IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 100

1234

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 101

Missile Defense and Interceptor Allocation by
Neuro-Dynamic Programming

Dimitri P. Bertsekas, Mark L. Homer,
David A. Logan, Stephen D. Patek, and Nils R. Sandell

Abstract— The purpose of this paper is to propose a solu-
tion methodology for a missile defense problem involving the
sequential allocation of defensive resources over a series of
engagements. The problem is cast as a dynamic program-
ming/Markovian decision problem, which is computation-
ally intractable by exact methods because of its large num-
ber of states and its complex modeling issues. We have em-
ployed a Neuro-Dynamic Programming (NDP) framework,
whereby the cost-to-go function is approximated using neu-
ral network architectures that are trained on simulated data.
We report on the performance obtained using several dif-
ferent training methods, and we compare this performance
with the optimal.

Keywords— Theater Missile Defense, Dynamic Program-
ming, Neuro-Dynamic Programming, Reinforcement Learn-

ing.

I. INTRODUCTION

In this paper we consider a complex dynamic intercep-
tor allocation problem that is typical of Theater Missile
Defense (TMD). We assume that the defense allocates in-
terceptors to counter an opponent, who has a limited in-
ventory of ballistic missiles that can be used to attack as-
sets (cities, air fields, etc.). Due to the limited number of
missile launchers, and also due to the offense’s desire to
conserve its missile inventory for future contingencies, the
offense typically does not launch all its missiles simultane-
ously but rather in discrete attack waves. These waves may
be spaced hours apart, and there may be multiple waves
per day over a period of many days. Thus the TMD inter-
ceptor allocation problem is a dynamic decision problem,
since a series of decisions must be made over an extended
period of time, with the consequences of a given decision
affecting the subsequent decisions.

The defense has an inventory of interceptors and a set of
launchers. The decisions to be made concern the utilization
of interceptors. Given the current attack wave, the defense
must decide on how many interceptors to use against the
current wave and how many to withhold for use against
future waves. The number of interceptors fired per wave
is constrained by the number of launchers. Furthermore,

Dimitri Bertsekas is with Massachusetts Institute of Technology,
Laboratory for Information and Decision Systems, Room 35-210,
Cambridge, MA 02139 (dimitribOmit.edu)

David Logan and Nils Sandell are with ALPHATECH, Inc., 50
Mall Road, Burlington, MA 01803 (david.logan@alphatech.com,
nils.sandell@alphatech.com). Mark Homer was with ALPHAT-
ECH, Inc. at the time this research was conducted.

Stephen Patek is with the University of Virginia, Department of
Systems Engineering, 101C Olsson Hall, Charlottesville, VA 22903-
2442 (patek@virginia.edu).

This research was supported by a Small Business Innovative Re-
search (SBIR) Grant at ALPHATECH, Inc.

the defense must assign individual interceptors to specific
attacking missiles.

The problem is complicated by the presence of multiple
types of assets with different values and probabilities of de-
struction when attacked by different types of missiles, and
also by the presence of multiple types of interceptors with
different effectiveness against different types of missiles. As
a result the state space and the control space of the prob-
lem are very large (Bellman’s “curse of dimensionality”),
and while there is some favorable structure that can be ex-
ploited, the exact solution by dynamic programming (DP)
is impractical for realistically sized problem.

In this paper, we describe a mathematical optimiza-
tion model of TMD, and a Neuro-Dynamic Programming
(NDP) approach that we have used for its solution. NDP
is a class of reinforcement learning methods that deals with
the curse of dimensionality by using neural network-based
approximations of the optimal cost-to-go function. NDP
has the further advantage that it does not require an ex-
plicit system model; it uses a simulator, as a model substi-
tute, in order to train the neural network architectures and
to obtain suboptimal policies. We refer to the textbook [1],
the research monographs [2] and [3], and the survey [4] for
descriptions of the NDP methodology and detailed refer-
ences.

We present the results of our computational experimen-
tation with what seem to be the most promising methods
for our problem, and we evaluate the effectiveness of the
NDP formulation for TMD. Our aim is not only to delineate
the best methods for the TMD model discussed here, but
also to develop reliable guidelines for the methods that are
likely to be effective when applied to other more complex
TMD problems. The results of the present paper are also
relevant to a number of logistics and resource allocation
problems that have a structure similar to TMD; for exam-
ple in Section 2.4 of [2], a machine maintenance problem
is described that has a structure almost identical to TMD
(missiles can be identified with machine breakdowns, inter-
ceptors can be identified with spare parts that can be used
to repair the breakdowns, and launchers can be identified
with repairmen).

II. PROBLEM FORMULATION

The basic elements of the problem are the assets of dif-
ferent types, the missiles available to the attacker, and the
interceptors available to the defender. The interceptors
are used to destroy the attacker’s missiles. We denote by
pp,t(m,n) the probability that an asset of type ¢ will be de-

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 102

stroyed when it is attacked by m missiles and it is defended
by n interceptors. This probability may not be known ex-
plicitly, but is at least built into a battle simulator, which
may be parameterized by more fundamental quantities. We
assume that the action takes place in discrete time periods.
There is a maximum number Lj; of missiles, and a max-
imum number Lj of interceptors that can be launched at
each time period, corresponding to the respective numbers
of launchers.

We assume that attacks in different time periods are in-
dependent, and that the number of missiles launched and
the assets targeted for attack are selected by a probabilistic
mechanism. Without loss of generality, we assume that at
least one missile will be launched at each time period. This
guarantees that the battle will terminate in finite time (due
to either exhaustion of the missiles or destruction of all the
assets). We assume that each asset of type ¢ has value V%,
and the objective is to maximize the expected value of the
assets that are surviving at the end of the battle.

