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ABSTRACT

The problem of optimal feedback control of uncertain discrete-time dynamic
systems is considered, where the uncertain quantities do not have a stochas-
tic description but instead they are known to belong to given sets. The prob-
lem is converted to a sequential minimax problem and dynamic programming
is suggested as a general method for its solution. The notion of a suffi-
ciently info rmative function, which parallels the notion of a sufficient sta-
tistic of stochastic optimal control, is introduced, and the possible decom-

position of the optimal controller into an estimator and an actuator is
demonstrated.

Some special cases involving a linear system aTe further examined. A
problem involving a convex cost functional and perfect state information

for the controller is considered in detail. Particular attention is given

to a special case, the problem of reachability of a target tube, and an ellip-
soidal approximation algo rithm is obtained which leads to linear control
laws. State estimation problems are also examined, and some algorithms
are derived which offer distinct advantages over existing estimation schemes.
These algorithms are subsequently used in the solution of some reachability
problems with imperfect state information for the controller.
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CHAPTER 1

INTRODUCTION

1. General Remarks

The problem of optimal control of uncertain systems has tradi-
tionally been treated in a stochastic framework in the sence that the un-

certain quantities are modeled as random vectors and random processes
with statistical properties which are assumed known. The controller
selected is the one for which the expected value of a suitable cost func-
tional is minimized. In this framework some mathematically elegant
results have been obtained, notable cases being the separation thenré"rn
for a linear system,linear measurements and quadratic cost functiunal!Jl}’
(G1), (Sul) and the separation theorem for a linear system, linear rn%a-
surements, Gaussian disturbances and monquadratic® cost functicnali':StlL
(Wio3) Specification of the a priori statistics of all the uncertain quantities
involved must be made in any such problem. In many practical situations
however these statistics are not available, and cannot be obtained either
because of physical constraints or due to prohibitive cost. In such cases
however the designer may have information of less detailed structure con-
cerning the uncertain quantities, such as for iﬁstan-::e bounds on the mag-
nitude or energy of the uncertain guantities. In other words the designer
may be given a set where the uncertain quantities are km::jwn to belong.

A possible design approach under these circumstances wc;uld then be to

select the controller from some admissible class which performs best

when the uncertain quantities assume their worst poseible values within

-6-
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the given set. In its simplest form the corresponding decision problem

is described by a triplet (U,Q.7h where U is the set of controllers under

consideration, Q is the set in which the uncertain quantities are known

to belong and JTUxQ — [-co, +o] is a given cost function. The objective

is to find

T = inf sup J{u,q) (1.1)

uelU qeQd

and, if it exists, the minimizing controller u in U. :

Problems of the general form of equation (1.1) can also arise in

the context of other situations, In some cases the nature of the problem

calls for a pessimistic or worst case approach such as when 5pecifie£1

tolerances must be met with certainty. For example in a ¢hemical process

contrel problem it may be necessary to guarantee that the state will stay in

a specified region of the state space, or equivalently avoid a critical region

of the state space where process instability may occur. In other cases a

worst case analysis is performed in order to provide a comparison with
the performance of a design adopted on the basis of other considerations.
E}ptimal uncertain contrel problems that can be reduced to the form

of equation (1.1) are referred to as Minimax Control Problemns and are

the object of study of this thesis.

The modelling of uncertainties as quantities that are unknown except
that they belong to prescribed sets has received attention before, dating to
Wald's statistical decision thenry.{wal) In the context of Wald's theory
the decision problem {U,Q,J) mentioned earlier-is viewe;ﬂ as a game- against
Nature and a saddle point of this game In {possibly) randomized strategies

is sought. Whenevera saddle point in pure strategies exists, i.e., whenever

G G e S S
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inf sup J(u,q) = sup inf J{u, q) T )

welU qeQ) qeQ uelU
Wald's apprna-.'ch is equivalent to the worst case apﬁroach. When however
the eéuality (1.2) does not hold Wald's theory recommends randomization
in the spaces of strategies U and O, and the worst case viewpoint is lost.
(Swl)

Wald's theory was applied by Sworder to discrete-time control systems

with limited success since randomization within the admissible set of con-
trollers was not considered appealing fr_orn the practical viewpoint of an
engineer.

