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Abstract: In this paper, we propose a deep learning
approach for forward modeling and inverse design of
photonic devices containing embeddedactivemetasurface
structures. In particular, we demonstrate that combining
neural network design of metasurfaces with scattering
matrix-basedoptimizationsignificantly simplifies thecom-
putational overhead while facilitating accurate objective-
driven design. As an example, we apply our approach to
the design of a continuously tunable bandpass filter in the
mid-wave infrared, featuring narrow passband (∼10 nm),
highquality factors (Q-factors∼ 102), and largeout-of-band
rejection (optical density ≥ 3). The design consists of
an optical phase-change material Ge2Sb2Se4Te (GSST)
metasurface atop a silicon heater sandwiched between
two distributed Bragg reflectors (DBRs). The proposed
design approach can be generalized to the modeling and
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1 Introduction
Metasurfaces are the 2-D version of metamaterials and
serve as a versatile platform for building ultra-thin and
large-scale devices. By carefully engineering the geometry
and material of meta-atoms, the building blocks of meta-
surfaces,we can realize independent phase and amplitude
control of the optical wavefront at the subwavelength level
[1–11]. Conventionalmetasurfacedesigns constructedwith
passive metallic [1, 12, 13] or all-dielectric [2, 3] materials
require re-design of meta-atoms to change their optical
functions. In contrast, active metasurfaces building on
tunablematerials enabledynamic reconfiguration toadapt
to different tasks. Phase change materials (PCMs) such as
Ge2Sb2Te5 (GST) [14–22] or Ge2Sb2Se4Te (GSST) [23–28] in
particular present anattractive all solid-statematerial plat-
form for active metasurfaces benefiting from their remark-
ably large indexmodulation upon amorphous–crystalline
structural transformation. The material refractive index
change allows different resonant modes to be excited in
the meta-atom structure, thereby realizing tuning of its
electromagnetic responses.

Despite the exciting prospects of active metasurfaces,
theyarealsoconfrontedwithseveral importantchallenges.
It is nontrivial to obtain high-Q resonances with metasur-
faces, which mandates judicious engineering of coupling
to free-space radiative channels while minimizing internal
material losses [29]. This requirement becomes far more
challenging when active tuning over a large spectral
range is necessary, since the high-Q condition is often
wavelength sensitive. Similar constraints also apply to
tuning metasurface responses in the angular domain.
Further, sufficient out-of-band rejection and mitigation of
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undesired transmission/reflection sidebands outside the
operating wavelength range prove challenging.

These barriers can be overcome by combining meta-
surfaceswith other classes of photonic structures to impart
the desired characteristics. One case in point is an optical
bandpass filter comprising a metasurface embedded in
a Fabry–Perot (F–P) cavity [30]. This design has several
advantages over single-layer metasurfaces: the coupling
to radiative modes can be modulated by changing the dis-
tributed Bragg reflector (DBR) pair number; the structure
suppresses out-of-band transmission within the photonic
bandgap (stopband) of the DBR which improves filter
extinction ratio; and, the sidebands can be eliminated via
apodization. Compared to traditional multilayer F–P cavi-
ties (interference filters), the introduction of ametasurface
enables facile engineering of thedispersion characteristics
far beyondwhat a simplehomogenous layer canattain [31].
Design of such active metasurface embedded structures,
however, can be a computation-intensive task given the
massive number of degrees of freedom encompassing free-
formmeta-atomgeometriesandF–Pcavity layerstructures
collectivelyoperatingoveracontinuumof tunablematerial
states.

In recent years, deep learning approaches and deep
neural networks (DNNs) have been investigated as a
solution tohandle suchcomplexphotonicdesignproblems
[32–58], including the design of multilayer structures
[39, 42, 54, 55], freeform meta-atoms [32, 56, 59] and
diffractive imagers [60]. In these examples, DNNs were
constructed to directly predict the transmission or reflec-
tion spectra of passive photonic structures. In this paper,
we expand the repertoire of deep-learning-based photonic
design by showing that DNNs can also be implemented
to both predict and inverse design broadband complex
S-parameters of active metasurface elements. The DNNs
can then be used in conjunction with transfer matrix
method (TMM) based analytical optimization to facil-
itate computationally efficient design of metasurface-
embedded tunable photonic devices.

