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Abstract We consider large-scale linear inverse problems with a simulation-based
algorithm that approximates the solution within a low-dimensional subspace. The
algorithm uses Tikhonov regularization, regression, and low-dimensional linear
algebra calculations and storage. For sampling efficiency, we implement importance
sampling schemes, specially tailored to the structure of inverse problems. We
emphasize various alternative methods for approximating the optimal sampling
distribution and we demonstrate their impact on the reduction of simulation noise.
The performance of our algorithm is tested on a practical inverse problem arising
from Fredholm integral equations of the first kind.

1 Introduction

Many problems in computational science and engineering are characterized by
experimental design, measurement acquisition, and parameter estimation or predic-
tion. This process involves mathematical modeling of the physical systems pertinent
to the observations, as well as estimation of unknown model parameters from the
acquired measurements by formulating and solving an inverse problem. Quite often
solving the inverse problem subject to measurement errors and model uncertainties
becomes computationally prohibitive, particularly for high-dimensional parameter
spaces and precise forward models [5].

In this paper we consider ill-posed inverse problems that upon discretization yield
large systems of linear equations. Such problems formulated as Fredholm integral
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equations of the first kind typically arise in several areas of engineering and natural
science including image processing, geophysical prospecting and wave scattering
[11]. The main characteristic of these problems is that the integral operator that
maps the model parameters to the observed data does not have a continuous inverse
and thus a small amount of noise in the data may trigger an arbitrarily large variation
in the estimated parameters. This inherent property of ill-posed problems is reflected
also in the discrete problem setting causing the coefficients matrix of the respective
linear system to be ill-conditioned or singular. Consider for example the integral
equation

b.y/ D
Z x2

x1

dx ˛.x; y/f .x/ C !.y/

to which we associate, through a numerical integration rule, the linear model

b D Af C ! (1)

where A 2 <m"n is a dense ill-conditioned matrix, b 2 <m is the data vector,
f 2 <n is the discretization of the unknown function and ! 2 <m is some additive
noise. In order to enforce stability in estimating f from noisy data b one may apply
Tikhonov regularization, expressed as a penalized least-squares problem

min
f 2<n

kb ! Af k2" C #kf k2; (2)

where " 2 <m is a known probability distribution with positive components and
# 2 < is a positive regularization parameter. This problem is shown to have a
unique regularized solution ft , obtained by solving the linear system

.A0ZAC #I/ft D A0Zb;

where Z 2 <m"m is the diagonal matrix based on ", I is the identity matrix and
prime denotes transposition. The value of # is chosen such that .A0ZA C #I/
is full rank and well-conditioned for inversion [2]. When n or m is very large,
computing ft becomes challenging, hence we propose to approximate ft within
a low-dimensional subspace

S D
˚
˚r j r 2 <s

!
;

where ˚ 2 <n"s is a matrix whose columns represent the s discrete basis functions
spanning S . The type of basis functions can be arbitrary but we assume throughout
that ˚ has rank s. Our proposed methodology involves subspace approximation,
Monte-Carlo simulation, regression, and most significantly, only low-dimensional
vector operations, e.g. of order s. Let ˘ W <n 7! S be an orthogonal projection
operator. By decomposing f to its orthogonal components, f D ˘f C .I !˘/f ,
we have

b D A
"
˘f C .I !˘/f

#
C ! D A˘f C $; (3)
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where the error term $ D A.I ! ˘/f C ! encompasses the impact of subspace
approximation and the additive noise. By representing ˘f as ˚r , and applying a
Galerkin projection to S weighted by ", we obtain

c D Gr C z (4)

where
c D ˚ 0A0Zb; G D ˚ 0A0ZA˚ z D ˚ 0A0Z$:

The new projected operatorG 2 <s"s is now of moderate dimension but is typically
still ill-conditioned and may not be invertible. Suppose that instead of evaluating G
and c by performing the high-dimensional matrix products, we use estimators OG
and Oc obtained by stochastic simulation. In such case we formulate the linear model

Oc D OGr C w; where w D z C . Oc ! c/C .G ! OG/r: (5)

