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Full-Color, Wide Field-of-View Metalens Imaging via Deep
Learning

Yunxi Dong, Bowen Zheng, Fan Yang, Hong Tang, Huan Zhao, Yi Huang, Tian Gu,
Juejun Hu,* and Hualiang Zhang*

Chromatic aberration has been the main showstopper for metalenses when it
comes to imaging applications with broadband sources such as ambient light.
In wide field-of-view metalenses, this challenge becomes far more severe due
to exacerbated lateral chromatic aberrations. In this paper, it is demonstrated,
for the first time, full-color wide field-of-view imaging using a fisheye metalens
coupled with deep learning computational processing. This approach
is capable of restoring panoramic images with enhanced signal-to-noise ratio
while effectively correcting chromatic aberration, distortion, and vignetting.
Furthermore, it is shown that the deep learning algorithm is robust against
various lighting conditions and object distances, making it a versatile solution
for practical imaging applications involving wide field-of-view metalenses.

1. Introduction

Using nanostructures much smaller than the wavelength to con-
trol light propagation, metalenses represent a transformative ad-
vance in optics technology. Unlike traditional lenses which rely
on the bulk properties of materials to bend light, metalenses
utilize arrays of nanostructures to achieve fine control over the
phase, amplitude, and polarization of incoming light waves.[1,2]

Metalenses have been shown to be highly effective in correcting
monochromatic aberrations such as spherical aberration, astig-
matism, coma, and field curvature.[3,4] In particular, several re-
cent studies have identified ways to suppress these aberrations
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across a large field-of-view (FOV) to achieve
diffraction-limited performance.[5–11]

Nonetheless, chromatic aberration,
which fundamentally arises from diffrac-
tion by the Fresnel zones,[12] remains the
Achilles heel for metalenses. Significant
efforts have been devoted to realizing
achromatic metalenses (all with a re-
stricted FOV) via dispersion engineering
or zone engineering,[13–15] although these
approaches are bound by the accessible
time delays.[16,17] Moreover, aberration
correction becomes even more challeng-
ing for wide-FOV (WFOV) metalenses.
Unlike narrow-FOV optics where only
longitudinal chromatic aberration (i.e.,
wavelength-dependent change of focal

length) needs to be compensated, the additional lateral chromatic
aberration (i.e., wavelength-dependent change of image height)
imposes a far more severe adverse impact on image quality in
WFOV systems.[18–20] These challenges have thus far precluded
experimental demonstration of broadband imaging using WFOV
metalenses.

To ameliorate this inherent shortcoming of metalenses, im-
age post-processing has been shown to be an effective means to
expand their spectral bandwidth.[21] Deep learning (DL) models
have also been successfully applied to realizing achromatic flat
lens imaging using the UNet-based single achromatic metalens
model,[22] the transformer-based flat lens model,[23] the genera-
tive adversarial network (GAN)-based circularly polarized metal-
ens model.[24] and the transformer-neural network approach for
WFOV imaging model.[25] However, these prior studies are con-
strained by certain limitations, such as the need for predefined
point spread function (PSF) datasets and limited FOV. The effi-
cacy of image post-processing algorithms remains an open ques-
tion in the presence of large lateral chromatic aberration.

Our work here aims to fill in the gap by combining deep-
learning-based post-processing with a WFOV fisheye metalens
to demonstrate, for the first time, full-color WFOV imaging us-
ing a metalens. In our study, the Comprehensive Image Trans-
formation Model (CITM) [22] was employed as a foundational
framework to analyze the preprocessing requirements and ad-
dress nonlinearities inherent in image restoration. After data col-
lection, we implement the MIRUNet [22] model to directly correct
chromatic aberration and other image degradation mechanisms
in WFOV metalens system. Leveraging a unique convolutional
neural network optimized for image enhancement, the model
is trained on a comprehensive WFOV dataset to ensure broad
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Figure 1. Overview of WFOV metalens imaging and restoration. a) USAF-1951 test chart used for simulation. b) 450–632 nm broadband PSF of metalens
at 60-degree incidence. c) Photograph of fabricated metalens. d) Simulation result of USAF test chart and simulated distortion grid at 120-degree FOV.
e) 450–632 nm broadband PSF of metalens at normal incidence. f) Photograph of the fabricated metalens mounted on a commercial camera. g) Raw
image and pre-distorted ground truth image for DL model training. h) Proposed DL model diagram. i) Restoration results from the DL model.

applicability. Our results demonstrate that this model effectively
corrects exposure, refocuses image and restores missing infor-
mation on the raw captured images for Red-Green-Blue (RGB)
channels. Additionally, MIRUnet can be extended to restore real-
world images without extra training, further proving its ability
to improve image fidelity across different metalens imaging plat-
forms.