To illustrate the utility of our hybrid design approach,
we designed an actively tunable optical bandpass filter
integrating a PCM metasurface with two DBRs operating
in the mid-wave infrared (MWIR) waveband. Such a filter
is currently being explored for space-borne multispectral
imaging and sensing applications [61, 62] given their
substantial size, weight, and power (SWaP) advantages in
comparison to conventional motorized filter wheels. The
PCM metasurface is constructed with a periodic array of

GSST meta-atoms atop a doped Si-on-SiO2 substrate, and
the DBRs are composed of quarter-wavelength-thick a-Si
and SiO2 layers. By applying voltage pulses to the doped
silicon heater underneath the meta-atoms to electrother-
mally trigger structural transition of GSST, the optical
phase delay between the two DBRs and hence the center
wavelength of the transmission band can be actively tuned
[23, 63, 64]. Compared to a traditional F–P structure
with a planar PCM cavity layer [61], this design not only
enables versatile dispersion engineering but also offers a
practical architecture for electrical reversible switching of
PCMs. By singulating a PCM film into discrete meta-atoms
surroundedby a thermally conductive capping layer (MgF2
in this case), we can significantly expedite heat extraction
during the PCM amorphization process to achieve uniform
switching throughout the entire PCM volume [65]. The pro-
posed fabrication process of the device is described in the
Supplementary Information Section I and experimental
realization is the subject for future studies.

2 Design method
The metasurface-embedded F–P filters (hereinafter
referred to as the “MFP filters”) were constructed with two
DBRs and one metasurface layer sandwiched in-between,
i.e., acting as a controllable cavity (Figure 1a). Each meta-
atom element (Figure 1c) consists of a freeformGSST struc-
ture sittingonasquare-shapedSiO2 substrate.Between the
substrate and the GSST material, one thin layer (30 nm)
of doped silicon was also added [66] which acts as an
electrically controlled resistive heater. By carefully engi-
neering the amplitude and duration of the voltage pulses
applied to theheater, theGSSTmaterial canbedynamically
switchedbetweenamorphous,partially crystalline,or fully
crystalline states [63, 64]. Both the top and the bottom
DBR consists of pairs of a-Si–SiO2 (high-low index) films,
and the pair numbers are analytically optimized using
TMM. The meta-atoms are encapsulated in MgF2, whose
thickness can be tuned to adjust the cavity length.Without
loss of generality, the spectra of interest were set to be
from 60 to 100 THz (3–5 μm in wavelength), with a
center wavelength of 4 μm. The incident light is a linearly-
polarized plane wave illuminating from the substrate side.
Considering the electronically large structure size (usually
several wavelengths in the propagating direction) and the
resonant nature of this MFP filters, full-wave simulation of
the entire MFP filter structure is usually time-consuming.
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Figure 1: MFP filter design methodology.
(a) A schematic diagram of the tunable filter structure. (b) The top DBR. (c) The GSST meta-atom in the center of the cavity. (d) The bottom
DBR. (e) The forward prediction DNN to evaluate the S-matrix of the meta-atom. The S-matrices were then translated into transfer matrices
and multiplied with the transfer matrices of the DBRs to calculate the final S-matrix of the whole structure.

Therefore, exhausting the full design space—including
tunable refractive indices of the GSST material, thickness
of the DBR layers, spacing between DBRs, lattice size,
as well as the geometry of freeform meta-atoms—by
parametric sweep alone to find the globally optimal design
is computationally unfeasible. Instead, we resorted to
the TMM approach. As shown in Figure 1, the transfer
matrices of the top DBR (Figure 1b), center meta-atom
(Figure 1c), and bottom DBR (Figure 1d) can be separately
calculated andmultiplied together subsequently to obtain
the total transfermatrix. The spectral responseof the entire
transmissive MFP filter can be derived by converting its
total transfer matrix into an S-matrix (more details are
included in Supplementary Information Section II). Due
to the near-field effects and coupling between the freeform
meta-atom and its surroundings, the S-matrix of the meta-
atom cannot be numerically analyzed, which limits the
modeling efficiency of this TMM approach. To tackle this
challenge,we trained a forward predictionDNN (Figure 1e)
that generates accurate S-parameters of GSST meta-atoms
given its dimensions and crystallization state. Since the
DNNscalculate theoutput onaone-time-calculationbasis,
optical performance of the MFP filters can be predicted
with minimal time cost, which further accelerates their
optimization and inverse design.

