in Fig. 1, any reactance in the load can be lumped into
the transmission reactance, resulting in the same dynamics as
the situation with a resistive load. Since , the phasor
dynamics for the system are

(12)

(13)

Fig. 1. System for analysis of phasor dynamics.

This is a linear system with system matrix

(14)

with eigenvalues

(15)

These roots always lie in the left half-plane (assuming
), and therefore we conclude that the phasor dynamics in

connection with a constant impedance load are always stable.

III. CONSTANT POWER LOAD MODEL

We will now consider the phasor dynamics when the load is
modeled as a constant load. This model means that, for all
time

(16)

(17)

Solving these two equations for and yields

(18)

(19)

Therefore, with a constant power load, the phasor dynamics of
(10) and (11) become

(20)

(21)

This system is nonlinear. To determine stability around any
equilibrium point, we find a small-signal linear model and
evaluate the eigenvalues of the small-signal system. For the
system of (20) and (21), the linearized small-signal model has
a Jacobian of

(22)
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To complete the analysis, we note that the trace and determi-
nant of are

(23)

(24)

Since a matrix has eigenvalues

(25)

the eigenvalues of are then

(26)

Since , the system will be stable if at
equilibrium, or equivalently

(27)

To illustrate the preceding discussion, we will now present
a numerical example and select typical values for the param-
eters. We choose ,
and . The two load flow solutions are the equilibria of
the system; the first solution is

while solution #2 is
. Note that solution 1 represents a desirable

operating point (voltage magnitude near 1 p.u., small angle devi-
ation) while the second solution is highly undesirable. Addition-
ally, note that solution 1 corresponds to a constant impedance
load with zero reactance and a resistance .

Next, we evaluate the system matrix for the small-signal
model of (22) at each load flow solution point. At solution 1, we
have

(28)

The eigenvalues of the matrix are

(29)

which clearly indicate that the system is unstable, even though
the operating point is considered desirable. Note that

; (27) indicates that solution 1 will be unstable.
At solution 2, the system matrix is

(30)

with eigenvalues

(31)

Although load flow solution 2 is clearly not a desired operating
point for the system, the phasor dynamics around this point
are in fact stable. Equation (27) is satisfied, as

at solution 2. Simulations of the system, as shown
in Fig. 2, agree with the eigenvalue analysis. Starting at solution
1, the system states rapidly move away from the starting point
and settle at solution 2.

IV. DYNAMIC LOAD MODELS

To illustrate the importance of the load dynamics, we will
now consider a simple dynamic representation of the load as an

admittance where is zero and is a state variable
with dynamics [16], [17]

(32)

where is a fixed time constant. At equilibrium, the load
consumes real power ; during transients, the conductance
increases if the load uses less thanunits of real power and
vice versa.

The system dynamics of (10) and (11) now become

(33)

(34)

(35)

The Jacobian of the system is

(36)

The stability of the system is very dependent on the time con-
stant of the load. Note that the time constant of the phasor
dynamics (denoted ) is

(37)

Using the example parameters in the last section,is on the
order of s. A much longer value for means that the
phasor dynamics interact with a load that resembles a constant
impedance. For example, if s, the system eigenvalues
at equilibrium are

(38)

The first two eigenvalues correspond to the fast phasor dy-
namics; the third eigenvalue represents the much slower
dynamics of the load conductance. If , the eigenvalues
of (36) approach

(39)

(40)

If , the load model will be stable for .
Note that for a purely resistive load in Fig. 1, maximum
real power transfer occurs when the load resistance equals

. In most typical power systems, the load resistance
is much larger than this value, and therefore the load model of
(32) with a sufficiently large time constantis stable.
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Fig. 2. Current magnitude with a constant power load.

On the other hand, if is much shorter than , the load does
not resemble a constant impedance, and the system becomes
unstable. For s, the system eigenvalues are

(41)

For , (36) has an eigenvalue of

(42)

which is always positive.
For completeness, we also consider a reversed version of the

dynamic load, where

(43)

As with the preceding model, such a load may be implemented
in principle by feedback control. The Jacobian of the system is
now given by

(44)

For a fast time constant , the system with the
reversed load model has eigenvalues

(45)

(46)

which represents the rapid convergence ofto a value which
maintains constant power. The reversed load model with a fast

time constant therefore represents the constant power load of
Section III. If s, the system eigenvalues at equilibrium
are

(47)

As in Section III, the fast reversed load model is unstable.
If the reversed load model has a time constant s, the

eigenvalues of (44) are

(48)

These results indicate that while the phasor dynamics remain
stable, the load conductance does not converge, making the
system unstable. For , the system eigenvalues at
equilibrium are approximately

(49)

(50)

is negative only if . Since this condition
is normally not true in typical power systems, the reversed dy-
namic load model does not appear to be stable for any value of

in the infinite bus system of Fig. 1.
A more general dynamic model for loads from [16] is

also possible

(51)

(52)

where both and are states. This model has performed very
well in simulations by the authors, and we believe that its be-
havior is similar to the simplified model examined in this sec-
tion, although we do not have a proof of stability.