2. Results

2.1. Metalens Characteristics

In this study, the f/1.8 WFOV metalens (Figure 1c) was designed
following the analytical approach we developed.[26] The metal-
ens were fabricated on a Si-on-sapphire platform with a single-
crystalline Si layer thickness of 600 nm. We note that even though
single-crystalline Si is absorbing in the visible, the small meta-
surface thickness allows adequate light transmission throughout
most of the visible band. The construction of the metalens in-
cludes an aperture stop (1.25 mm diameter) patterned on a sep-
arate glass substrate and subsequently bonded onto the meta-
surface substrate. The metalens is designed for monochromatic
light at 525 nm, where it exhibits a near-180° FOV (more details
can be found in Figure S1, Supporting Information). The poly-
chromatic (for a flat band from 450 to 632 nm) PSFs at various

incident angles are presented in Figure 1b,e. The lens exhibits
limited aberration throughout the near-180° FOV at 525 nm.
However, the severe impact of lateral chromatic aberration is
evident from the elongated polychromatic PSFs at large inci-
dent angles (as shown in Figure 1b). The simulation results of
the USAF chart in Figure 1d also demonstrate significant chro-
matic aberration in the visible spectrum. To address this issue,
an image restoration algorithm was employed. A pre-distorted
ground truth image (Figure 1g) and raw images from the metal-
ens camera (Figure 1f) were used to train the Deep Neural Net-
work (DNN) model (Figure 1h) to eliminate chromatic aberration
(Figure 1i), which we shall discuss in detail in Section 2.2.

The optical performances of the WFOV metalens were ex-
perimentally assessed by imaging carefully selected test images
displayed on an organic light-emitting diode (OLED) monitor.
By capturing and analyzing photographs of these projected im-
ages, specific terms in the CITM can be quantified for the pre-
processing techniques described in Section 2.2. Figure 2a illus-
trates the imaging resolution and chromatic aberrations from
a USAF-1951 test chart with a white background taken by the
WFOV metalens. In the center region (outlined in green), notice-
able red and blue color fringes appear around the high-contrast
edges of test patterns as a result of longitudinal chromatic aber-
ration. It is apparent that the chromatic aberration increases to-
ward the edges of the image with a clear offset between the
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Figure 2. Optical performance of WFOV metalens. a) imaging resolution and chromatic aberration of a USAF-1951 test chart image. b) Lightness channel
map of a HDR image. c) Distorted grid of the WFOV metalens image. d) Full-color test image from WFOV metalens and the corresponding red, green,
and blue channels of test images.

color channels, indicative of the worsening lateral chromatic
aberration which scales with the field angle. Moreover, the im-
balance of intensity between the primary color channels due to
the wavelength-dependent meta-atom transmission efficiency re-
sults in considerable color distortion.

Distortion is another optical aberration apparent in the
WFOV images. Our theoretical analysis[26] has shown that a
near-telecentric configuration is essential to minimizing other
monochromatic aberrations. However, the image-space telecen-
tricity leads to barrel distortion that monotonically increases to-
ward the image edges at a rate much faster than non-telecentric
optics (Figure 2c). This non-uniform distortion necessitates an
extra pre-processing step for the image dataset used to train the
DL model, where distortion matching that of the metalens is first
applied to the undistorted ground truth images. This step is criti-
cal to ensuring that the DL model is trained on a coherent dataset
to aptly counteract the distortion effect.