The consideration of the minimax approach to the optimal control
of discrete-time uncertain systems without the randomization suggested

(F1), (F2)

by Wald's theory was recommended by Feldbaum and systernati-

cally studied by Witsenha.uaenfw”' (W2)

Problems of system state estimation for the case where the un-
certain quantities are described by their membership in given sets have

also been considered by Witsenhausen,':w”' (w3) Schweppetsl]’ (82), (S3)

and uthers.{scn' (H1) Such problems, thﬁugh important in their own right,
arise in connection with minimax control problems for which the controller
has available only a noise-corrupted measurement of an output of the sys-
tern rather than an exact measurement of the system state. Although the
emphasis in this thesis is in the feedback control of uncertain systems,
some state estimation problems will also be considered which have a direct
relation to feedback control problems. In the next section we shall state

the basic problem considered in the thesis and outline the general approach

which we will adopt towards its solution.




7, The Basic Problem

The objective of this thesis is the study of the following problem:

Problem 1.1: Given is the discrete-time dynamic system

X4y ® (0 ) k= 0,1, ..., N=1 (1.3)

where xkERn, k=0,1,..,N is the state vector, ﬁkeR”?, T2 s () R o ons Bl
is the control vector, wkEEr, k=01,...,N-1, is the input disturbance

vector, and fk:En x R™ x R — R are known functions.

'Available to the controller are measurements of the form
2, = Byl Vi)™ Ri-BUN2EE N Y t.4)
where, forallk=1,2,..., N-1, zkERS is the measurement vector, _vkERP
is the measurement noise vector, and hk :Rn % RP — 2% are known functions.

The uncertain quantities lumped in a vector q_ERn'I'NTHN' ip

a- {x:],w:},wi,,._.,Wh_l,vi,v'z,_...,vh_l}‘ (1.5)

are known to belong to a given subset Q of Rn"'Nrﬂrf"”P

- qeQ (1.6)

We restrict attention to this form of measurement equation without
loss of generality. A measurement equation ontaining the control
vector explicitly

zy = Bl Y10 Vi
can be reduced to the form (1.4) by introducing additional state variables
through the equation

P

i il
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Attention is restricted to control laws of the form
pepRelEel R e

taking values
Qs = H’k{zl' Zas e Zypa g, . .,uk_ij, ke 0hilgenons=ll

where Ry is interpreted as a constant vector {P'o = uﬂ}. It is required to

find (if it exists) the control law in this cliss for which the cost functional

up Fixlrxzi "J'xNil'""ﬂ! F'll:zl’un}' *rey

.T“'LD: Fii "y I-"N_1] = qaeu

{(1.7)

J

is minimizged, subject to the system and measurement equation constraints

e {-o0, o] is given. :

“N-].{Z_ll GO uN-Z}]

{1.3),{1.4) and where the function F:R
It should be noted that in the statement of the above problem :.ve take

into account implicitly the presence of state and control constraints, since

we allow the function F in the cost functional (1.7) to take the value co. We

simply specify that the function F takes the value co whenever some constraint

is vielated. Thus, for example, state and control constraints of the form

xkc}tk, uk-lE'Uk-l' where XI'C, Uk-l' k=1,2,..,N, are given sets, are

accounted for by adding to the function F the function

M2

: i{ﬁ{xi|xi} SR O CRERRL RN [ Y

-
1}

where 8(y|Y) denotes the indicator function of a set ¥ (6{y|¥) = 0 if ye¥,

5(y| Y) = o if yd¥).
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The Problem 1.1 can, in principle, be solved by dynamic fnrﬂgram-
ming, and the appropriate algorithm will be presented in this thesis. How-
ever it is in generai very difficult from this algorithm to characterize ef-
ficientlg;r the optimal controller which solves Prublém 1.1. Thus special
cases with.increased structure will be considered in order to obtain addi-
tional results related to the characterization of the optimal controller and
in order to gain increased understanding into the structure of the solution.