We formulate the problem as a stochastic shortest path
problem of the type considered in [5], [6], [1], or [2]. The
state has two components. The first component is

i=(A1,...,An, I, M),

where A; is the number of surviving assets of type ¢, n is the
number of asset types, I is the number of interceptors, and
M is the number of missiles. This is the major component
of the state, and it is also referred to as the reduced state.
However, there is a second component of the state, which
is the current attack vector, given by

a= (aly"'aaA))
where A = Ay + --- + A, is the total number of surviving
assets, and a; is the number of missiles attacking the jth
asset. The control to be selected at a given state is the
choice of interceptors to counter each attacking missile, and
is modeled as the vector

d= (dla"'adA)v
where d; is the number of interceptors defending the jth
asset. We refer to d as the defense vector. We use
P(i,a)(i,a') (d) to denote the probability that the new state
will be (i',a’) given that (1) the current assets, missiles,
and interceptors are 1 = (A1,..., Ap, I, M), (2) the attack
a occurs; and (3) the defense d is chosen. These are the
transition probabilities that are specified by the problem
data. [Although the NDP methodology does not require
that the probabilities p(; 4)(ir,07)(d) be known explicitly (as
long as they are built into a simulation of the process being
optimized), it is useful to have a notation for them.] We
assume that we have perfect state information, including
the number of remaining missiles of the attacker.

Because the conditional probability of the next attack a’
given ¢’ is independent of d, we have

Plia) (i) (d) = P{i" | (i,a),d}P{a’ | i'},

where

1. P{i'| (i,a),d} is the probability that i’ is the next pro-
file of assets, missiles, and interceptors given that ¢ is the
current profile and that a is the current attack and

2. P{a' | i'} is the conditional probability that the next
attack will be a' given the next profile of surviving assets,
missiles, and interceptors i'.

The above structure of the transition probabilities simpli-
fies Bellman’s equation for the stochastic shortest path
problem. In particular, let J*(i,a) denote the optimal
(minimal) expected long-term cost (due to destroyed as-
sets) starting at state (i,a), and let

J(i) =Y Pla|i}J*(i,a). (1)

We refer to J as the reduced optimal cost at the reduced
state . Then J can be shown to satisfy the following re-
duced form of Bellman’s equation ([1] or [2], Section 2.4)

J(i) =Y Pla]i) min Ep{g(i,i') + J(@") | i,a,d}, (2)

where

g(i,i") = Vi(As(i) — Ay(i")) (3)

is the one time period cost (the value of assets destroyed
during the period), and A(i) [or A;(i")] is the number of
assets of type t corresponding to state i (or ¢’, respectively).

Since termination is guaranteed under all policies, by us-
ing the available theory for stochastic shortest path prob-
lems ([1]), we have that Bellman’s Eq. (2) has a unique solu-
tion, which is the reduced cost function .J(i). Furthermore,
a stationary policy (i, a), which assigns defense vectors d
to states (i,a), is optimal if and only if u(i,a) minimizes
in the right-hand side of Eq. (2) for every state (i,a).

A. Solution via DP

The problem can in principle be solved by classical meth-
ods. In the wvalue iteration method, we start with an esti-
mate Jy of the reduced optimal cost function J , and we
iterate according to

Jip1(i) = P(a i) min By {g(i,i") + Jx(i') | i, a,d}.
' (4)

It can be shown that the generated sequences Ji (i) will
converge to the (reduced) optimal cost .J(7) for all states i.

In the classical value iteration method, the estimate of
the cost function is iterated for all states simultaneously.
An alternative is to iterate one state at a time, while in-
corporating into the computation the interim results. This
method is known as the Gauss-Seidel method, and it is
valid, in the sense that it converges to J under the same
conditions that the ordinary method converges. In fact the
same result may be shown for a much more general ver-
sion of the Gauss-Seidel method, called the asynchronous
Gauss-Seidel method. In this version, it is not necessary to
maintain a fixed order for iterating on the cost estimates

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 103

J (1) of the different states; an arbitrary order can be used,
as long as the cost J(i) of each state i is iterated infinitely
often.

In general, value iteration requires an infinite number of
iterations to obtain the optimal cost function. However, in
our problem there is special structure that can be exploited
to obtain a finitely terminating value iteration method. In
particular, we observe that the transition probability graph
of our problem is acyclic because with each transition the
inventory of attacking missiles is strictly reduced. This
acyclic structure implies a partial order on the set of states,
and if we use a Gauss-Seidel method that uses a state it-
eration order that is consistent with this partial order, the
problem can be solved exactly using only one value itera-
tion per state (see also the discussion of [2], Section 2.2).

An alternative to value iteration is policy iteration, which
terminates finitely for problems with finite state and ac-
tion spaces. This algorithm operates as follows: we start
with a stationary policy o, and we generate a sequence
of new stationary policies i, pi2,... Given the policy ug,
we perform a policy evaluation step, that computes J,, (),
i=1,...,n, as the solution of the (linear) system of equa-
tions

J(i) =Y Pla|i)Es{g(i,i") + J(@') | i,a, m(i,a)} (5)

in the unknowns J(1),...,J(n). We then perform a policy
improvement step, which computes a new policy pgy1 as

Wit (iya) = argmdin Ei{g(i,i') + Ju, (") | i,a,d}.

The process is repeated with pr+1 used in place of py,
unless we have J,,, ., (i) = J,, (i) for all i, in which case the
algorithm terminates with the policy ur. It can be shown
that the policy iteration algorithm generates an improving
sequence of policies [that is, J,, ., (i) < Jy, (¢) for all 4 and
k] and terminates with an optimal policy.