Another key factor that compromises the image quality is vi-
gnetting. Vignetting is an optical effect where the brightness and
saturation in the periphery of an image are lower compared to
the center. In our case, vignetting is primarily attributed to a co-
sine dependence of effective light-collecting aperture area of the
metalens on the light incident angle. Vignetting can be quanti-
fied by analyzing the brightness distribution of the entire image.
Figure 2b is the lightness channel map of a high dynamic range
(HDR) synthesized image from a white test image on OLED
monitor. The channel map demonstrates a strong vignetting ef-
fect, which leads to a brighter center region with more accurate
color reproduction while the image periphery is darker and suf-
fers from exacerbated color distortion. This imposes a serious
challenge for color and resolution restoration, since loss func-
tions of common deep learning-based algorithms rely on com-
parison between pixel values, and thus high-quality restoration is

only viable with consistent feature extraction among whole im-
ages. Therefore, mitigating vignetting is also crucial for HDR
imaging to restore uniform brightness and accurate color rep-
resentation. A more elaborate comparison of HDR and Standard
Dynamic Range (SDR) image brightness is given in Figures S2
and S3 (Supporting Information).

As a comprehensive example, Figure 2d shows a full-color
test image captured by the metalens and the corresponding red,
green, and blue channels. While the green channel is in reason-
ably sharp focus across the FOV, the red and blue channels are
heavily aberrated. We also note that the object sizes projected on
the image plane increase in the sequence of red-green-blue as a
result of the lateral chromatic aberration.

2.2. CITM Induced Preprocessing, Raw Image Capturing Using
HDR Synthesis

Achromatic WFOV metalens imaging systems impose serious
difficulties associated with precise restoration of all color chan-
nels, complicated by off-axis monochromatic aberrations. For
conventional metalens image restoration, some parameters like
PSF are typically predefined to understand and correct image
degradation. However, several problems arise with WFOV met-
alenses in such an approach. First of all, PSFs are dependent on
the field angle and can be strongly affected by factors such as
vignetting (Figure 2b) and distortion (Figure 2c). The vignette
lowers the brightness of the image toward the image borders,
while distortion changes the shape and accuracy of the image.
All these effects change across the field of view, which makes PSF
calibration a non-trivial task. Second, in WFOV metalenses sys-
tems, PSF rapidly changes at the edge of the image, making the
measurements less accurate. This inaccuracy in the PSF model
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Figure 3. Processing process and DL model diagram. a) Distortion correction process using CITM. b) Diagram of MIRUnet. c) Pre-distortion process
of ground truth image via centroids extraction. d) HDR synthesis process of raw image.

is going to result in errors in image reconstruction. A larger FOV
means more regions of the image are under the influence of PSF
variations, implying a more complex and finely tuned calibration
process to take into account spatial variations across the whole
FOV. Therefore, a large FOV metalens presents a exponentially
more complicated case for image restoration.

For the purpose of relating captured images through metalens
systems with their ground-truth counterpart, we have utilized the
CITM[22] in our previous work. This relationship is important to
design effective deep learning algorithms for image restoration.
This is due to the inclusion of multiple common effects beside
PSFs as expressed in Equation (1), where Igt (𝜆) is the wavelength
component of the ground-truth image, T (·) is the transform func-
tion to form the ground-truth image to be captured, e.g., monitor
projection. PSF(𝜆) is the effective PSF at each wavelength, *is for
convolution, W is the color balance matrix, V is a factor to ac-
count for the vignetting effect, H is the homography matrix for
perspective distortion, D (·) characterizes lens distortion, e is the
exposure factor, n is the sensor noise, and C (·) sets the upper and
lower bounds for signal clipping of the captured image.

ISensor = C
(

W ⋅ V ⋅ eD
(

T
(
Igt (𝜆)

)
H−1 ∗ PSF (𝜆)

)
+ n

)
(1)

In this work, precautions were made before the data collection
to simplify Equation (1). First, as described in our prior work,
the monitor calibration process removes the term T(·) since the

projected image is color-accurate with respect to the source files.
Second, with due care in aligning the camera and the monitor,
the homography matrix H can be discarded since the perspective
errors that occur are negligible. In this respect, the simplified ver-
sion of the CITM is given by:

ISensor = C
(
W ⋅ V ⋅ eDIgt (𝜆) ∗PSF (𝜆) + n

)
(2)

The remaining terms in Equation (2) are difficult to correct ex-
perimentally or numerically during data collection. Some terms,
such as the distortion factor (D), color balance matrix (W), vi-
gnetting (V), and PSF(𝜆) are metalens’ inherent properties, while
the noise factor n is related to the camera sensor used. From
the discussion in,[22] a robust DL model is capable of effectively
restoring W, V, and PSF(𝜆) simultaneously, and the sensor noise
n does not affect the restoration results. Thus, to apply MIRUNet
to the WFOV metalens, the distortion factor D must be elimi-
nated.