One of the major difficulties in solving the general Problem 1.1
results from the fact that the value of the current state of the system (1. 3)
is not available to the controller but instead only partial information is

i

known about it via the measurements {l.4}. This fact results in that, in

vi
general, the optimal contrel law will be a function of all the prior mea-

surements, i.e., in general the controller will need to store all the prior
measurements or, possibly, the value of a complicated function of these
measurements. However, as in the corresponding stochastic situation,
whenever an exact measurement of the current state is available to the con-
troller, i.e., in equation (1.4) we have

Chp (v o= ok ' : : (1.8)
and in addition the input disturbances W) are i.nul:ii'widl._:lallj,,r constrained at sach
time

w, €W, CR"
4 k

and the function F in equation (1.7) is of the additive form

N

F[xllxzr L xN: uﬂ’ ul:r - 'luN_l} = kflgk{xkiuk_lj
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then it can be shown that the optimal contrel law is of the form u, = pk[xk].
In other words the control law need only be a function of the current state,
with a substantial simplification resulting. Alternatively expressed, under

the circurnstances described above, the value of the current state contains

all information about the past history of the system which is necessary for

the specification of the optimal control. i
The special case of Problem 1.1 where equation (1. 8) holds is re-

ferred to as the minimax control problem with perfect state information and

receives considerable attention in this thesis. A large part of the thesis,
Chapters 2 and 3, are devoted to problems with perféct state information.
This serves a double purpose. In addition to studying a class of problems
which is of interest in its own right, we obtain results which are useful for
deriving optimal or suboptimal solutions for someg minimax control problems
with imperfect state information. This is true in particular for the problem

of the reachability of a target tube which will be considered extensively in

the thesis.,

3. Contributions and Organization of the Thesis

The problems considered in this thesis can be divided into three
broad categories. Minimax control problems with perfect state information
are considered in Chapters 2 and 3, minimax control problems with im-
perfect state information are considered in Chapters 5 and 6, and state
estimation problems are examined in Chapter 4.

In Chapter 2 a minimax control problem with perfect state information

is considered for the case of a linear system and a cost functional with some
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convexity properties. This problem in a somewhat less general form was

considered first by Witsenhausen.{w”’ (W2) Some new results concerning

existence of optimal control laws are obtained, and the investigation of
necessary col_nd.itiuns for optimality is carried gut in depth. A minimax
principle is l::]erived for this problem which hu.ids however only under some
restrictive assumptions. When specialized to the case of a deterministic
optimal control problem this minimax principle yields ‘a minimum principle
for which the cost functional is not required to be differentiable.

In Chapter 3 the problem of reachability of a target tube is considered
for the perfect state information case. This problem can be wviewed as a
special case of the problem considered in Chapter 2. Necessary and:suf-
ficient conditions for the existence of a Solution.a.re obtained. These con-
ditions can also be derived with little effort from Witsenhausen's results.!W ),
Wiz In addition a new ellipsoidal approximation algorithm, which appears
to have some potential for practical applications, is derived and its properties
are investig_ated.

In Chapter 4 the problem of the system state estimation is examined
for a set-memhership description of the uncertainty. Attention is restricted
to linear systems and two different set-membership descriptions of the un-
certainty, the cases of energy constmints and instantaneous ellipsoidal con-
straints on the uncertain quantities. Some ne-'lw estimation algorithms are
obtained for both cases. In particular, for the case of instantaneous ellip-
soidal constraints for the uncertain quantities, an estimator is obtained which
offers distinct advantages over the estimator proposed by SEhWEppE.[S”

Furthermore we use a new approach towards the solution of the problem which

allows us to treat some problems not considered as yet in the literature in-

c¢luding the smoothing problem.