When the number of states is large, solving the linear
system (5) in the policy evaluation step by direct methods
such as Gaussian elimination is time-consuming. One way
to get around this difficulty is to solve the linear system it-
eratively by using value iteration. In fact, we may consider
solving the system approximately by executing a limited
number of value iterations. This is known as the modi-
fied policy iteration algorithm, and it is analyzed in several
sources, see e.g., [1], Section 2.3, or [7]. It is also possible
to use more general, asynchronous versions of policy itera-
tion, where value iterations and policy evaluations are in-
termingled in a fairly uncoordinated manner (see [8] or [2],
Section 2.2). This indicates that the methods of value and
policy iteration have a considerable degree of robustness,
which is particularly helpful within the simulation-driven
approximation context of NDP.

The classical methods are applicable to problems with
relatively small numbers of states (say a few thousand at
most). Otherwise they are prohibitively time-consuming.
In our problem, however, the number of states can easily be
very large and far beyond the range of applicability of the

classical methods. We are thus forced to consider meth-
ods that can produce a suboptimal policy with reasonable
amount of computation, as described in the next section.

III. NEURO-DYNAMIC PROGRAMMING FRAMEWORK

The suboptimal solution methods that we have employed
center around the evaluation and approximation of the re-
duced optimal cost function J , through the use of neural
networks and simulation. In particular, we replace the op-
timal cost J(i) with a suitable approximation .J (i, r), where
r is a vector of parameters, and we use at state ¢ the con-
trol ji(i, @) that attains the minimum in the (approximate)
right-hand side of Bellman’s equation

a(i,a) = argmﬂ%n Ey{g(i,i') + J(',r) |i,a,d}. (6)

The function .J will be called the scoring function, and the
value J(i,7) will be called the score of state i. Scoring func-
tions of this type are known as compact representations of
the optimal cost function. The methods that we have used
also employ compact representations J (i,7) of the reduced
cost functions ju (i) of stationary policies.

An important issue is the selection of architecture, that
is, the choice of a parametric class of functions J(-, 7). We
have experimented with two architectures:

(a) A neural network/multilayer perceptron architecture.
Here J(i,r) is implemented by a standard multilayer per-
ceptron structure with sigmoidal nonlinearities and a single
hidden layer. The state i is the input to this network, the
approximation J(i,r) is the output, and r is the vector
of weights that are determined by a training algorithm as
described below.

(b) A feature extraction mapping, that maps the state i
into some vector

F(@) = (£1G),- .-, f4(0)),

called the feature vector associated with the state i, fol-
lowed by a linear mapping that produces a cost approxi-
mation of the form

J(i,r) =70+ Y _rifi(i),

j=1

where r = (ro,71,...,74) is the vector of linear weights
to be obtained by a training algorithm. Feature vectors
summarize, in a heuristic sense, what are considered to be
important characteristics of the state, and they are very
useful in incorporating prior knowledge or intuition about
the problem. For example, an important feature of the
state i = (Ay,..., A4, I, M) is the ezpected leakage, that
is, the expected number of missiles that will leak through
the defense if each missile is intercepted by the “typical”
number k of interceptors used to defend against a single
missile (for example k = 1 if only one interceptor is typi-
cally used to defend against a single missile).

Some of the most successful applications of neural net-
works are in the areas of pattern recognition, nonlinear

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 104

regression, and nonlinear system identification. In these
applications the neural network is used as a universal ap-
proximator: the input-output mapping of the neural net-
work is matched to an unknown nonlinear mapping F' of
interest using a least-squares optimization. This optimiza-
tion is known as training the network. To perform training,
one must have some training data, that is, a set of pairs
(i, F(z)), which is representative of the mapping F' that is
approximated.

It is important to note that in contrast with these neu-
ral network applications, in our stochastic shortest path
context there is no readily available training set of input-
output pairs (i, j(z)), which can be used to approximate J
with a least squares fit. The only possibility is to evaluate
(exactly or approximately) by simulation the cost functions
of given (suboptimal) policies, and to try to iteratively
improve these policies based on the simulation outcomes.
This creates analytical and computational difficulties that
do not arise in classical neural network training contexts.
Indeed the use of simulation to evaluate approximately the
optimal cost function is a key new idea, that distinguishes
the NDP methodology from earlier approximation methods
in DP.

IV. NEUrRO-DYNAMIC PROGRAMMING METHODS

Most of the methods that we have concentrated on are
approximate versions of policy iteration, whereby a se-
quence of policies {ux} is generated and the correspond-
ing cost functions juk are evaluated approximately using
compact representations J(-, 7). Our approximations have
been based on the two architectures described in the pre-
ceding section. The training to obtain the parameter vector
r,, was performed by using forms of Monte Carlo simula-
tion and least squares fit, as well as the TD()) algorithm
of Sutton [9], where A was chosen from the range [0, 1].

Let us provide a more detailed description of the train-
ing methods and also describe their theoretical convergence
properties.

A. Approzimate Policy Iteration Using Monte Carlo Sim-
ulation

One of the principal methods that we tried is an ap-
proximate form of the policy iteration method that uses
approximations J (i,r) to the reduced cost ju of stationary
policies p. The algorithm alternates between approximate
policy evaluation steps and policy improvement steps. The
parameter vector r corresponding to the current policy de-
termines the next policy @ via the equation

(i, a) = argmin E; {g(i,i") + J(@@',r) | i,a,d}, foralli.
(7)

The policy i thus defined can be used to generate by simu-
lation sample trajectories and corresponding sample costs
starting from various initial states. The parameter vector
r (which induces the policy u) remains unchanged as the
sample trajectories of policy 7r are generated. The corre-
sponding sample costs are used in an approximate evalua-
tion of the cost function of & using a least squares scheme.