Then an approximate solution r# can be computed from the regularized regression

min
r2<s

k OGr ! Ock2˙!1 C #kr ! Nrk2; (6)

where ˙ 2 <m"m is the noise covariance matrix of w and Nr is an initial guess on
the solution. With minimal loss of generality we assume that ! and $ are random
variables with zero mean. The simulation-based regularized problem (6) admits the
unique solution

Or D . OG0˙$1 OG C #I/$1. OG0˙$1 Oc C #Nr/; (7)

although, because w is a function of r (cf. (5)), the noise covariance˙ is a function
of the required solution. To overcome this problem one option is to evaluate a
constant covariance based on a nominal r , such as the prior for example, yielding
˙ D˙.Nr/. Another possibility is a form of iterative regularized regression, whereby
we iteratively estimate the optimal solution using an intermediate correction of
˙.r/ as

OrkC1 D
" OG0˙.Ork/$1 OG C #I

#$1" OG0˙.Ork/$1 Oc C #Nr
#
; (8)

for k " 0 and r0 D Nr . The iteration was shown to converge locally to a fixed point
of (8), provided that a matrix Euclidean norm of˙.r/ is sufficiently small [19]. The
estimation of OG, Oc and ˙.Ork/ using stochastic simulation is addressed next.

2 Approximation Based on Simulation and Regression

Our approach is based on stochastic simulation. We note that there is a large body of
work on the solution of linear systems using Monte Carlo methods, starting with a
suggestion by von Neumann and Ulam, as recounted by Forsythe and Leibler [10],
(see also Curtiss [6] and the survey by Halton [12]). For a thorough review of the
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methods including some important recent developments we refer the readers to the
books by Asmussen et al. [1] and Lemieux [15].

Our approach differs from the works just mentioned in that it involves not
only simulation, but also approximation of the solution within a low-dimensional
subspace in the spirit of Galerkin approximation (see e.g. [5]). We also like to draw
the distinction from Markov chain Monte Carlo methods used in the context of linear
Bayesian estimation, where the a posteriori probability distribution is sampled
using, for example, the Metropolis-Hastings or the Gibbs algorithms [14]. Our
work is related to the approximate dynamic programming methodology that aims
to solve forms of Bellman’s equation of very large dimension by using simulation
(see the books by Bertsekas and Tsitsiklis [3], and by Sutton and Barto [18]).
This methodology has recently been extended to general square systems of linear
equations and regression problems in a paper by Bertsekas and Yu [4], which served
as a starting point for the present paper.

The use of simulation for linear algebra operations has also been adopted by
Drineas et al. in a series of papers [7–9] in the context of randomized algorithms
for massive dataset analysis. The authors propose sampling the entries of large
matrices, in order to construct new sparser or smaller matrices that behave like the
high-dimensional ones. In their analysis they consider products of several matrices
where they randomly take samples according to an importance sampling distribution
that relates to the Euclidean norms of the columns. In their work they make
no assumptions on the matrices, as opposed to our methodology, which applies
primarily to matrices of smooth structure like those arising from discretization of
Fredholm kernels.

2.1 Markov Chain Monte Carlo Framework

In [4] the authors suggest generating a long finite sequence of indices fi0; : : : ; itg
according to a nominal probability distribution % and two sequences of transitions
f.i0; j0/; : : : ; .it ; jt /g and f.i0; h0/; : : : ; .it ; ht /g according to some transition proba-
bilities &ij and &ih respectively. This yields estimates of the low-dimensionalG and
c as

OG D 1

t C 1

tX

pD0

"ipaipjpaiphp
%ip &ipjp&iphp

'jp'0
hp
; Oc D 1

t C 1

tX

pD0

"ipaipjpbip
%ip&ipjp

'jp ; (9)

where aij denotes the .i; j /th component ofA, and '0
j is the j th row of˚ , assuming

that &ij > 0whenever aij > 0. Apart from the estimators one obtains a sample-based
estimator of the covariance given by

˙. Ork/ D 1

t C 1

tX

pD0
wpw0

p D 1

t C 1

tX

pD0

"
.Gp ! OG/ Ork C . Oc!cp/

#"
.Gp ! OG/ Ork C . Oc!cp/

#0
;

(10)
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where each wp can be viewed as a sample of w, while Gp and cp denote the
corresponding sample terms averaged to yield OG and Oc. For further discussion and
a derivation of a confidence region for Ork obtained by introducing (9) and (10) into
(8) we refer to [19]. For the needs of this work, we borrow an important result from
[4], in the form of the following theorem.