3 Forward prediction DNN
A forward prediction DNN was constructed and trained
to achieve fast and accurate evaluation of meta-atoms
shown in Figure 1c. The forward prediction DNN was
constructed based on a convolutional neural network
(CNN) [67] architecture (Figure 2). The meta-atom designs
can be described with two sets of parameters: the 2-D
cross-section of the meta-atom and other properties,
including: the crystallization fraction of GSST (between
“0” representing amorphous and “1” corresponding to
fully crystalline); thicknesses of the SiO2 layer between
doped silicon heater and the bottom DBR; the height
of the GSST meta-atom and the thickness of the MgF2
capping layer; and the lattice size (period) of the meta-
atoms. The 2-D cross-sections were processed through
a 2-D image processing network (circled in green in
Figure 2), which is composed of three consecutive con-
volutional layers. The rest of the meta-atom’s properties
were processed with a 1-D property processing network
(circled in blue in Figure 2), which includes a Neural
Tensor Network (NTN) [32, 68]. The NTN relates the input
parameters multiplicatively instead of only implicitly,
which effectively accelerates the training process when
the relationship between input and output is highly
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Figure 2: Network architecture. The meta-atom design parameters were evaluated using a 2-D image processing network (circled in green)
and a 1-D property processing network (circled in blue). After processing with several convolutional layers and dense layers, the S-matrix
(real and imaginary part) of the meta-atom over the spectrum of 60–100 THz were generated as the final output. 101 frequency points, with a
spacing of 0.04 THz, were used to represent the full spectra for each S-parameter.

nonlinear. Specifically, the output of this NTN layer is
given by:

Output = f
(
eTW [1:k]e+ Ve+ b

)
(1)

where e represents the 1-D property of the meta-atom
and W,V and b represents the weight and bias, respec-
tively. The output of the NTN was then spatially tiled
and concatenated with the output of the 2-D image
processingnetwork.Thecombinedoutputwas then further
processed with more convolutional layers, during which
more high dimensional hidden features of the original
meta-atomwere revealed and extracted. Finally, two dense
layers translated the extracted features into the wideband
S-parameters of the meta-atom. Since the meta-atom can
be treated as a two-port network, the final output is
composed of wideband S11, S12, S21, and S22 responses. Two
prediction networks with the same architecture (as shown
in Figure 2) were trained to predict the real and imaginary
parts of the complex S-parameters of the meta-atoms,
respectively. Detailed hyperparameters are included in the
Supplementary Information Section III.

To train the network, over 105 groups of meta-atoms
with quasi-freeform 2D cross-sections were randomly gen-
erated using the “needle drop” approach [69]. Several
rectangular bars, with a minimum generative resolution
of 1 pixel, were randomly generated and placed together
within a square canvas (64 × 64 pixels) to form random

patterns. To accelerate the pattern generation and data
collection process, the patterns in the top left quadrant of
each unit cell were generated first and then symmetrically
replicated along both x and y axis to form the complete
patterns. The other parameters including the state of the
PCM and the dimensions of the meta-atoms were created
randomly within the following range (with lengths all
in μm): material state ∈ [0, 1], SiO2 substrate thickness
∈ [0.6,0.8], GSST thickness ∈ [0.5, 2], MgF2 thickness
∈ [1, 3], lattice size∈ [0.5, 1.5], since these ranges provides
ample samples of the meta-atoms’ S-parameters. The
S-matrices of these randomly generated designs were
evaluated using the full-wave simulation tool CST Studio
Suite. The 2-D cross sections of the meta-atoms, along
with the 1-D properties were assigned as the input of the
network, while their corresponding wideband S-matrices
were designated as the outputs. Among the 105 groups of
training data, 70% were used during the training process,
the remaining 30%were used to evaluate the fully-trained
network. The parameters of the hidden layers shown in
Figure 2wereoptimizedduring the training tominimize the
difference between predicted results and the ground truth.
The training was performed on a workstation consists of
a 16-core CPU with 4.7 GHz clock speed and a NVidia
1080Ti GPU. Both DNNs converged after 72 h of train-
ing. Upon completion of the training, the average mean
square error (MSE) was 7.3 × 10−4 for the real part
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and 7.8 × 10−4 for the imaginary part of the complex
S-parameters. To showcase the DNN’s accuracy, we ran-
domly selected a meta-atom design from the test dataset
and employed the prediction network to evaluate its
performance in different crystallization states (Figure 3).
The real part (in blue) and imaginary parts (in red)
of their complex S-matrices, including the S11, S12, S21,
and S22 are shown on the right in each subplot. The
dotted lines are the prediction results generated by the
network, while the solid curves are the ground truth
derived with the full-wave simulation tool. Among the
101 sample points that were used across 60–100 THz,
only 26 were plotted in each subplot in Figure 3 for the
sake of clarity. Due to optical reciprocity, S12 and S21 for
all meta-atoms are identical. In practice, we found out

that removing one of these two S-parameters from the
output did not further increase the training accuracy, and
thus all S-parameters are simultaneously predicted for
simplicity. As indicated by the small training error, the
prediction results agreed well with the ground truth in all
cases.