In particular, suppose that we have a subset of “represen-
tative” reduced states S, and that for each ¢ € S, we have
M (i) samples of the cost jg(z) The mth such sample is
denoted by ¢(i,m). We evaluate the cost of the improved
policy &z by solving the least squares problem

M(i)

mFinZ 316 — eli k)] (8)

ieS k=1

The least squares problem (8) that is used to approx-
imate jg can be solved by a gradient-like method. The
method that we used operates as follows: Given a sample
state trajectory (i1,is,...,in,1") of reduced states gener-
ated using the policy 71 (state 7' is the termination state),
the parameter vector 7 associated with 7 is updated by

N N
ri=T- 'YZ v‘](ikyF) (J(ZkaF) - Z g(im;im+1)>)
k=1 m=k
(9)

where V denotes gradient, and v is a stepsize, which, for
convergence, should diminish as the number of trajectories
used increases. A popular choice is to set v = ¢/m dur-
ing the mth trajectory, where c is a constant. The sum-
mation in the right-hand side above is a sample gradient
corresponding to a term in the least squares summation of
problem (8). The iteration (9) can be used to make several
passes through the data in order to improve the accuracy
of the approximation through convergence of the vector 7
to the least squares solution of problem (8).

B. Approzimate Policy Iteration Using TD(1)

There is a temporal differences implementation of the
gradient iteration (9). The temporal differences dj, are
given by

k=1,...,N,
(10)
and the iteration (9) can be alternatively written [except
for terms that are of order O(v?)], as follows [just add the
equations below using the temporal difference expression
(10) to obtain the iteration (9)]:
Following the state transition (i1,i2), we set

dp = g(ik,ik—i-l) + j(ik+1,7) - j(ik,F),

T =T 4 yd, V.J(i1,7). (11)
Following the state transition (is,i3), we set
7 i=7 +yda (VI (i1,7) + VI (is, 7)), (12)

and so on, until following the state transition (in,T"), we
set

7= T+ydn (VI (i1,7) + VI (i2,7)+ -+ VI (in,7)). (13)

The vector T is updated at each transition and the gradi-
ents V.J (ig,) are evaluated for the value of 7 that prevails
at the time iy is generated. This is the cause of a slight
difference between the “batch” update 7 given by Eq. (9)
and the update process (10)-(13) that is based on temporal

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 105

differences. In particular, 7 in the batch method changes
only at the end of trajectories, while 7 in the temporal dif-
ferences method changes at the end of each state transition.
The difference between the updates produced by the two
methods is proportional to ¥ and is negligible when - is
small.

Note that for both the Monte Carlo/batch and the TD(1)
implementations, the convergence of the training process
to a weight vector 7 that solves the corresponding least
squares problem follows from known results on incremental
gradient methods (see e.g., [10], Section 1.5 or [2], Section
3.2, and the references quoted there). (Some assumptions
on the frequency of sampling of various initial states are
required to state a precise convergence result.)

On the other hand, the sequences {u:} and {J(-,r)}
produced by the approximate policy iteration method
[with both the Monte Carlo/batch implementation and the
TD(1) implementation] generally do not converge. A typ-
ical behavior is that .J,, improves in the initial iterations
and once it reaches the vicinity of the optimal cost function

J(+), it tends to oscillate. Error bounds for the sup-norm of

the error function J(-,7;) —J(-) have been obtained (see [1]
or [2]).

C. Approzimate Policy Iteration Using TD(\)

A variant of TD(1), known as TD(\) (Sutton [9]), pro-
vides an alternative method for policy evaluation. TD(X)
uses a parameter A € [0, 1] in the formulas (10)-(13). It has
the following form:

Fork =1,..., N, following the state transition (i, ig+1),
set
k
Ti=T+ydy Y NV (i, 7). (14)
m=1

The convergence properties of TD(A) have been inves-
tigated in [11], where it is shown that the method typi-
cally converges (with an appropriate choice of stepsize) in
the case of a linear architecture. An example of divergence
was also given for the case of a nonlinear architecture. Fur-
thermore, the limit of the method (when it converges) is
typically not the least squares optimal solution of problem
(8), unless A = 1. In particular, the limit to which TD(X)
converges depends on A, and there are simple examples
where the approximation error J(i,r) — .J,(i) correspond-
ing to TD(A) in the limit progressively becomes worse as A
approaches 0 (see [12]). However, there have been reports
of computational studies that have found the use of A < 1
preferable to the use of A = 1. Basically, as A becomes
smaller, the variance of the “simulation noise” in iteration
(14) also becomes smaller (see [2] for a broader discussion).

D. Optimistic Policy Iteration

In the approximate policy iteration approach discussed
so far, the least squares problem that evaluates the cost
of the improved policy & must be solved completely for
the vector 7. An alternative is to solve this problem ap-
proximately and (optimistically) replace the policy p with
the policy 7@ after a single or a few simulation runs and

corresponding updates of the new weight 7. An extreme
possibility is to replace p with & at the end of each state
transition, as in the next algorithm:

Following the state transition (ig,ig+1), set

k
Fe=T+ydy Yy ATV (i, T),

m=1

(15)

and generate the next transition (ig41,ik+2) by simulation
using the control

(igy1,a) = argmﬂ%n Ei{g(irs1,) + (@', 7) | igg1,a,d}.
(16)

One can view this iteration as the approximate policy it-
eration described earlier that uses only a single iteration
of TD(1) to evaluate the current policy, rather than a
complete policy evaluation. In this sense, the method is
reminiscent of the value iteration method. Similarly, the
variants that replace the policy p with the policy @ after
multiple state transitions and corresponding updates of the
new weight 7 are reminiscent of the modified policy itera-
tion.

The convergence properties of the optimistic policy itera-
tion method are quite complex and are not fully understood
(see [2], Section 6.4 for an extensive discussion.) Optimistic
policy iteration in conjunction with TD()) is reputed to be
one of the most effective NDP methods, and has been used
with success for solving some challenging problems, e.g. the
backgammon work of Tesauro [13].

