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AI for optical metasurface
Check for updates

Akira Ueno1,2 , Juejun Hu1,3 & Sensong An1,4

Optical metasurfaces, planar artificial media capable of controlling light propagation, are transitioning
from laboratory curiosity to commercial applications. This shift requires advanced meta-atom and
metasurface designs, considering manufacturability and enhancing optical performance with post-
processing algorithms. Artificial-Intelligence(AI), particularly machine-learning(ML) and optimization,
offers solutions to these demands. This perspective systematically reviews AI’s potential impact in
three critical areas: AI-enabled metasurface design-for-manufacturing(DFM), design beyond the
classical local phase approximation, and AI-empowered computational backend.

Metasurfaces are two-dimensional (2D) versions of metamaterials that
provide a new platform for realizing high-performance optical devices and
components1–14. By controlling the geometry of each unit cell (i.e., meta-
atom), the phase, amplitude, and polarization of optical waves can be fully
engineered at the sub-wavelength scale to provide control of light propa-
gation. Recently, significant efforts have beenmade aiming at moving them
from proof-of-concept demonstrations to practical adoption in beachhead
applications exemplified by 3D sensing and augmented reality15–21. Tran-
sition of optical metasurface technologies to the commercial realm is
facilitated by their compatibility with high-volume semiconductor manu-
facturing processes that have been well established for electronics devices.
Indeed, there are already multiple instances of wafer-scale metasurface
fabrication22–26. As industrial implementation of metasurfaces progresses, it
becomes imperative to minimize the performance gap between simulation
and manufactured devices. Such differences can be partly attributed to
fabrication imperfections, which result in deviations of meta-atom geo-
metries from their designs. On top of that, approximations assumed in
large-areametasurfacemodeling can be another source of discrepancy. The
canonical metasurface design recipe involves full-wave modeling of indi-
vidual meta-atom responses with periodic boundary conditions (known as
the local phase approximation, LPA), followed by assembly of so-designed
meta-atoms according to optical phase profiles optimized via ray trace
simulations. This approach avoids computationally intensive simulation of
large-area metasurface devices, although it fails to account for interactions
(i.e., optical coupling) between dissimilar neighboring meta-atoms, and is
often not applicable to metasurface designs with discontinuous phase
profiles. Coupling of these errors can lead to significant disparities between
the design and actual performance, incurring escalated development time
and cost. Therefore,mitigating these sources of error is crucial to expanding
metasurface applications.

This perspective focuses onML as a promising route to address the
abovementioned challenges, highlighting both recent technological
progress and future prospects. Various ML methods have demon-
strated the potential to alleviate metasurface design burdens without

compromising their optical performances27–39. They also provide a
facile means to assess fabrication tolerance and hence manufactur-
ability of metasurface structures. In addition, another area where AI
and ML are likely going to make significant impacts is in the compu-
tational backend, where AI-based post-processing can effectively
compensate for imperfections or even intrinsic limitations of meta-
surface optical devices (e.g., chromatic aberration). We foresee that
these AI-based approaches will likely make a significant contribution
to expediting the industrial adoption of metasurface optics technolo-
gies. Fig. 1

AI-enabled metasurface design-for-manufacturing
DFM aims to formulate device designs optimized for industry-scale
manufacturing and packaging processes, and thus constitute an impor-
tant element in product development cycles. In the context of optical
metasurfaces, there are multiple instances40–43 and especially AI can serve
to simplify and expedite DFM-centric device engineering in two ways.
First, ML provides a powerful tool to develop nonintuitive advanced
metasurface designs with full consideration of fabrication tolerance.
Deviation of fabricated metasurface geometry from design layout is
probably the most commonly encountered fabrication imperfection and
thus has received considerable attention. For example, efforts have been
made to designmetasurfaces whose performance remains unaltered with
shape distortions. Jenkins et al. developed an optical performance pre-
diction system for meta-gratings using deep learning44. Using this pre-
diction system, they evaluated how transmission diffraction efficiencies
evolved with dimensional deviations to find robust designs insensitive to
geometric changes. As a proof-of-concept, they managed to limit the
deterioration in diffraction efficiency to approximately 15% with the
same level of edge variability, whereas the normal design would result in
an approximately 50% reduction in efficiency with similar deviation in
edge shape (Fig. 2a, b). Another approach involves selecting meta-atoms
suitable for processing from an extensive meta-atom library based on the
manufacturing constraints. In a study by Ueno et al., computationally
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efficient prediction of meta-atom performance was attained leveraging a
convolutional neural network (CNN) using 2D cross-sections of meta-
atoms as the input, thereby facilitating construction of a diverse meta-
atom library. Using a meta-atom selector tailored to actual