Using the TMM approach in Figure 1, the spectral
responses of an MFP filter structure can be efficiently
calculated (in milliseconds with a single CPU worksta-
tion). This forward DNN has two major advantages: (1)
due to its high computational efficiency, this forward
DNN can be adopted to evaluate the performance of the
designs in closed-loopoptimizationalgorithms,whichoth-
erwise would have been themost time-consuming process
(e.g., the full-wave simulation of onemeta-atom in Figure 3

Figure 3: S-matrix prediction using forward DNN.
(a) Meta-atoms in different crystallization states. 3-D model of each meta-atom is shown on the left. (b) S11 plots. (c) S12 plots. (d) S21 plots.
(e) S22 plots. Dotted lines represent the DNN prediction results, while solid curves are simulation results (ground truth). Parameters
including lattice size, the thicknesses of MgF2, GSST meta-atom, and SiO2 substrate, as well as the crystallization states are shown on the
top-right corner of the S11 subplots (parameters listed in the same order as here; all lengths in μm). Additional examples of DNN prediction
accuracy are included in Supplementary Information Section IV.
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could take minutes with a single CPU workstation) during
the optimization, and (2) sinceweare building this forward
predictionDNNinawaythat it canhandlemeta-atomswith
different design parameters, the network can be employed
to quickly assemble sub-datasets with less degrees of
freedom for more specific design problems. For example,
sincemostmetasurface andmeta-devices are composed of
elements with the same lattice size and thickness, we can
use the prediction network to choose the right parameter
combinations (including the lattice size, thickness, and
material indices) that leads to the largestmodulationdepth
of phase and amplitude [69]. Besides, given the fabrication
complexity associated with freeform meta-atoms which
entail small critical dimensions [40, 52, 56], we can utilize
the forwardDNN topredict the spectral responses of a class
of meta-atoms with simple shapes such as rectangles [70]
and “H’s”. (3) These patterns can be easily described using
a limited number of parameters, which largely reduces
the difficulty of inverse design [32, 33, 38, 39, 42, 43,
46, 53, 58]. In the following section, we demonstrate
how to construct and train an MFP filter inverse design
network with a sub-dataset generated by the forward
prediction DNN which is composed of only “H”-shaped
meta-atoms.

4 Inverse design DNN
With meta-atoms constructed with PCMs such as GSST, if
we found a specific design with high transmission and
large phase delay tuning range when it is in different
crystallization states, then it is possible to realize tuning
of F–P resonances inside the MFP filter structure at
will. Specifically, for bandpass filters with a given tuning
range, we can calculate the target electrical length of the
spacing between two DBRs at two ends of the tuning range
(Figure 4a), and then realize a similar optical response of
the shorter electrical length using one GSST meta-atom
design in the amorphous state, and likewise use the same
design in the fully crystalline state to attain the longer
electrical length (Figure 4b). The continuous tuning of
the F–P resonances between these two states can be
achieved by manipulating the crystallization state of the
GSSTmaterial through adjusting voltage pulse parameters
[63, 64]. Inspired by this idea, we constructed an inverse
design DNN for the design of actively tunable filters with
given tuning range targets and filter functions (edge,
bandpass, etc.). As a proof of concept, we focused on
the bandpass filters across the MWIR band. As shown
in Figure 4c, the target wideband S-matrices (in both
the amorphous and the fully crystalline states) were
assigned as the inputs of the inverse DNN while the shape

Figure 4: Inverse design DNN.
(a) A conventional F–P bandpass filter with two DBRs separated by a cavity. (b) The spacing (cavity) between two DBRs was treated as a
two-port transmission line. (c) S-matrices of the transmission lines were designated as input of the inverse DNN. (d) The meta-atom inverse
DNN constructed based on fully-connected neural networks. (e) Output of the inverse DNN, which is a combination of design parameters
including all meta-atom dimensions.
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and dimensions of the corresponding meta-atoms were
defined as the output. Since the meta-atoms with the
shape of letter “H” provides sufficient transmission and
phase delay responseswhilemaintaining a low fabrication
difficulty comparing to the freeform shapes [3, 69], we
used the “H-shaped” meta-atoms to assemble the training
dataset for the inverse DNN. Specifically, we constructed
“H-shaped” patterns with random dimensions on a
64 × 64 canvas, then assigned the 2-D “H-shaped”
patterns with four parameters (Lx, Ly, Lx1, Ly1, as shown
in Figure 4d) and combined these four parameters with
the other dimensions (tMgF2, tGSST, tSiO2, lattice) that were
randomly created within the preset data range mentioned
above. The S-matrices of these randomly-generated meta-
atoms were evaluated with the fully-trained prediction

DNN. The final training dataset contains over 5 × 104

groups of “H-shaped”meta-atomdesigns, alongwith their
wideband S-matrices within the 60–100 THz range in both
amorphous and crystalline states.