E. Comparison of the Methods

There are several important questions regarding the per-
formance of the NDP methodology on a given type of prob-
lem. In particular, for the approximate policy iteration
algorithms (regular and optimistic), it is interesting to:
(a) Know whether the methods will converge to some op-
timal cost approximation and policy, or whether they will
oscillate.

(b) Provide estimates of the difference between the cost
function of the final policy obtained from the algorithm and
the optimal cost function. These estimates should involve
the “power” of the architecture (a measure of richness and
approximation capability of the class of functions that can
be represented compactly with the given architecture). The
estimates may also involve A, if a TD(A) algorithm is used.

Regarding question (a), computational experimentation
has demonstrated that the regular approximate policy it-
eration algorithm need not converge to a policy. Typically,
the method makes progress up to a point and then the it-
erates .J(-,ry,) oscillate within a neighborhood of .J(-). For
the optimistic policy iteration, examples and analysis indi-
cate that the method exhibits the same type of oscillatory
behavior as with approximate policy iteration. In particu-
lar, the sequence of policies that is generated is oscillatory
in nature. However, the nature and amplitude of the oscil-
lations may be different in the two methods and may de-
pend on)\, so one may want to try both types of methods
with different values of A\. A peculiar phenomenon here

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 106

is that the sequence rj produced by the optimistic pol-
icy iteration method typically converges to some 7, even
though the generated sequence of policies may oscillate.
This phenomenon is known as chattering, and is explained
in Section 6.4 of [2]. Generally, the optimistic policy iter-
ation seems to require substantially less computation time
to reach a comparable stage of oscillatory behavior to the
one of the regular version. On the other hand, it may be
difficult to select a final policy without a full evaluation
of the several policies involved in the chattering, and this
may negate the faster convergence advantage of optimistic
policy iteration (see the following discussion).

It should be noted here, that even though the NDP pol-
icy iteration methods need not converge to a policy, they
can still be useful algorithms. Once the policies gener-
ated start oscillating, one can terminate the iterations and
extract a policy with relatively good performance (as de-
termined by simulation), out of the sequence of policies
produced thus far by the method. This process of final
policy selection, which we refer to as screening, is much
more time-consuming for optimistic versions of policy it-
eration, because of the large number of policies that are
generated during training, and also because the number of
trajectories per policy that become available while train-
ing is limited. Typically, in order to reliably screen policies
in optimistic policy iteration, one has to generate a large
number of additional trajectories (after training has been
completed), and use them for a more reliable evaluation of
some of the more promising policies that have been gener-
ated while training.

Regarding question (b), there is a theoretical result that
estimates the performance of the regular approximate pol-
icy iteration method. In particular, let us denote by R the
range of the architecture, that is, the class of functions of
the form J(-,7) as the parameter vector r ranges over all
possible values. Let us assume that, for some € > 0, the
architecture of the compact representation is such that the
cost function J,, (-) of every generated policy uy can be ap-
proximated within e by a function J(-,7) from the range
of the architecture (in the maximum norm sense). Then a
result of Bertsekas and Tsitsiklis for discounted problems
with discount factor « ([1], p. 42, or [2], Section 6.2) shows
that, in the limit of the iterations, the supremum of the dif-
ferences J(-,r;) — J(-) is bounded (in the maximum norm
sense) by

2
-y (17)
There is a qualitatively similar result for stochastic short-
est path problems, which applies to our model of the TMD
problem (see [1], Ch. 2, or [2]). Whether a similar re-
sult holds for the optimistic policy iteration is presently
unknown, but considerable insight into the practical be-
havior of optimistic policy iteration has been developed.
This insight suggests that the error bounds associated with
nonoptimistic and optimistic variants are roughly compa-
rable (see [2], Section 6.4).

V. COMPUTATIONAL EXPERIMENTATION

We experimented with several variations of the methods
described in the preceding sections, and in this section we
provide a comparative evaluation of some of these meth-
ods using 24 test cases. All of these cases involved three
asset types, one missile type, and one interceptor type. Our
experimentation was performed using the two approxima-
tion architectures discussed in Section 3, that is, the neural
network /multilayer perceptron architecture, and the linear
architecture that uses feature extraction. After experimen-
tation with several different sets of features, we settled on
the following four:

(1) Missile leakage, defined as max{0, M — pI}, where M
is the number of missiles, I is the number of interceptors,
and p is the probability of destroying a missile that is in-
tercepted by a single interceptor.

(2) One-by-one surviving asset value, defined as the ex-
pected total value of the surviving assets, assuming the
defender defends against every missile launched (one at a
time) by the attacker using a random attack policy.

(3) Number of assets.

(4) Number of interceptors.

We will present results obtained using three different
types of methods:

(a) Approximate policy iteration using Monte-Carlo simu-
lation [cf. Egs. (7)-(9)] and the neural network architecture
(referred to as API-NN).

(b) Approximate policy iteration using Monte-Carlo simu-
lation [cf. Egs. (7)-(9)] and the linear architecture (referred
to as API-FAS).

(c) Optimistic policy iteration [cf. Egs. (15)-(16)] and the
neural network architecture (referred to as OPI-NN).

We have also performed some experimentation using
TD(A) [cf. Eq. (14)], in place of Monte-Carlo simulation,
for different values of A. The results and the performance
(expected cost from the given initial state) of the final pol-
icy obtained were comparable to the corresponding results
and performance obtained using Monte-Carlo simulation.
In particular, the value of A did not seem to have a signif-
icant qualitative effect on the computation.