The distortion correction process can also be implemented
using CITM. By setting up a virtual camera with a lens of given
focal length, the ground truth image can be transformed to a
new image with a certain amount of distortion without affecting
other terms. The process can be explained using CITM by incor-
porating a distortion term directly to Igt (𝜆), as in Equation (3).
Multiple iterations using Equation (3) are needed to approach
the distortion profile. As shown in Figure 3c, an iterative
optimization process is used to better fit the true distortion
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profile, and the details can be found in S2.1 (Supporting
Information).

I′gt = D′ ⋅ Igt (3)

After the optimization, since the D′ ≈ Dgt, (Equations (2) and
(3) can be combined, and the captured image through WFOV
metalens system is then represented as:

Isensor = C
(

W ⋅ V ⋅ eDI
′

gt∗PSF (𝜆) + n
)

(4)

where I′gt is the pre-distorted ground truth image as shown in
Figure 3a. Equation (4) reveals that the image restoration prob-
lem for WFOV metalenses is equivalent to that of a standard met-
alens with a smaller FOV. Consequently, MIRUNet should be ca-
pable of handling the inverse of the remaining terms in the equa-
tion to enhance the overall image quality.

Besides the distortion correction, the lack of brightness in the
periphery of the captured image requires further processing to
make both the brightest and darkest areas within the FOV free
from the clipping function C (·). Figure 3d shows several pho-
tographs taken with different exposure time. Clearly, no SDR
photo provides a good result in terms of balanced brightness
in the entire frame of the image. Therefore, the need for HDR
synthesis becomes a necessity for achieving the required FOV.
Figure 3d also demonstrates the output of the HDR synthesis
process. While an SDR photo can reveal details around the edges
of a single photo when increasing the exposure duration, the cen-
ter region of the photo is overexposed. For an HDR photo, the
exposure levels of the image are already set and details across the
whole frame remains visible. Therefore, the exposure factor e be-
comes constant, and the clipping function C (·) can be ignored,
Equation (4) becomes:

Isensor = W ⋅ V ⋅ DI
′

gt∗PSF (𝜆) + n (5)

With fewer factors to correct in Equation (5) compared to
the original CITM (Equation 1), the deep learning network can
achieve better performance and generalization by mostly focus-
ing on the metalens-related terms. This ensures the network’s
proper function outside of the training setup. The detailed de-
scription of HDR synthesis can be found in S2.2 (Supporting In-
formation).

2.3. DNN Formation and Image Reconstruction Results

The preceding discussions point out that a sophisticated image
reconstruction algorithm is necessary to reverse the CITM for-
ward transformation to recover captured images through met-
alens systems. By inverting the effects of ill-informed PSFs, vi-
gnetting, and color balance, high-resolution full-color images
can be expected, however such process is usually impossible us-
ing standard analytical methods. To handle this issue, we have
developed an advanced approach[22] —namely, the “MIRUnet”,
which effectively compensates for most of the nonlinear factors
in the CITM through a single process step without measuring
and quantifying explicit parameters.

MIRUnet is a U-Net[27,28] architecture variant with multiscale
capabilities, specially designed for the metalens image enhance-
ment and reconstruction tasks. In the main structure of the
MIRUnet model, with an encoder and a decoder, additional skip
connections and an attention module are attached to refine fea-
ture selection and increase learning efficiency. Especially, WFOV
metalenses suffer more from the negative effects of inconsistent
PSFs across the image plane, vignetting, and dispersion-related
transmission efficiency compared with metalenses with a smaller
FOV. Also, the distorted ground truth images left black borders
which could affect the calculation of peak signal-to-noise ratio
(PSNR) as shown in Figure 4. Therefore, we optimized the origi-
nal MIRUnet model to achieve better feature extraction to handle
this challenging problem. First, weightage to PSNR loss was in-
creased, with the capability of recovering image quality at the ba-
sic feature level.[29] Second, we replaced the Leaky Rectified Lin-
ear Unit (ReLU) activation function with Gaussian Error Linear
Unit (GELU) to allow smooth and adaptive nonlinear transforma-
tion that can deal with the changes in the image features more
accurately.[30] We also combined the output of the last decoder
with the original input image via element-wise addition, for the
network to directly incorporate the learned modifications with
the original input, highlighting both the learned features and the
original image details.[31] The modified MIRUnet network dia-
gram can be seen in Figure 3b. With a fully trained network, we
could restore an image in less than 0.15 s. It is obvious that there
is room to improve our model to achieve real-time image pro-
cessing at 30- frames per second (fps). We believe that future op-
timizations, such as utilizing specialized hardware or applying
network pruning techniques, could effectively address these lim-
itations and give MIRUnet real-time processing capabilities.