Theorem 1. As t ! 1 we have OG ! G, and Oc ! c with probability 1, where OG
and Oc are given by (9).

Proof. The proof is in [4].

Remark 1. Under the conditions of Theorem 1, if the eigenvalues of the sample-
based covariance ˙.Ork/ are bounded below by a positive scalar, then iteration
(8) yields Ork ! r# with probability 1, where ˚r# is the target high-dimensional
regularized solution.

2.2 Variance Reduction by Importance Sampling

The central idea of our simulation method is to evaluate G and c as weighted
averages of samples generated by a probabilistic mechanism. In this context, a
critical issue is the reduction of the variance of the estimation errors OG ! G and
Oc ! c. To achieve this goal we use importance sampling, which can be shown to
yield estimators of minimal variance when an optimal probability distribution is
used for generating the samples [12]. Let˝ be a discrete sample space, ( W ˝ 7! <
be a function and fi0; i1; : : : ; it g be the sequence of samples generated from ˝
independently according to distribution %. Then consider estimating the large sum
u D P

i2˝ (i as

Ou D 1

t C 1

tX

pD0

(ip
%ip
;

and designing % so that the variance of Ou is minimized. If ( is nonnegative, the
variance is

varfOug D u2

t C 1

$X

!2˝

"
(.!/=u

#2

%.!/
! 1

%
;

from where it is now apparent that the choice %# D (u$1 is the optimal zero-
variance sampling distribution. Note that the non-negativity of ( is not critical, for
if ( admits negative values, it is trivial to decompose as ( D (C ! ($ so that both
(C and ($ are positive functions. In such a situation Ou is computed by estimating
separately uC D P

i2˝ (C
i and u$ D P

i2˝ ($
i . As is well known, calculating the

optimal %# is impractical since it requires knowledge of the unknown sum. However,
designing a computationally tractable approximation O% that nearly minimizes theL1
norm k% !(u$1k1 can be shown to reduce the variance of Ou. In the remaining part of
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this section we discuss some schemes for designing sampling distributions tailored
to the data of the linear ill-posed inverse problems, so to achieve variance reduction.

2.2.1 Designing Importance Sampling Distributions with Polynomial
Bases

We focus on estimating the .l; q/th entry of the symmetric, s # s matrix G and the
l th element of vector c independently in an element by element fashion. Noticing
that these can be expressed as high-dimensional sums (of dimensions n3 and n2

respectively)

Glq D '0
lA

0ZA'q D
nX

iD1
"i

& nX

jD1
aij'jl

'& nX

hD1
aih'hq

'
; (11)

cl D '0
lA

0Zb D
nX

iD1
"i

& nX

jD1
aij'jl

'
bi : (12)

One may consider a sequence of independent uniformly distributed sample indices
f.ip; jp; hp/gtpD0 and f.ip; jp/gtpD0 from the spaces Œ1; n)3 and Œ1; n)2, and compute
the Monte Carlo estimators

OGlq D 1

t C 1

tX

pD0

"ipaipjpaiphp'jpl'hpq

n$3 ; Ocl D 1

t C 1

tX

pD0

"ipaipjp'jplbip
n$2 :

Alternatively, one may design an importance sampling distribution customized for
Glq as in (11).1 In this case let the sample space be ˝ D Œ1; n)3 and consider the
function

(.i; j; h/ D "iaijaih'jl'hq;

assuming for simplicity that (.i; j; h/ is nonnegative. The aim here is to construct,
in a computationally efficient manner, a sampling distribution O% that approximates
the optimal

%#
Glq
.i; j; h/ D (.i; j; h/

Glq
; where Glq D

nX

i;j;hD1
(.i; j; h/ D

nX

iD1
"ikai'lk1 kai'qk1

and belongs to some family of relatively simple distribution functions. In the above
ai is the i th row ofA and kai'lk1 is theL1 norm of the Hadamard product of ai and
'l . As it now becomes apparent, %# is not only high-dimensional and impractical