Associated with each algorithm are several parameter
settings, such as stepsize parameters, scaling factors, num-
bers of hidden units in the multilayer perceptron, etc. Be-
cause each algorithm has many parameter settings, each of
which may take on a variety of values, the total number
of possible setting combinations for each algorithm is quite
large. In addition, we found during preliminary testing that
algorithm performance is not a well-behaved function of the
parameter settings. To find the best parameter settings for
each of the methods in each of the 24 test cases would
require an exhaustive search well exceeding the time and
computational resources available. We therefore turned to
a mixture of insight and preliminary experimentation to
arrive at a combination of settings for each algorithm that
would work robustly in all 24 test cases. In the case of API-
NN, for example, there was little information on how step-
size would affect performance. Several combinations were
tried until we arrived at stepsize parameters that yielded

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 107

good results for most cases. Some of the parameter set-
tings for each algorithm are listed below. When simulat-
ing for training purposes the initial states of the generated
trajectories were chosen randomly from some set that was
“centered” around a fixed nominal initial state.

A. Algorithms Tested
A.1 API-NN

The neural network has 5 inputs, 8 hidden sigmoidal
units, and 1 output. During each test, a total of 50 policy
iterations were performed. The first iteration used a heuris-
tic defense policy (described below). All iterations involved
20 trajectories to assess policy performance and another
100 devoted toward generating sample data with which to
train the neural net. Within each stage of each trajec-
tory, five Monte-Carlo simulations per assignment possibil-
ity were performed to detect the optimal control. Regard-
ing training methods, samples were placed in a buffer and
cycled through randomly ten times during the first itera-
tion. All remaining iterations set the number of cycles to
five.

A.2 OPI-NN

The neural network has 5 inputs, 16 hidden sigmoidal
units, and 1 output node. During each test, a total of
500 policy iterations were performed. In the first itera-
tion, which employed a heuristic defense policy (described
below), 20 trajectories were performed to assess the pol-
icy’ s performance and another 100 were devoted toward
generating sample data with which to train the neural net-
work. The latter value was reduced to 10 during the rest
of the iterations. Within each stage of each trajectory, five
Monte-Carlo simulations per assignment possibility were
performed to detect the optimal control. Regarding train-
ing methods, samples were placed in a buffer and cycled
through randomly ten times during the first iteration. All
remaining iterations set the number of cycles to five.

A3 API-FAS

During each test, a total of 50 policy iterations were per-
formed. The first iteration used a heuristic defense policy
(described below). All iterations involved 20 trajectories
to assess policy performance and another 100 devoted to-
ward generating sample data with which to train the neural
net. Within each stage of each trajectory, five Monte-Carlo
simulations per assignment possibility were performed to
detect the optimal control. Regarding training methods,
samples were placed in a buffer and cycled through ran-
domly ten times during the first iteration. All remaining
iterations set the number of cycles to five.

B. Computational Results

We have compared the performance obtained using the
NDP methodology with:
(a) The optimal performance, which was calculated using
exact DP and the Gauss-Seidel method discussed in Section
2.

TABLE 1
TEST CASES CONDUCTED ON EACH ALGORITHM EXAMINED.

Initial Pkill Launchers
Inventory
|| Case || Int. | TBM || Int. | TBM || Int. | TBM ||
1 60 40 0.9 1.0 6 4
2 60 40 0.9 1.0 6 6
3 60 40 0.9 1.0 4 6
4 60 40 0.8 1.0 6 4
5 60 40 0.8 1.0 6 6
6 60 40 0.8 1.0 4 6
7 40 40 1.0 1.0 6 4
8 40 40 1.0 1.0 6 6
9 40 40 1.0 1.0 4 6
10 40 40 0.9 1.0 6 4
11 40 40 0.9 1.0 6 6
12 40 40 0.9 1.0 4 6
13 40 40 0.8 1.0 6 4
14 40 40 0.8 1.0 6 6
15 40 40 0.8 1.0 4 6
16 40 60 1.0 1.0 6 4
17 40 60 1.0 1.0 6 6
18 40 60 1.0 1.0 4 6
19 40 60 0.9 1.0 6 4
20 40 60 0.9 1.0 6 6
21 40 60 0.9 1.0 4 6
22 40 60 0.8 1.0 6 4
23 40 60 0.8 1.0 6 6
24 40 60 0.8 1.0 4 6

(b) A heuristic defense policy that operates as follows:
(1) Set a parameter called the maximum limit to infinity.
(2) Set the asset category of current interest to the one

that has some assets remaining and has the highest value

per asset.

(3) Assign one interceptor to each missile attacking the
asset category of current interest subject to the physical
constraints of the problem and the maximum limit.

(4) If it exists, set the asset category of current interest
to the next most valuable one remaining, otherwise stop.

(5) Set the maximum limit to the surplus of interceptors
over missiles minus the total number of assets in all asset
categories more valuable than the one of current interest
excluding the most valuable remaining asset category.

(6) Loop back to step 3.

We present results involving a collection of 24 problems.
In all cases, three asset categories are present with values of
1, 2, and 3 and initial inventories of 10, 10, and 10. What
differs among the cases is the capabilities of the attacker
and defender as is listed in Table 1.

Table 2 gives the performance of the final policy obtained
by the three NDP methods, the optimal policy, and the
heuristic policy, starting from the initial state indicated in
Table 1.

Figures 1-3 give more detailed results for test case 21.
In particular, Fig. 1 shows the sequence of performances

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 108

TABLE II
EMPIRICAL PERFORMANCE, IN TERMS OF EXPECTED VALUE OF
REMAINING ASSETS.