manufacturing conditions, fabrication-friendlymeta-atoms were chosen
from the library for metasurface design (Fig. 2c)45.

In addition to formulating fabrication-friendly designs, another area
where AI can make significant impacts is in manufacturing process

Fig. 1 | A graphic summary of AI based approaches for metasurfaces applications. AI based approaches will likely make a significant impact on AI-enabled metasurface
DFM, design beyond the classical local phase approximation, and AI-empowered computational backend.

Fig. 2 | Metasurfaces design considering workability and fabrication tolerance of
meta-atoms. a, bEstablishing exhaustivemetasurface robustness against fabrication
uncertainties through deep learning44 Copyright (2021) Walter de Gruyter. c deep-

learning designed, fabrication-friendly metasurfaces45 Copyright (2021) Walter de
Gruyter.
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development for metasurfaces. Fabrication-induced deviations from design
can result from various processing steps such as lithography, resist devel-
opment, and etching. Given the inherent complexity of these fabrication
steps, AI provides a predictive process design tool to obviate iterative trial-
and-error optimization with constant human intervention. A case-in-point
is ML-assisted optical proximity correction (OPC). Through modifying
photomask patterns to compensate for diffraction effects, OPC has become
a standard practice in state-of-the-art deep ultraviolet lithography to
enhance pattern fidelity. The increasing demand for more complex meta-
atom geometries for applications such as polarization control and disper-
sion engineering accentuate the importance of OPC in metasurface
fabrication46,47. Liao et al. used a fully convolutional network model for the
lithographic simulation of OPC. It reduced critical dimension (CD) varia-
tions to an average of 1.69%, resulting in a metalens focusing efficiency of
64%, closely matching the calculated value of 69%48.

Beyond the local phase approximation
The classical recipe for designing metasurface devices follows a “unit-cell”
approach based on LPA, where a metasurface is synthesized using a set of
meta-atoms as unit cells whose responses are modeled under the periodic
boundary condition. The approach facilitates efficient design of large-area
metasurface devices without the headache of excessive computational
overhead. LPA generally yields satisfactory results especially when (1) the
optical coupling between neighboring meta-atoms is weak, such as in the
case of high-index-contrast waveguide type meta-atoms with moderate
aspect ratios; and (2) the optical phase gradient is small, such that the
periodic boundary condition remains a reasonable approximation. These
conditions however, are being challenged in a growing number of appli-
cations. The discrepancy of this approach with experiment becomes
unacceptable in the search for ultrahigh-efficiency metasurface designs
where any loss of efficiency cannot be tolerated. Its accuracy is also com-
promised in designs involving large light bending angles—a critical
advantage of metasurfaces over traditional refractive or diffractive optics—
exemplified by high numerical aperture (NA) andwide field-of-view (FOV)
optics. In fact, theoretical analysis suggests that theLPAapproachbasedona
fixed set of meta-atoms face fundamental limitations in optical efficiency at
large deflection angles due to exacerbated phase sampling error49. Addi-
tionally, optical coupling effects are simply non-negligible in many meta-
atom systems50. Alternative schemes that circumvent these limitationswhile
enabling accurate and efficient large-area metasurface design are therefore
highly sought after.