1Unless otherwise stated, from now on we deal exclusively withGlq . A simplified analysis applies
to cl .
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to compute, store and sample, but it also requires n-dimensional vector products
and sums. Using Bayes’ theorem and the conditional probability law the optimal
distribution can be reformulated in a product form as

%#.i; j; h/ D %.hji; j /%.i; j / D %.hji; j /%.j ji/%.i/; (13)

where the marginal distributions are %.i; j / D Pn
hD1 %.i; j; h/ and %.i/ DPn

jD1 %.i; j /. We propose to approximate %# by approximating the constituent
sampling distributions

%.i/ D (hj .i/

Glq
; %.j ji/ D (h.i jj /Pn

iD1 (h.i; j /
; %.hji; j / D (.i; j; h/Pn

i;jD1 (.i; j; h/
;

(14)
corresponding to the functions

(hj .i/ D
nX

jD1
(h.i; j /; (h.i; j / D

nX

hD1
(.i; j; h/; (.i; j; h/ D "iaijaih'jl'hq:

(15)
To accomplish this assume a low-dimensional discretization of the sampling space,
for example a uniform cubical grid. For instance let ˝D˝k # ˝k # ˝k, where
˝k D [K

iD1*i , and *1; : : : ; *K are K connected disjoint subsets of Œ1; n).
Moreover, let  i W *i ! < be a polynomial function with support over *i and
let I*i denote a small nonempty set of points in *i , for i D 1; : : : ; K . Then one can
approximate ( by Q( using  i and samples of ( at I*i . If  i is a constant function
then I*i requires only one point, whereas if it is linear then two sample points are
needed in each *i and so on with higher degree polynomials. The advantage of
using polynomial bases is that the approximate functions in (15) can be summed
up to yield the probability distributions in (14) without element-wise summation,
since the sums of discrete polynomial functions can be evaluated analytically. It
is now easy to see that as the grid dimension grows, i.e. K! n, then Q( ! (, so
that the approximate % will converge to the optimum %#, albeit with an increase
of computational complexity. The suitability of the proposed importance sampling
scheme relies predominantly on the ease of forming Q( using a relatively small K
so that kQ( ! (k1 is small and therefore so is kO% ! %#k1. This is fundamentally due
to the smooth structure of (, a property that stems from the smooth structure of the
model matrix A in (1) (resp. the Fourier series of the Fredholm kernel ˛ W f 7! b),
which always holds true in linear ill-posed inverse problems [11]. Once OG and Oc are
estimated, the low-dimensional solution can be computed by (7) or (8). Moreover,
since the components of G and c are estimated independently, one may view the
samples of G as vectors in <s2 that are independent of the samples of c. Thus we
can estimate the simulation error covariance by
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˙.Or/ D ˙c C

2

6664

Or 0 0 : : : 0

0 Or 0 : : : 0
: : :

: : :
: : :

: : :

0 : : : 0 Or 0

3

7775
˙G

2

6664

Or 0 : : : 0

0 Or : : : 0
: : :

: : :
: : :

: : :

0 : : : 0 Or

3

7775
; (16)

where ˙c 2 <s"s is the sample-based covariance of c and ˙G 2 <s2"s2 is the
sample-based covariance of G, which is given by

˙G D

2

6664

cov. Og0
1; Og0

1/ cov. Og0
1; Og0

2/ : : : cov. Og0
1; Og0

s/

cov. Og0
2; Og0

1/ cov. Og0
2; Og0

2/ : : : cov. Og0
2; Og0

s/
: : :

: : : : : :
: : :

cov. Og0
s ; Og0

1/ cov. Og0
s ; Og0

2/ : : : cov. Og0
s ; Og0

s/

3

7775
;

where cov. Og0
i ; Og0

j / is the sample covariance between the i th and j th rows of OG.

2.2.2 The Simulation Algorithm

The resulting importance sampling (IS) algorithm for estimatingGlq is summarized
as follows:

1. Divide the sampling space Œ1; n) into K disjoint intervals *1; : : : ; *K .
2. Fix d C 1 points I*i in *i , i D 1; : : : ; K, with d " 0.
3. Choose the bases of d th order polynomial functions  i W *i 7! <,
i D 1; : : : ; K .