After the inverse DNN in Figure 4c was fully trained,
we employed this network to design two transmissive
tunable bandpass filters with different tuning ranges. The
top and bottom DBRs each consist of 3 pairs of a-Si
(n = 3.4) and SiO2 (n = 1.39) films. Taking 𝜆 = 4 μm as
the center wavelength of the bandpass, the thicknesses of
the quarter-wavelength a-Si and SiO2 layers were set to 294
and 719 nm, respectively. As shown in Figure 5a, the first
design targethasa tuning range from3.75 to3.95μm,which
requires the distance between DBRs (Figure 5b) changing
from 2.6 to 2.8 μm. S-matrices of this meta-atom between

Figure 5: Design examples with the inverse DNN.
(a) Target transmission spectra. The positions of the two peaks (red represents target response in the amorphous state, blue represents
target response in the crystalline state), along with the tuning range were defined. (b) The distance between DBRs (in both states) was
calculated based on the target spectrum. (c) Corresponding S-matrices (amplitude vs. frequency, 60–100 THz) were calculated and fed into
the inverse DNN. (d) Design parameters generated by the inverse DNN. (e) S-matrices (amplitude vs. frequency, 60–100 THz) of the
generated designs showing in (d). (f) Transmission spectra of the final design. Red and blue curves represent the transmission of the filter
design in the amorphous and the fully crystalline state. The other 9 curves represent the responses of the design in intermediate states
between amorphous and fully crystalline.
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the 60–100 THz frequency range, including S-parameters
in both amorphous state (in red) and fully crystalline
state (in blue) were fed to the inverse DNN as inputs. The
S-matrices of the generated design (Figure 5d) are very
similar to the preset targets (Figure 5e). The transmission
spectra of the final MFP filter design (Figure 5f) are there-
fore close to thedesignobjective (Figure 5a). For the second
design (showing at the bottom of each subplot), the center
wavelength tuning range was set to be ∈ [4.3μm, 4.6μm].
Similarly, the optical performance of the design generated
by the inverse DNN are similar to the design target. It is
worth noticing that due to the nonzero S11 and S22 values
of the meta-atom designs, this multilayer filter design
was not perfectly matched at the interfaces between the
meta-atom and the DBRs, which leads to a certain amount
of reflected energy at resonances. This mismatch, along
with the unneglectable loss of the GSST material and
the doped silicon heaters, has limited peak transmission
(<50% and decreased as the material switched to fully
crystalline) of the designs (Figure 5f). It is worth men-
tioning that the highly resonant responses showing in
Figure 5f have further justified the necessity of our TMM-
DNN approach, since the large prediction errors caused by
abrupt changes in the spectral responses (peaks, dips and
phasewrappings) tend tobeaveragedamong largenumber
of sample points that used to sketch the whole spectra,
meaning it is difficult for the DNNs to predict the accurate
resonant-typeresponses (ashavebeenreported inprevious
literature [32]). Comparing to the metasurface embedded
devices, there are less resonances in the metasurfaces,
making thewideband S-parameters ofmetasurfaces easier
to predict with the TMM-DNN approach. One thing worth
mentioning is that this inversedesignmethod isnot limited
to the design of “H-shaped” embedded metasurfaces. The
network showing in Figure 4d can be easily modified to
adapt to the design of tunable meta-atoms that can be
described with several parameters. Furthermore, a Gener-
ative Adversarial Network [40, 56] can be constructed to
generate high performance meta-atoms with complicated
(e.g., freeform) shapes, to fully unveil the potential of this
active metasurface embedded structure.

5 Conclusions
We have developed a design approach for complex
photonic structures involving embedded phase-change
material metasurfaces inside a multilayer cavity and have
applied this methodology to the generation of tunable
mid-wave infrared bandpass filters. The design approach
decouples themetasurfacedesign (accomplishedviaDNN)

and the multilayer optimization (analytically solved by
the TMM method guided with intuitive insights from the
coupled mode theory), enabling computationally efficient
and yet accurate inverse design of such structures. We
believe that the hybrid design scheme can be generalized
to other photonic structures incorporating metasurfaces
where the S-matrix description is applicable, for instance
waveguide devices, photonic crystals, and stacked multi-
layer metasurfaces.
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