AI-based techniques can contribute to solving the challenge in three
ways. MLmethods can be applied to predict and hence compensate optical
coupling between meta-atoms, thereby closing the gap between design and
experimental results. Alternatively, ML method are adopted to generate
meta-grating designs, which are then used to inform non-grating meta-
surface optimization. Lastly, newML approaches foreseemodeling of large-
area metasurface performances without full-scale brute-force electro-
magnetic simulations.

Deep neural network (DNN) predicts optical coupling between
meta-atoms
In recent years, several novel DNN models have been proposed51,52,
which consider the shapes of neighboring meta-atoms as part of their
input and utilize a large dataset to discern the impact of non-identical
neighboring meta-atoms under realistic boundary conditions. Given
that theseDNNmodels are limited to forward prediction of targetmeta-
atoms based on the dimensions of their neighbors, and adjusting one
meta-atom alters the boundary conditions of its surrounding neighbors,
an iterative optimization process is often adopted to identify the opti-
mal design across the entire metasurface. An et al. developed a DNN
model51 to predict the transmission and phase delay of a target meta-
atom, using its dimensions and those of its eight closest neighbors as
inputs (Fig. 3a). The network is based on a CNN architecture composed
of 6 consecutive convolutional layers and 3 fully connected layers

(FCLs). After fully-trained with sufficient data, this model can rapidly
characterize meta-atoms taking into account mutual coupling effects.
This tool effectively enhances the performance of metasurface devices,
with examples such as beam deflectors and metalenses analyzed. For
instance, a beam deflector’s efficiency increased from 41.3% to 68.8%
prior to and after optimization by the tool. Similarly, a metalens
achieved over 20% improvement in focusing efficiency using this
optimization framework. This was achieved by adjusting meta-atom
configurations based on predicted local responses, thereby reducing
phase errors. In another example by Zhelyeznyakov et al. 53, the authors
trained a DNN model that maps the geometry of the target meta-atom
and its closest neighbors to its electromagnetic field response. An
extended simulation domain was used to account for coupling along
both x and y axes. The DNN architecture consists of 11 FCLs, each
followed by a ReLU activation function. The training data was acquired
by simulating the electromagnetic response of 10 metalenses with a
diameter of 50 μm and varying focal lengths between 10 and 100 μm
using the Finite difference time domain (FDTD) method. A direct
comparison between the electric field simulated by FDTD and the fully-
trained DNN is visualized in Fig. 3b. Compared to conventional adjoint
optimization approaches, the overall design process is significantly
expedited using this AI approach, even with the data collection and
model training time taken into consideration. On the other hand, Ha
et al. 52 developed a different approach from the previous examples as it
includes an inverse design network, enabling direct generation of target
meta-atom dimensions using the desired transmitted field distribution
and surrounding meta-atom neighbors as input. This significantly
streamlines the design process compared to the iterative adjoint opti-
mization methods in 51,53. For instance, a metalens with 50 µm diameter
working at 1550 nm wavelength was designed in just 15 s. In compar-
ison, completing 20 iterations of a conventional adjoint-based opti-
mization approach, which served for data collection purposes, would
take over 15 days. In these approaches, the AI-enabled inverse designs
do not rely on the LPA to account for inter-unit cell mutual coupling
effects. These methods serve as a practical intermediary between the
computationally intensive full-wave simulations of entire metasurfaces
and the simpler, LPA-based unit cell simulations used to derive com-
bined phase fronts. Given that full-wave simulations of whole meta-
surfaces are often prohibitively expensive, these AI-driven approaches
offer a more efficient alternative for designing metasurfaces with
enhanced optical performance. However, training DNNs to predict the
coupling between meta-atoms, while avoiding full-wave simulations,
still requires a massive amount of data. Although this collection process
can be accelerated through parallel computing, the data requirements
are substantial. Additionally, the inverse design process introduces
complexities as adjustments to one meta-atom can impact the phase
front of all its neighbors, requiring iterative optimizations that are
further complicated when the shapes of the meta-atoms vary, such as in
freeform designs, as detailed in ref. 51.