Case | API | OPI | API | Heur. | Opt.
NN NN | FAS
1 49.45 | 50.44 | 49.65 | 52.00 | 56.70
2 49.83 | 50.38 | 49.92 | 51.93 | 55.47
3 44.50 | 44.51 | 44.78 | 46.30 | 47.92
4 38.96 | 39.97 | 40.14 | 44.28 | 52.36
5 39.86 | 40.63 | 40.33 | 44.08 | 50.20
6 35.95 | 35.81 | 35.90 | 38.83 | 41.88
7 60.00 | 60.00 | 60.00 | 48.88 | 60.00
8 60.00 | 60.00 | 60.00 | 48.40 | 60.00
9 53.68 | 53.59 | 53.68 | 45.28 | 53.62
10 48.45 | 49.53 | 51.02 | 42.05 | 52.00
11 48.69 | 49.44 | 50.68 | 41.59 | 52.00
12 44.36 | 44.56 | 44.53 | 38.75 | 47.13
13 39.26 | 39.50 | 41.40 | 34.96 | 44.00
14 39.58 | 39.82 | 41.55 | 34.89 | 44.00
15 35.55 | 35.78 | 35.85 | 31.89 | 44.00
16 28.43 | 28.67 | 27.57 | 30.00 | 30.00
17 28.35 | 29.15 | 27.62 | 30.00 | 30.00
18 28.73 | 28.43 | 27.15 | 19.39 | 29.86
19 16.54 | 16.68 | 12.66 | 18.00 | 18.01
20 16.96 | 16.89 | 13.02 | 18.07 | 18.01
21 16.60 | 16.51 | 13.82 | 10.64 | 17.97
22 0.09 | 491 | 3.35 | 6.85 | 6.97
23 427 | 492 | 3.64 | 6.89 | 6.97
24 549 | 5.19 | 4.02 | 3.58 | 6.96

(expected costs from the given initial state, as evaluated
by averaging 20 cost samples) of the policies generated by
API-NN. Figure 2 gives the analogous results for the poli-
cies generated by API-FAS. Figure 3 shows the sequence
of performances of the policies generated by OPI-NN; how-
ever, the performance shown for each policy is very “noisy”
because it has been evaluated by averaging very few cost
samples. Generally, as mentioned earlier, the optimistic
policy iteration method has the drawback of requiring a
substantial post-training phase, whereby the policies ob-
tained during training must be further evaluated using ad-
ditional simulation, in order to delineate or “screen” the
one(s) that are best in some sense. By contrast, nonopti-
mistic policy iteration requires a much less time consuming
post-training phase, because the number of generated poli-
cies is relatively small.

The performance measurements shown for each policy
in Figures 1-3 are very “noisy” because they represent the
average of very few cost samples. Therefore, the true score
of the top policy within a given run cannot be found sim-
ply by inspection. A process we call screening selectively
resamples promising policies uncovered during a particular
test run to get finer estimates of their true expected perfor-
mance. Through screening, the uncertainty in estimating
the best score in a run can be reduced to acceptable levels.
Our screening procedure adopts a multi-level approach. At

FolicyIteralion Fumber

Fig. 1. Performance Sequence from API-NN Applied to Case 21.

Reamelndog ~3p31 Faloa
=

Poliey Beratioa Humber

Fig. 2. Performance Sequence from API-FAS Applied to Case 21.

i i i i
] 100 200 300 400 500
TPoliey eration Humber

Fig. 3. Performance Sequence from OPI-NN Applied to Case 21.

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999 109

Level 5

Level4/

Leve|3/
Level2/
Levell/ \

t: # of top policies from previous level chosen
s: # of additional simulations per pollicy

t=1
s=1600

t=3
s=800

\

t=6
s=400

t=12
s=200

t=25
s=100

Fig. 4. Screening Parameters for API-NN and API-FAS.

Level 8

Level 7 t=3
s=40

Level 6 t=7
s=40

Level 5 t=15
s=40

Leve|4/
LevelS/
Levelz/
Leve|1/

o
5
| —

t: # of top policies from previous level chosen
s: # of additional simulations per pollicy

Fig. 5. Screening Parameters for OPI-NN.

each level, three actions occur. First, the top ¢ performing
policies from the previous level are chosen for further ex-
amination, where t is a user specified parameter. s sample
trajectories are then generated from each of the ¢ policies,
where s is another user specified parameter. The samples
scores from these additional simulations are combined with
the older sample data to arrive at new sample score aver-
ages. In the next level, this new average is used to select
the top policies from the current level’ s group. The num-
ber of top policies examined (¢) along with the number of
simulation runs per policy (s) are listed below in Figures 4
and 5 for each level in the screening processes used on our
test runs. Note that schedules for the API methods are dif-
ferent from the one for OPI-NN due to the smaller number
of policies that need to be screened. While screening usu-
ally does not locate the policy with the best performance,
it does lead to policies whose scores are quite close to the
best. The technique effectively allows us to estimate the
true best performance to within a tight margin of error.

C. Discussion

The objective of this research was to develop a new so-
lution methodology for theater missile defence based on
NDP. The case study of this paper is one aspect of the
research where we have sought to understand NDP from
the perspective of limiting performance. No real attempt
was made to optimize our prototype code. Run-time com-
parisons across algorithms aren’t particularly meaningful.
(Generally, the NDP runs were set to take approximately
between 10 minutes and 2 hours each, with more simula-
tion being required for the nondeterministic cases. On the
other hand, exact computation of the optimal policy could
take as long as 36 hours.)

The 24 case problems in Table 1 were designed to cover
a spectrum of interceptor allocation problems ranging from
“overwhelmed defender” to “overwhelmed attacker,” with
varying degrees of interceptor effectiveness. The problems
are sized so that exact solution by stochastic dynamic pro-
gramming is feasible, providing a useful means of compari-
son for algorithm performance. The case problems are not
strictly ranked in order of difficulty, either in terms of op-
timal expected value or algorithm performance, although
generally the situation is more grim for the defender in
higher case numbers (due to a diminishing ratio of intercep-
tors to missiles). Case problem 21 is one that we identified
as being a rich problem, offering a challenging resource al-
location problem to the defender. It’s also one where there
is a substantial gap between the performance of the opti-
mal policy and the handcrafted heuristic, leaving room for
the NDP methods to make an improvement.