L

e e S T
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in Chapter 5 the géne ral case of Problem 1.1 is examined and the

dynamic programming algorithm for its solution is developed. This algo-

rithm differs in its form and is more general thanthe algorithm of

DS i

Witsenhaus en{w” although the same basic ideas are involved. Subsequently
the notion of a sufficiently informative function, which parallels the notion

of a sufficient statistic of stochastic optimal control,is formulated for the

bt Ve e e e

. first time. Some results are then derived which illustrate the dual function

of the optimal controller as an estimator and an actuator. This parallels

T s

the dual estimation-actuation interpretation of the function of the optimal
controller in the analogous problem when the uncertainties are modeled as
random vectors or stochastic processes, E'l

Finally in Chapter 6 the problem of the reachability of a target tube f::;
with imperfect state information is considered for the case of a linear system.
The material in this chapter is new. For the special case of energy con-
straints on the uncertain quantities the optimal controller is completely
characterizeﬂ, and its separation in an estimator and an actuator iz explicitly
demonstrated. The case of instantaneous ellipsoidal constraints on the un-
certain quantities is also considered, and a suboptimal algorithm is derived
which offers some practical implementation advantages.

For the development of some of t:he.reaults of Chapter 2 it is nec-
essary to appeal in a nontrivial way to the theory of convex it‘x;mu:tiu:nns.{El.:l
Since pnr;tinns of this theory are comparatively mcent and not very widely

known, the required results have been summarized in Appendix I. It should I

be noted that this theory is used only in Chapter 2, and is not necessary for .

the developments in the remainder of the thesis.




CHAPTER 2

LINEAR MINIMAX CONTROL PROBLEMS
WITH PERFECT STATE INFORMATION

1. General Remarks

In this chapter we consider a minimax control problem with perfect
state information. As was mentioned in the previous chapter the fact that
the controller has available at each time a perfect measurement of the sys-
temn state results in a substantial simplification in the solution of the prob-
lem. For example the dynamic programming algorithm, which is the basic
method for solving minimax control problems, becomes greatly simplified
for this case. Furthermore, in this chapter we make some additional as-
sumptions which enable us to obtain some deeper analytical results. We
assume that the dynamical system involved is linear, and that the calst func-
tional has some convexity properties. This will allow us to consider in de-
tail questions of existence of solutions and necessary conditions for optimality.
In addition it will be shown for this case that if the sets where the input dis-
turbances are known to belong are polyhedra, the computational requirements
of the dynamic programming algorithm can be further significantly reduced.
The results mentioned above rely heavily on the additional structure of lin-
earity for .t.I'I.E system and convexity for the cost functional, and do not appear
to be available without them. In this way the problem of this chapter should
be considered as the special case of the minimax control problem 1.1 which
is most amenable to somewhat deeper analysis, and for which the obtained
results are considerably stronger than in the general case. Yet this special

case is sufficiently geuei'al to be of interest in its own right, and the cor-

SjisL
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resp-unding results provide insights into the solution of other more gen-
eral minimax control problems.

For the development of some of the results of this chapter we will
need to draw heavily on some comparatively recent and not very widely
known results of the theory of convex functinns.{R” The related theory
has been outlined in Appendix I and will be used mainly after Section 3 of
this chapter. This theory will not be needed later in the thesis. The
reader who is interested in subsequent chapters can p?nceed to those chapters
after section 3 without loss of continuity.

In the next section the minimax control problem of this chapter will
be formulated and its solution by dynamic programming will be shown sub-
sequently in Section 3, In Section 4 the properties of the dynamic prEgram-
ming algorithm will be investiga'ted and sufficient conditions for existence of
optimal control laws will be derived. In Section 5 necessary conditions for
optimality will be obtained. In particular a miﬁimax_principle is proved
which however holds under somewhat re Bti:'.{:tiw:a assumptions., When spe-
cialized to déterministic optimal control problems this minimax principle
yields a minimum priﬁciple for which the cost functional is not assumed

differentiable.