4. Form the weights matrix N 2 <.dC1/K".dC1/K".dC1/K by evaluating (.i; j; h/
at I*i # I*j # I*h , for i; j; h D 1; : : : ; K .

5. Sum N over the h-dimension to get Nh 2 <.dC1/K".dC1/K .
6. Sum Nh over the j -dimension to get Nhj 2 <.dC1/K .
7. For p D 0; : : : ; t :

a. Evaluate the sum QD P.dC1/K
iD1 jNhj .i/j, construct distribution q.i/D

jNhj .i/j=Q and take sample si from [K
iD1I*i according to distribution q.

b. Let I*l be the set containing si , construct the distribution ql over *l by
interpolating with the bases  . Sample ip from *l according to distribution
ql with probability Pip .

c. Evaluate the sum QD P.dC1/K
jD1 jNh.si ; j /j, and construct q.j /D jNh

.si ; j /j=Q and take sample sj from [K
iD1I*i according to q.

d. Let I*m be the set containing sj , and construct distribution qm over *m by
interpolating. Sample jp from *m according to qm with probability Pjp .

e. Evaluate the sum QD P.dC1/K
hD1 jN.si ; sj ; h/j, and construct q.h/D jN.si ,

sj ; h/j=Q and take sample sh from [K
iD1I*i according to q.
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f. Let I*n be the set containing sh, and construct distribution qn over *n by
interpolating. Sample hp from *n according to qn with probability Php .

g. Register sample .ip; jp; hp/with probability %.ip; jp; hp/ D PipPjpPhp and
evaluate (p D "ipaipjpaiphp'jpl'hpq .

h. Evaluate pth sample mean:

i. OGlq D (p=%.ip; jp; hp/ if p D 0.
ii. OGlq D p

pC1 OGlq C 1
pC1 (p=%.ip; jp; hp/ if p > 0.

8. End sampling.
9. Evaluate t-sample variance var. OGlq/.

10. Evaluate the total error covariance using (16).
11. Compute the solution approximation from (7) or (8).

3 Discrete Linear Inverse Problems

Linear ill-posed inverse problems typically occur in applications of image pro-
cessing, emission tomography, wave diffraction, palaeo-climatology, and heat
transfer, and are usually expressed in Fredholm integral equations. Discretizing
these equations yields linear systems with ill-conditioned coefficient matrices.
This is an inherent characteristic of ill-posed problems and has been analyzed in
various publications, including [11] and [2] which emphasize its implications to
the existence, uniqueness and stability of the solution. In particular, the condition
number of the coefficient matrix obtained by discretization can be shown to increase
with the dimension n, sometimes at an exponential rate in which case the problem
is said to be heavily ill-posed.

In our development we have assumed the structure of the matrix A to be smooth,
implying that neighboring entries have almost identical values. This property is
due to the spectral properties of the Fredholm operators in consideration. Figure 1
illustrates this effect on a moderately sized discretized kernelA2 <n"n with nD 103

for a problem arising from geophysics. A large-scale numerical study based on this
model problem is investigated next.

3.1 Test Example: Gravitational Prospecting

Gravitational prospecting is a problem typically encountered in hydrocarbon explo-
ration. Suppose a mass of density f .+/ is distributed on a circular ringOi of radius
ri centered at the origin, where 0 $ + $ 2, . Allow also a concentric circle Oo
of radius ro, with ro % ri lying on the same plane, where the centrally directed
component of gravitational force b.'/ is measured, for 0 $ ' $ 2, . According to
the law of cosines the squared distance between a mass element situated onOi at an
angle + and a point of Oo at ' is
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Fig. 1 Contour plots of the elements of A (left) for a smaller scale problem with n D 103 and its
gradients in row index i (middle) and column index j (right) to indicate the smooth structure of
the model matrix as manifested by the flat regions in the gradient plots. At dimension n D 103 the
condition number of the A is 2:2" 1020.

&2t D r2o C r2i ! 2rori cos.+ ! '/;

while the angle - formed between the normal component of the gravity force at '
and the line connecting that point to the gravitating element f .+/d+ of the inner
ring satisfies

&t cos.-/ D ro ! ri cos.+ ! '/:

In effect, the overall gravitational force exerted at the measuring angle ' is

b.'/ D .