Training of the modified MIRUnet model was conducted on a
diversified dataset created by generative deep learning methods
such as Stable Diffusion.[32] This synthetic dataset was created to
ensure a sufficient variation in colors, contrast, brightness, and
objects that would represent the possible conditions for the imag-
ing of the metalens in a real environment.[33] Barrel distortion,
commonly encountered in WFOV imaging, was added to the im-
ages in the dataset through an optimized distortion term derived
from the method shown in Figure 3c. The model was forced to
become highly adaptable to various optical conditions and pre-
dict the random nature of real-world optical imperfections with
high accuracy and reliability. The model was trained over 100
epochs using the Adam optimizer,[34] utilizing the computational
power of two Nvidia Geforce RTX 4090 graphics processing units
(GPUs). The size of input/output images is set to 512 × 512 pix-
els to guarantee efficient handling and processing of the data for
optimal learning and better image restoration. After the configu-
ration of the experimental setup, 200 synthetic images were used
for evaluation.

Comparative analysis of different image restoration models
proves that MIRUNet considerably outperforms other models
in restored image quality. In Figure 4, the performance of our
model is contrasted with two other commonly used methods:
Multi Scale Retinex with Color Restoration (MSRCR) [35] which
is traditionally used for restoring resolution and color, and
Revitalizing Real Image Dehazing via High-Quality Codebook
Priors (RIDCP),[36] the state-of-the-art algorithm for dehazing.
Four synthetic images are selected in Figure 4 to check the
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Figure 4. Image recovery results of MIRUnet compared with results from state-of-the-art methods. a) Comparison between the MIRUnet output and
other methods was conducted on four types of images: one under-exposed, one over-exposed, one with an RGB color scheme, and one with a CMY
color scheme. b) Pixel maps of corresponding recovery outputs.

performance of restoration algorithms under different scenarios
and different lighting conditions and color palettes. These
images include one under-exposed, one over-exposed, one with
an RGB color scheme, and one with a CMY color scheme, re-
spectively. The ground truth images in Figure 4 are pre-distorted
computer generate images. After pre-distortion, the synthetic
images were displayed on an OLED screen then captured by
the WFOV metalens camera as raw images, which were used as
inputs for the MIRUNet and other state-of-the-art models.

Figure 4a shows that visually, the raw capture images have
chromatic aberrations and blurring. The MSRCR method par-
tially enhances the clarity by boosting the brightness of dark
regions and increases the contrast across the image but does
so with noticeable color artifacts and added noise. The RIDCP
model improves clarity overall but maintains high level of aber-
rations and blurring, along with inaccurate color restoration with
an overexposed appearance. In comparison, MIRUNet greatly en-
hances the quality of the images, replicating the ground truth im-
ages with minimal distortions, evenly distributed brightness, and
accurate color reproduction. It is clear that MIRUNet mitigates
chromatic aberrations and provides improved focus uniformity
across the full range of FOV.

Numerically, Figure 4b shows the PSNRs of each restored im-
age with respect to its ground truth. MSRCR and RIDCP did not
produce an observable PSNR increase, and in most regions, the
PSNR even deteriorated due to less accurate color representation
compared to raw captures. In stark contrast, MIRUNet demon-
strates significant and uniform PSNR increases across the entire
image, including corners where vignetting, distortion and chro-

matic aberration are most severe, an outcome that neither of the
other methods can produce. Besides, MIRUNet also keeps a high
PSNR in regions of over- or under-exposure, which indicates its
excellent capability of exposure correction and dynamic range ex-
tension. We also note that raw capture images show higher PSNR
values in the corners than in the center because of the combi-
nation of underexposure conditions with the black borders of
ground truth images. On the other hand, for the restored im-
ages using RIDCP, the second column of Figure 4a, some peak
PSNRs are introduced into the center because pixels are saturated
in these bright areas, and the ground truth image also shares the
near maximum pixel values.