AI-enhanced designs based on metagrating assembly
A phase-gradient metasurface with a continuous phase function (e.g., a
metalens) can be approximated as a collection of different regions, each of
which corresponds to one light deflection angle. Therefore, the task of
designing a phase-gradient metasurface can be decomposed into optimi-
zationof a series of (in general 2D)metagratingswith different light bending
angles54,55. Modeling of metagratings involve simulating their repeating
units (which comprise multiple meta-atoms) under the periodic boundary
condition. In this way, meta-gratings designed using the “super-cell”
approach naturally accounts for inter-metaatom coupling. While for meta-
atoms phase delay is the main design parameter, metagrating modeling
necessarily encompass different deflection angles, orientations (for 2D
metagratings), and initial phase settings. Despite the efficiency of modeling
individual metagratings using methods such as rigorous coupled wave
analysis, the more extensive optimization process for metagratings can be
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computationally onerous. AI is therefore expected to play an important role
in streamlining the design process. For example, neural networks can be
applied to expeditemetagratingdesign, potentially even extending themeta-
atom geometries from simple regular shapes to freeform structures to

further enhance performance. For example, Jiang et al. proposed a novel
platform using conditional Generative Adversarial Networks (CGANs) in
combination with iterative optimization to enhance the design of
metagratings56. This study employed CGANs to learn geometric features

Fig. 3 |Metasurface design utilizing AI to enhance optical performance. aACNN
that predicts a meta-atom’s transmission and phase delay under realistic boundary
conditions, accounting for dissimilar meta-atom neighbors51. b An FCN that pre-
dicts the EM field response of a meta-atom based on its geometry and closest

neighbors53. c An autoencoder that optimizes the configuration of meta-atoms
within a 5 × 5 array to achieve the desired transmitted field distribution, considering
inter-meta-atom coupling effects54.

https://doi.org/10.1038/s44310-024-00037-2 Perspective

npj Nanophotonics |            (2024) 1:36 4

www.nature.com/npjnanophoton


from a set of training images, specifically cross sections of freeform meta-
gratings. The CGAN framework comprises two interconnected deep net-
works: a generator and a discriminator (Fig. 4a). During the training
process, these networks undergo alternating phases of training: The gen-
erator aims to create realistic-looking device designs to deceive the dis-
criminator, while the discriminator endeavors to distinguish between real
and generated designs. Upon training completion, 5000 different layouts of
metagratings operating at a 70-degree deflection angle operating at 1200 nm
wavelengthwere produced using the trained generator. Remarkably, among
the generated designs, metagratings demonstrated over 60% efficiency,
showcasing the CGAN’s ability to learn and generalize key features in
metagrating design. Following this work,Wen et al. proposed a novel GAN
for the design of robust freeform high-resolution, high-dimensional meta-
gratings (Fig. 4b)57. Compared to traditional GANs, the progressive GAN
(PGGAN) significantly improves the training stability and the quality of the
generated images, making it particularly effective for creating high resolu-
tions metasurfaces with intricate design details. The network and device
resolution gradually increase from 16 × 32 pixels, to 32 × 64, and finally to
64 × 128 during the training process. Upon training completion, average
efficiency of the metagratings generated by the PGGAN is 14% higher
compared to themetagratings generated by basic GANs. By integrating this
AI-enhanced metagrating design approach into large-scale metasurface
designs assembled from combined metagratings58, we anticipate that the
optical performance of the metasurfaces could be significantly improved.

This potential enhancement is due to the elimination of the LPA and the
expanded design space. Fig. 5.