2. Problem Formulation

The object of study in this chapter is the following problem.

Problem 2.1: Consider the linear discrete-time dynamic system:

¥pa1 = A F Byt Gew k=0,1,...,N-1 (2.1)
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where xk-ERn, k=0,1,..,N, is the state vector, ukeRm, k=0,1,..,N-1,
is the control vector, wkERr, k=0,1,...,N-1, is the disturbance vector,

k=0,1,...,N=1 are given matrices.

and Ak’ Bk‘ Gk’

It is assume:_i that the initial state X is known and that the disturbance

vectors wy belong to given nonempty sets Wk'-"_' R*

wi €W, k=0,1,...,N-1 L (2.2)

Attention is restricted to contrel laws of the form
pk:R“—an, k=0,1,...,N-1 (2.3)
taking values _ ;

u, = ple), k=01,...,N-1 (2.4)

It is required to find (if it exists) the control law in this class for which the

cost functional

N

A ((TNTRTE sup Z {f, (5 ) +g_q[w 02 )1}
o' H1 N-1 w W, oy DR Bo1t -1 M-

k=0,1,..,N-1 (2.5)

is minimized, subject to the system equation constraints (2.1), and where
the functions fl'[:ﬂ‘.rI — (=00, +mo], gk_l:Bm - (-, to], k=1,2,...,N,

are given closed proper convex functions.

In Definition A.4 of Appendix I, a closed proper convex function

£:R™ — (-co, +oo] is defined to be an extended real valued convex function

which is lower semicontinuous and such that -co < {(x) for all x€R"™ and with

f(x) < +oo for at least one %eR™. Closed proper convex functions are reviewed

in more detail in Appendix I. One of the advantages of using extended real
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valued functions in the cost functional {2.5) is that state constraints and
contrel constraints of the form xk-l:' Xk, 'ukt:' Uk where Xk, Uk are given
convex sets can be cnnvenienﬂy'incnrpﬂrated in the cost functional rather

than stated explicitly. This is accomplished by adding under the summation

sign in the right hand side of equation (2.5) the indicator functions

-0 if xkexk

a(xkl X,) =
0 if u, €U
+oo  if uk!'Uk

Since the theorg-r of extended real valued convex functions is well estab-

(R1)

introduction of the .extended real line does not create diffi_r.culties

¥

lished,
as long as one is careful to avoid the meaningless sums o - oo and -do +oo.

- The optimal controller in Problem 2.1 is required to be in feedback

form. As a consequence, local variational analysis is very diffieult for this-

problem and dynamic programming remains the only method to proceed for
solution., The development of the dynamic programming algorithm for

Problem 2.1 is the object of the next section.

3. Sslution by Dynamic Programming

Let ué denote by Tx the optimal value of the cost functional (2. 5)

Q
JK = inf ']-[p'or F"'lr---:l".'N_l}. : (2.6)
0 j"'k

k=0,1,..,N-1

The dynamic programming algorithm to be described in the following pro-

-—

position provides the optimal value J, at the last step of a recursive se-
i o

S
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quence of minimization and maximization steps. Furthermore the optimal

control law {if it exists) can be obtained from the sequence of the minimi-

zation steps in a much simpler way than directly from the equation (2. 6).

Proposition 2.1: Assume that for the functions Hk defined below we have

-o0 < Hk{xk} for all xkERn and k=0,1,...,N-1. Tthn the optimal value

Tx of the cost functional (2. 5) is given by
o
I, o= I (=) (2.7}

X
o

where the function .ID:Rn — {-m, +w] is given by the last step of the re-

cursive algorithm

It = fyley) {2.8)

Ek.+1{x"| = sup Jk+1{x+kak}, k=0,1,...,N-1 (2.9}
\ﬁ{EW

k
H (x) = inf (B (A + B ) +g(uldl, k=01,..,N-1 (2.10)
u
k.
Jk{xk} =, Hk{xk} + fk':xk:': k= 11 2:.*-*" lN‘l {2' 1 1}
Ja(xo}_ = Hﬂ{xﬂ] : (2.12)