In some cases, the heuristic turned out to be optimal, or
very nearly so. Naturally, the simulation-based methods
don’t stand much chance of beating the heuristic when this
situation prevails. Of course, in more realistic, larger-scale
TMD scenaria, it would impossible to determine in ad-
vance the gap between heuristic and optimal performance.
On the other hand, it is clear from Table 2 that even when
the heuristic/optimal performance gap is nontrivial, the
heuristic policy sometimes beats the policies produced by
NDP. Perhaps one reason for this is that the training pa-
rameters (stepsizes, numbers of simulation runs, etc.) for
the experiment were tuned for case problem 21, which is
qualitatively very different from the earlier cases where the
heuristic tended to win. These parameters were not opti-
mized for each case individually. Our experience is that
NDP algorithm performance is highly dependent on the
tuning of these parameters, even to the extent that it is
possible to “unlearn” the positive aspects of the heuristic
(which served as the initial policy for policy iteration).

VI. CONCLUSIONS

Our experimental results suggest several conclusions and
point to some further questions and extensions of our
methodology:

(a) None of the different architectures we tried seems to
be uniformly superior for approximation of the type of
cost functions that arise in our problem. It would appear
therefore that the linear, feature-based architecture (FAS),

IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS - PART A., VOL. XX, NO. Y, MONTH 1999

which is easier to train, holds an advantage for our problem.
It is plausible that the performance of this architecture may
be improved by introducing some more effective features.
(b) While optimistic and nonoptimistic policy iteration
methods produced comparably performing policies, the
time required for optimistic methods is substantially larger
than for the nonoptimistic methods because of the time-
consuming screening process. On the other hand, the train-
ing time for optimistic policy was generally smaller than
for its nonoptimistic counterpart. Thus, it is plausible that
with a more effective screening process, some significant
improvement in computation time may be obtained.

(c) Our experience suggests that the NDP methodology
scales well with the size of the problem. Thus, experimen-
tation with more complex types of problems is worthwhile.
As the size and complexity of the problem increases, it may
be worth considering techniques for problem decomposition
(see [2] for a discussion of such techniques). In particular,
one may split the TMD problem into opening, middlegame,
and endgame phases, corresponding to different stages of
the battle. One may solve the endgame phase first, and
then use this solution as a terminal condition for the mid-
dlegame stage. Similarly, after solving the middlegame,
one can use this solution as a terminal condition for the
opening stage.

(d) For large problems, the minimization in the right-hand
side of Bellman’s equation over all defense vectors [cf. Eq.
(2)] may be very time consuming. It is thus worth con-
sidering approximate ways of doing this minimization. In
particular, Section 6.1 of [2] describes ways to trade-off a
reduced control space complexity with an increased state
space complexity. These ideas appear to be well-suited for
the TMD context.

(e) Finally, there are several effective parallelization possi-
bilities in NDP, which are relevant to our context. These
include the generation of trajectories by simulation to use
either for training architectures or for screening of poli-
cies, and the parallelization of various training algorithms.
These possibilities may hold the key to addressing very
large problems.

REFERENCES

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control:
Vol. 2, Athena Scientific, Belmont, MA, 1995.

[2] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Program-
ming, Athena Scientific, Belmont, MA, 1996.

[3] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT Press, Cambridge, MA, 1998.

[4] A. G. Barto, S. J. Bradtke, and S. P. Singh, “Learning to Act
using Real-Time Dynamic Programming,” J. Artificial Intelli-
gence, 1995.

[5] D. P. Bertsekas and J. N. Tsitsiklis,
Computation: Numerical Methods,
Cliffs, NJ, 1989.

[6] D. P. Bertsekas and J. N. Tsitsiklis, “Analysis of Stochastic
Shortest Path Problems,” Mathematics of Operations Research,
vol. 16, no. 3, pp. 580-595, 1991.

[7] M. L. Puterman, Markov Decision Processes: Discrete Stochas-
tic Dynamic Programming, John Wiley & Sons, Inc., New York,
1994.

[8] R.J. Williams and L. C. Baird, “Analysis of Some Incremental
Variants of Policy Iteration: First Steps Toward Understanding
Actor-Critic Learning Systems,” Report NU-CCS-93-11, Col-

Parallel and Distributed
Prentice-Hall, Englewood

[10]

(1]

[12]

[13]

110

lege of Computer Science, Northeastern University, Boston, MA,
1993.

R. S. Sutton, “Learning to Predict by the Methods of Temporal
Differences,” Machine Learning, vol. 3, pp. 9-44, 1994.

D. P. Bertsekas, Nonlinear Programming, Athena Scientific,
Belmont, MA, 1995.

J. N. Tsitsiklis and B. V. Roy, “Analysis of temporal-difference
learning with function approximation,” Tech. Rep. LIDS-P-
2322, Lab. for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, MA, 1996.

D. P. Bertsekas, “A Counterexample to Temporal Differences
Learning,” Neural Computation, vol. 7, pp. 270-279, 1995.

G. J. Tesauro, “Practical Issues in Temporal Differences Learn-
ing,” Machine Learning, vol. 8, pp. 257-277, 1992.

Dimitri P. Bertsekas Blah, blah, ...

Mark L. Homer Blah, blah, ...

David A. Logan Blah, blah, ...

Stephen D. Patek Blah, blah, ...

Nils R. Sandell Blah, blah, ...