AI-empowered computational backend
AI andML techniques have already been widely applied to image post-
processing. For example, state-of-the-art smartphones deploy amal-
gamation of multiple images to elevate image quality59. In the context
of metasurface optics, computational backend can similarly be
implemented to enhance output quality or even ameliorate their
inherent performance limitations60,61. One example that highlights the
efficacy of AI-augmented metalens imaging is chromatic aberration
compensation. Chromatic aberration in metalenses, which stems from
the wavelength-dependence of Fresnel zone boundary positions62

deteriorates with increasing metalens size, numerical aperture, and
FOV63–65. While broadband operation via pure hardware correction
(e.g., via dispersion or zone engineering66,67) is unrealistic for large
metalens with a moderate FOV and F-number, computational post-
processing via DNN is capable of restoring high-quality color scenes
from heavily aberrated raw images captured by metalenses. Full-color
computational imaging with metalenses was recently demonstrated by
several groups. In a study by Dong et al., they used deep learning-based
approaches to overcome chromatic aberration and enhance image
resolution68. They used a U-Net-based neural network architecture69,
which is known for its efficiency in image processing tasks, to directly

Fig. 4 | Metagratings design utilizing generative AI. a A conditional GAN for the design of freeform metagratings with on-demand deflection angle at specified
wavelength56. b A progressive GAN for robust high-resolution, high-dimensional metagrating designs57.

https://doi.org/10.1038/s44310-024-00037-2 Perspective

npj Nanophotonics |            (2024) 1:36 5

www.nature.com/npjnanophoton


correct chromatic aberration, leveraging a training set compiled from
diverse scenarios to ensure robustness and versatility across various
aperture sizes, focusing distances, and real-world conditions. The deep
learning network yielded re-constructed color images with a gain of
over 10 dB in Peak Signal-to-Noise Ratio (PSNR) and a 35% increase in
Structural Similarity Index Measure (SSIM) values, demonstrating the
method’s effectiveness in achieving high-quality full-color imaging. In
another similar piece of work, Seo et al. introduces a deep learning-
based image restoration framework to achieve full-color imaging for
large-area metalenses70. In a demonstration, the DNN improved the
PSNR by 7.37 dB, the SSIM by 22.8%, and the Learned Perceptual
Image Patch Similarity by 35.6% compared to the original color-
aberrated images directly collected by themetalens. The examples cited

above used “standard” metasurfaces not specifically designed for
broadband operation. Further performance boost can be attained
through concurrent optimization of both the metasurface optics (the
hardware frontend) and the post-processing algorithm (the compu-
tational backend). Such an end-to-end design framework has been
discussed in a number of publications71,72. For instance, Tseng et al.
developed a technique that employs a differentiablemetasurfacemodel
that enables the joint optimization of the metasurface design and the
deconvolution post-processing algorithm within a differentiable
image-formation model73. This allows facile simulation of spatially
varying PSFs and their convolution with the sensor input, followed by
neural-network-based deconvolution to reconstruct the final image.
The neural nano-optics achieved a spatial resolution of 214 line pairs

Fig. 5 | Imaging process frameworks formetasurfaces imaging performance. aAchromatic SingleMetalens Imaging viaDeepNeural Network68. bMLbased approach for
aberration free metalens70. c Design framework to co-optimize the meta-optic and reconstruction algorithm73.
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per millimeter (lp/mm) across all color channels at an object distance
of 120 mm, a resolution that marks a seven-fold improvement over
previous state-of-the-art. Furthermore, a major concern in this AI-
empowered computational imaging field is the lack of standardized
datasets and benchmarks, which are crucial for evaluating the scal-
ability and real-world applicability of ML models. It has been observed
that while models often perform well on limited academic datasets,
their effectiveness tends to diminish in more diverse real-world set-
tings. This highlights the critical need for robust benchmarks that truly
reflect the complexities encountered in practical applications. To cir-
cum vent these limitations, the strategy of transfer learning is fre-
quently discussed74. Transfer learning utilizes models that have been
pre-trained on comprehensive, varied datasets, thereby enhancing
their adaptability and improving generalization capabilities in com-
putational imaging tasks.

Received: 30 April 2024; Accepted: 25 August 2024;
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