3. Discussion

To further evaluate the efficiency of MIRUNet and CITM-based
preprocessing, an experiment with a flexible OLED display show-
ing real-world scenarios was conducted. The experimental envi-
ronment is set up such that the flexible display is encapsulated
between two 3D-printed holders whose bending radius is equal
to half the length of the longer edge of the OLED screen. The
two holders and the OLED screen can be flipped. As an effec-
tive augmentation method, image flipping is widely used to ex-
tend the variability of deep learning training set.[37] Similarly, the
proper restoration of flipped image can also be used as a mea-
sure to ensure MIRUNet is not over-trained. The OLED screen is
bright enough to be reflected by the shining plastic holders, mak-
ing the reflection observable by the camera when increasing the
exposure duration, which can also be observed in the MIRUNet
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Figure 5. Image recovery results of MIRUnet in a real-world scenario. a) Recovery of images via pre-trained MIRUnet captured at different distances. b)
Recovery of HDR and SDR images via pre-trained MIRUnet.

restored images. The high brightness of the OLED screen and
reflections from the 3D-printed holder surpassed the network’s
restoration capabilities, causing unwanted artifacts around the
image in Figure 5.

To explore and expand the utility of the WFOV metalens imag-
ing system under various conditions, this experiment was con-
ducted to test the system at shorter focusing distances. Although
the lens is designed for infinity focus, the following results (as
shown in Figure 5) aim to demonstrate its potential flexibility
for applications beyond its intended design, such as in close-up
imaging scenarios. Figure 5a shows the restoration performance
of MIRUNet on images captured at distances of d = 5 cm and
d = 0 cm (with the metalens situated at the center of the circular
holder). Since these distances are not optimal for the lens’s op-

eration, the images captured exhibit different color fringes and
distortions, presenting additional challenges for the restoration
process.

Notice that, at a distance of 5 cm, the raw images suffer
from noticeable chromatic aberrations and blurring. On the other
hand, after restoration with MIRUNet, the chromatic aberration
is largely mitigated, and the clarity is restored closer to that of the
original test patterns. The region outside of the OLED screen re-
mains dark after restoration. At a distance of 0 cm, compared with
the previous case, the distortion across the image has changed
dramatically, which also leads to different cases of color fringes
and even focusing. Regardless of the complex image projection
scheme, MIRUNet amends these degradations and produces im-
ages with higher fidelity, better sharpness, and color accuracy. It
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is worth mentioning that even at different distances than those
in the training set, MIRUNet processes the raw captures well,
demonstrating its robustness and adaptability. Thus, MIRUNet
is a versatile method that can be applied to different object dis-
tances, ensuring that it performs consistently in different situa-
tions.

Another comparison is given in Figure 5b between HDR and
SDR images, which shows how these formats affect performance
in the real world. On the HDR image, the brightness is dis-
tributed more widely in the range, which captures the restora-
tions clearer and much more detailed. The restoration is clearest
in the top row of Figure 5b. In contrast, MIRUNet was not specif-
ically trained on SDR images; it still makes consistent restoration
of SDR images although with increased noise levels and reduced
detail, especially in regions with large variations of brightness.
Some regions with severe under- or over-exposure appear slightly
color shifted, but the details as well as geometry of the restored
images remain consistent. Nevertheless, the higher noise in SDR
restorations highlights the importance of HDR in real-world ap-
plications, which concerns image quality over varying lighting
conditions. This makes it important to use CITM analysis on the
imaging systems to recognize the key factors that affect the per-
formance of such systems.

4. Conclusion

In this study, we present a novel approach to achieve WFOV
achromatic metalens imaging through the application of deep
learning techniques. By integrating an WFOV metalens system,
CITM, and the MIRUnet DL model, the research effectively ad-
dresses major metalens imaging performance degradation is-
sues such as chromatic aberration, vignetting, and distortion.
The experimental results demonstrate that the proposed method
significantly enhances image quality with accurate color repro-
duction, uniform brightness, and high resolution across a large
FOV. The findings underscore the potential of combining metal-
ens technology with deep learning to overcome inherent optical
limitations, paving the way for practical applications in advanced
imaging systems.
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