Z 2,

0

d+
1

2&2t
cos.-/f .+/;

where . is the universal gravity constant. Taking for simplicity . D 1, ro D 1 and
ri D 0:5 yields the Fredholm equation

b.'/ D
Z 2,

0

d+ ˛.'; +/ f .+/; 0 $ ' $ 2,;

with kernel

˛.'; +/ D 2 ! cos.' ! +/
"
5 ! 4 cos.' ! +/

#3=2 :

The integral equation is discretized using a midpoint quadrature rule on a uni-
form grid with nD 106 points f+i ; 'j gni;j D 1 spanning over Œ0; 2,) # Œ0; 2,).
To approximate the solution we choose a subspace spanned by an orthogonal
basis of s D 102 piecewise constant functions, and consider reconstructing a
subspace approximation of the regularized density f given data b 2 <n. To test
the performance of the proposed scheme in reducing the simulation noise we run
the Algorithm 2.2.2 for various t and K , each time using piecewise constant, linear
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Fig. 2 Reduction in simulation noise Tr.˙G/ C Tr.˙c/ with the number of acquired samples.
From the left the cases with K D 20; 100 and 500 intervals, assuming s D 102 and n D 106.
In each graph the solid line is with the naive Monte Carlo sampling (uniform distribution), the
dashed for a piecewise constant approximation of the optimum IS distribution %", the dotted for a
piecewise linear and the dash-dotted for a quadratic approximation of the optimum IS distribution.
Notice that the simulation error reduces in increasing K and in implementing a higher-order
approximation of the optimal IS distribution. In all cases the proposed scheme outperforms the
naive Monte Carlo sampling in reducing the variance of the estimators.

and quadratic basis functions for approximating the optimal importance sampling
distribution. The graphs of Fig. 2 illustrate the reduction of the simulation noise,
quantified in terms of the sum of the traces of the two sample-based covariances as
it is affected by t and K . Notice that Tr.˙G/C Tr.˙c/ reduces with increasing the
number of samples and/or the degree of the polynomials  used in approximating
the optimal distribution. The corresponding graphs obtained with uniform sampling
are plotted for comparison in order to show the superiority of the importance
sampling scheme.

In our numerical tests we choose not to add any measurement noise, i.e. ! D 0.
When solving ill-posed inverse problems with synthetic data the noise free case
is considered as a “contrived” example as it allows for processing unrealistically
precise data, (see for example Chap. 5 in [14]). On the other hand, there is a large
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Fig. 3 Left, the true image f ", its projection ˘f " in S spanned by s D 102 piecewise constant
orthogonal basis functions, and the result of the simulated approximation ˚ Or . Angle + 2 Œ0; 2,) is
discretized in n D 106 elements. To the right a more detailed view of the results for 2 % + % 4:5.
Notice that the curves of ˘f " and ˚ Or are almost overlapping.

body of literature on how to adjust the regularization parameter # in (6) so as to
counteract the impact of noise and stabilize the solution. An extensive survey of
such methods is presented in Chap. 5 of [13]. In particular, notice that the problem
under consideration involves a square linear system of manageable dimension,
where the data vector Oc and coefficients matrix OG include simulation errors for
which we can estimate their element-wise variance based on samples. Moreover,
OG is symmetric and ill-conditioned and the overall noise includes the subspace

approximation error and any additive noise contained in the original data b. In this
context, to choose # we adopt the discrete Picard condition [17], which relies on
the singular value decomposition of the low-dimensional˙.Ork/$1=2 OG, implemented
after each iteration (8).

In this study we focus on demonstrating the performance of the Algorithm 2.2.2
in estimating G and c with reduced simulation error. In particular, our claim is that
for ! D 0 and a sufficiently small # > 0, as the number of samples increases
the recursive formula (7) will generate a solution Or such that ˚ Or ! ˚r#. In
turn, this relies on reducing the simulation noise as illustrated by the graphs of
Fig. 2. Moreover, notice that in realistic experimental conditions, physical noise and
measurement precision are likely to result in k!k & Tr.˙G/C Tr.˙c/. In this case
the covariance of the overall noise in (5) will be predominantly determined by that
of !.