Conventional dynamic load models, such as those used for
studying voltage collapse [11], [12], are not necessarily suited
for the study of phasor dynamics, in that these models are speci-
fied in terms of the real power of the load. For example, the load
model in [12] may be written

(53)

Here is the state variable, and and may in
general be quadratic functions representing the steady-state and
transient load models respectively. The real power being drawn
by the load at any instant in time is . If ,
representing the transient load characteristic as a constant power
model, then the transmission line dynamics will not in general
be stable. To show this, note that the current dynamics are, from
Section III (with )

(54)
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(55)

This system has a Jacobian of

(56)

Note that the state represents the instantaneous real power
being drawn by the load. Typically, the time constant has
values ranging from a few seconds to many hours. Since

, the dynamics of will generally be much slower than
the current dynamics, and hence the Jacobian of the system will
have two eigenvalues nearly identical to equation (26). It was
shown in Section III that one eigenvalue is positive under normal
conditions.

The instability of this dynamic load model is clearly pre-
sented by inserting two common choices for the steady-state
model. If the steady-state model is a constant power model

, then the load dynamic equation is

(57)

and therefore and . Using the
parameters from the earlier examples and

s, the eigenvalues of are

(58)

If the static load model is a constant impedance with conduc-
tance (i.e., ), the stability conclusions
are unchanged. Note that in this case, the load dynamics become

(59)

since at any instant in time. The third row of the
Jacobian is now

Using the example parameters with a load time
constant of 1 s, the eigenvalues are

(60)

However, if the dynamic load characteristic is changed to a
constant impedance model , the state
represents the instantaneous conductanceof the load. Since

for all time, the system dynamics are identical to the
model from [17] which was examined at the beginning of this
section (for ).

V. PHASOR DYNAMICS IN A 3 BUS SYSTEM

We now turn our attention to the 3-bus system shown in Fig.
3. Generator 1 is represented by a sixth-order two-axis model
[18], [19], while generator 2 is treated as a slack bus. Because
of the fast time scale of phasor dynamics, the stator dynamics of
generator 1 are also included as described in Appendix A. Both
constant impedance and constant loads are considered, as
well as the dynamic load of Section IV.

To analyze this example, we will select typical values for the
system parameters, find the system equilibrium using load flow
methods, and then examine the eigenvalues of the small-signal
linear model around the equilibrium point. The generator pa-
rameters for the example considered are identical to those in
[18]. The field voltage excitation will be constant at a value of

. The network parameters are
, and .

Beginning with a constant impedance load of resistance
and zero reactance, the equilibrium for the system

occurs at and .
At equilibrium, the load draws 1 p.u. of real power, so that a
constant load with and will produce the
same load flow solution (and same equilibrium point) as the
constant impedance.

The eigenvalues of the system at equilibrium with a constant
impedance load are given in Table I, while the system eigen-
values with a load are shown in Table II. Again, we see that
the system with a constant impedance load is stable, while the
system with a load is not. Fig. 4 illustrates the response of
the dynamics of the system with a load when starting at the
load flow solution point given above.

When the dynamic load is used, the results are similar. A
long time constant ( s) results in a stable system, as
shown in Table III. These eigenvalues are nearly identical to
Table I, with the addition of one mode which represents the load
dynamics. For a relatively slowly varying load conductance, the
load resembles a constant impedance with respect to the phasor
dynamics. If a short time constant is used with the reversed load
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Fig. 3. Three bus system for analysis of phasor dynamics.

TABLE I
EIGENVALUES AND FREQUENCIES OF THE

LINEARIZED SYSTEM WITH A CONSTANT IMPEDANCELOAD

TABLE II
EIGENVALUES AND FREQUENCIES OF THELINEARIZED SYSTEM WITH A

CONSTANT POWER LOAD

model ( s), the resulting system is unstable (Table IV).
This result shows that the fast dynamic load is very similar to
the constant power load.

Note that the dynamics of the 3-bus system include several
different time-scales, ranging from the very fast transmission
line dynamics to the slow dynamics in the generator. Using
selective modal analysis [20] we find that eigenvalues 1–4
correspond to the fast dynamics of the transmission lines.
Eigenvalues 5–12 all correspond to the dynamics of generator
1. Eigenvalues 5 and 6 represent the dynamics in the stator
of generator 1, which are slower because of low resistance
and high inductance in the armature winding and the network.
Eigenvalues 7 and 8 indicate the subtransient dynamics, 11 and
12 represent the transient dynamics, and 9 and 10 represent

Fig. 4. Magnitude of line current 21 in the 3 bus system.