The results presented in Fig. 3 have been obtained after implementing Algo-
rithm 2.2.2 with t D 2 # 103, K D 102, n D 106, s D 102,  piecewise
linear, and # D 10$7. The figure shows for comparison the true solution f # used
to compute the data b, its subspace projection ˘f # and subspace approximation
˚ Or as computed by introducing OG, Oc, ˙G , and ˙c into (8) after only a single
iteration. The similarity between ˘f # and ˚ Or is indicative of the small variance
in the estimated OG and Oc. The total computation time, almost exclusively dissipated
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in estimating the upper triangular part of OG (5,150 entries) and the 102 entries of c
was about 8.5 h on a 2.66 GHz quad processor computer with 4 GB RAM running
Matlab [16].

4 Special Case: Underdetermined Problems

Quite often, practical limitations impose a limit to the amount of data that can
realistically be measured to estimate a certain set of parameters. By contrast, there
is always a quest for increasing the amount of information extracted from an inverse
solution, e.g. in terms of its degrees of freedom or resolution. This mismatch in
the dimensions of the parameter and data spaces evidently yields underdetermined
inverse problems. These problems are addressed in the context of the minimum-
norm Backus-Gilbert regularization method [2].

In dealing with severely underdetermined problems, one can implement our
algorithm to estimate the components of the high-dimensional solution directly,
without the need for subspace approximation. Assuming now that A 2 <s"n where
s is reasonably small and n is very large by comparison, we may adapt the preceding
methodology to estimate ft from

.A0ZAC #I/ft D A0Zb: (17)

Using the matrix inversion lemma [14], the solution can also be expressed as

ft D A0.AA0 C #Z$1/$1b;

which by contrast to (17) requires only the inversion of a low-dimensional matrix.
Using this lemma, it is also easy to prove that if .A0ZA C #I/ is well conditioned
then so is .AA0 C #Z$1/. In such a case the s-dimensional matrix we seek to
estimate by simulation is GDAA0, whose element Glq we express as a finite sum
of functions

Glq D
nX

i;jD1
(.i; j / D

nX

i;jD1
ali aqj :

To obtain an approximation to the optimal importance sampling distribution for (
we work similar to the algorithm described above, essentially dividing the sampling
space Œ1; n) into K disjoint intervals *1; : : : ; *K , where we take a number of
arbitrary points I*i and interpolate d -degree polynomial functions in each *i . After
t samples, the importance sampling yields the estimator given by

OGlq D 1

t C 1

tX

pD0

alipaqip
%.ip; jp/

; l; q D 1; : : : ; s;
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and its t-sample variance var. OGlq/. Consequently the i th element of the solution can
be computed by

fi D a0
i . OG C #Q$1/$1b; (18)

where ai 2 <s is the i th column of A and Q is the noise covariance encompassing
the additive noise and the simulation error. Notice that since we do not use subspace
approximation, the approximation error is essentially zero.

5 Conclusions and Future Directions

In this paper, we have considered the approximate solution of linear inverse
problems within a low-dimensional subspace spanned by a given set of basis
functions. We have proposed a simulation-based regularized regression approach
that involves importance sampling and low-dimensional computation, and that
relies on designing sampling distributions customized to the model matrices and
basis functions spanning the subspace. We have elaborated on a few approaches
for designing near-optimal sampling distributions, which exploit the continuous
structure of the underlying models. The performance of our method has been
evaluated with a number of numerical tests using a classical inverse problem. The
computation experiments demonstrate an adequate reduction of simulation error
after a relatively small number of samples and an attendant improvement in quality
of the obtained approximate solution.

A central characteristic of our methodology is the use of low-dimensional
calculations in solving high-dimensional problems. Two important approximation
issues arise within this context: first the solution of the problem should admit a
reasonably accurate representation in terms of a relatively small number of basis
functions, and second, the problem should possess a reasonably continuous/smooth
structure so that effective importance sampling distributions can be designed with
relatively small effort. In our computational experiments, simple piecewise poly-
nomial approximations have proved adequate, but other more efficient alternatives
may be possible. We finally note that the use of regularized regression based on a
sample covariance obtained as a byproduct of the simulation was another critical
element for the success of our methodology with nearly singular problems.
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