TABLE III
EIGENVALUES AND FREQUENCIES OF THELINEARIZED SYSTEM WITH A

DYNAMIC LOAD (� = 0:1 s)

TABLE IV
EIGENVALUES AND FREQUENCIES OF THELINEARIZED SYSTEM WITH A

REVERSEDDYNAMIC LOAD (� = 10 s)

Fig. 5. Equivalent representation of stator dynamics.

the mechanical dynamics. Finally, eigenvalue 13 represents the
dynamics of the load.
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The instability that is observed here for a load occurs
on a fast time scale. The singular perturbations assumption of
reducing the fastest dynamics to an algebraic relation [21] is
not valid here for a load, because these dynamics on the
fastest time scale are unstable and do not converge to the normal
equilibrium point.

VI. CONCLUSION

In this paper, we have added the transmission line dynamics
that are normally ignored in power systems analysis. The addi-
tion of these dynamics leads to some new conclusions. A con-
stant impedance load model is not seen to cause any instabilities
in the network current dynamics; however, the use of a constant

model is indeed shown to produce such instabilities around
the load flow solution point of interest. Dynamic load models
based on a slowly varying constant power model exhibit sim-
ilar behavior. Therefore, we conclude that on the time scale of
phasor dynamics, a constant power load model is not a valid as-
sumption; instead, load models which capture the fast dynamics
are needed. It is hard to quantify the frequency ranges within
which it would be essential to have dynamic load representa-
tion. However, based on our analysis here it appears that for fre-
quency ranges and phenomena (such as subsynchronous reso-
nance [4]) in which dynamics of transmission lines are relevant,
the same would be the case with the load representation. With
the development of FACTS devices and other transmission net-
work enhancements, this issue of consistent load modeling for
proper analysis of fast network dynamics becomes particularly
important.

Note: The authors wish to acknowledge the contribution of
(23), (24), and (27) from one of the reviewers.

APPENDIX I
STATOR DYNAMICS

The stator dynamics2 of a generator may be expressed in
terms of fluxes and [3], [22]

(61)

(62)

where is armature resistance and and are
terminal voltage and current, respectively, in the machine frame
of reference. Machine current is related to flux by [22]

(63)

(64)

2This appendix is added in response to one of the reviewer’s requests to in-
vestigate the impact of stator dynamics on conclusions in this paper. As it turns
out, there is no ready to use reference for this purpose, particularly when ana-
lyzing interplay of the network and stator phasor dynamics. Consequently, new
derivations are provided in this Appendix.

Fig. 6. Diagram of three inductive impedances in a “Y” connection.

We can now use and as state variables by differentiating
these last two equations and substituting (61) and (62) for the
flux derivatives

(65)

(66)

Assuming no subtransient saliency , we can now use
as state variables the current in the network frame of reference
(denoted henceforth as ) by applying an inverse
Park transform

(67)

(68)

The time derivatives of network current are then

(69)

(70)

Substituting (65) and (66)

(71)

(72)

(73)

(74)

(75)

(76)

The stator dynamics given by these equations can be represented
by the equivalent circuit in Fig. 5. These dynamics are equiva-
lent to the phasor dynamics of an impedance with a
voltage difference of . is the gener-
ator terminal voltage, while is a function of
the subtransient states.
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Since the generators in the three bus example are connected
to two transmission lines, the stator dynamics produce a “Y”
connection of three inductive impedances as shown in Fig. 6.
The dynamics of the “Y” connection may be written in state-
space form by choosing two of the line currents (hereand )
as states. Then, using the basic circuit element equations

(77)

(78)

This is a system of two equations with two unknowns (the
derivatives of and ). Solving for these derivatives gives

(79)

(80)

The combination of the stator equivalent impedance and the “Y”
connection dynamics are used to represent the stator dynamics.

REFERENCES

[1] D. Hill, I. Hiskens, and I. Mareels, “Stability theory of differential/alge-
braic models of power systems,” inProc. 11th Triennial World Congr.
IFAC, vol. VI, Tallinn, USSR, Aug. 13–17, 1990, pp. 19–24.

[2] J. Zaborszky, H. Schättler, and V. Venkatasubramanian, “Error estima-
tion and limitation of the quasi stationary phasor dynamics,” inProc.
11th Power Systems Computation Conf., Avignon, France, 1993, pp.
721–729.
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