Proof: Since -go < HN-I{xN-J.} for all X, lERn, we. have that for every

€ > 0 there exists a function Py _|s, 1 R® — R™ gych that

EnlAn_1%N.1 BN 1tN-1, eENo1 ! F encalF ey, eBnag

< inf {BlAg %y g +Byyoyino1 O]+ B[k N e 1) F e
FN-1 |

Hy_ 1 Gnog) * e . (2.13)
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By using equations (2.6) and (2. 9) we have

N
J, = inf sup z {e e ) + g Ly 1O B}
o P’k “kawk k=1
k=0,1,..,N-1 k=0,1,..,N-1 |
| N-1 -
= inf inf sup 33 {fk{xk} + gk-lipk-lka-lu}
W PN EWe K
k=0,1,..,N-2 k=0,1,..,N=2
+ EglAy %y * ByogPnoi B ngli}lNul{xN_-l:']
N-1
< inf sup S {0 + gy [y by

My W Wy =

k=0,1,..,N-2 k=0,1,..,N-2

+Egl Ay %n1 tBNC1PN-1,e Bnaa) Fenilno e By )]

Using {2.13) to stranghthen the above inequality we obtain

: N-1 '
.]'x < inf Bup "f-" {;Ek{xk}fi-gk_liHk_li}ik_l}]}
o I“"k WI(EWIC k_l )
=0,1,..,N-2 k=0,1,..,N-2
+ Hy ylxyg ) Fe
: N-1
P kSl B

k=0,1,..,N-2 k=0, 1,..,N-2
+ EglAn_ 1% nop t BnoiPn-r o)) el o)) e

(by using the minimax inequality)

N-1
<  inf inf  sup 2 {f (x by, g[By 0% )1
k=0p1.--;N-Z k=ﬂ',1||-:N—z

it

i




T, 1

+ EnlAN_1*Noy F Bneino o) Fenopbeno g €

Since the above relations hold for every € > 0 we conclude that

N-1

T = inf sup = {f(x)+g "+ )]
%) i n R AN U IS L NE i T & B
k ™ ke
k=0,l,..,N-2 k=0,1,..,N-2

By repeating the above procedure we eventually obtain

T, = Hylx,) = J,(x,) Q.E.D.

We remark that the value of the function H; at a point x; has the

usual interpretation of the "cost-to-go'" irom the point x, at time k. This

value can be a2 real number or oo but by the assumption —oo < Hkixk}, for all
x, €R" it cannot be -co.
The occurance of the equality Hk{xk} = -m for some xkEHn indicates

a degeneracy in the problem statement and in particular in the cost func-

tional chosen. It implies the existence of control laws which result in a

value of "cost-to-go' which is arbitrarily small starting at state x, at time

k, thus indicating that the optimization problem is not well posed. The
assumption -oo < Hk{xk] for all xkERn and all k can be guaranteed to hold
under quite general assumptions which will be stated in the next section.

The occurance of a value I—Ik{xk} = oo for some xkERn has an interesting

interpretation in the case where the constraint sets Wk for the disturbance
vectors are bounded. It Eh-::rulci be recalled that the extended real valued

functions I and g, in the cost functional (2. 5) specify constraint sets for
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the state and the control vectors, It must be :'-tkf:}{k and ukEUk for all k

where the sets X, and Uk are given for all k by

X

il

L = g ln ) < o}

U

k= lylegdy) < ol

A value Hk[xkl = oo implies that, starting from the st-ate x, at time k, for
every cnntw_.-o.l law that the controller used subject to the control constraints,
there exist disturbance vectors within the given sets Wk which will cause a
violation of a state constraint at some later stage. It should be noted that if

there do not exist any state constraints, i.e., the functions fk are :rc:_c'al valued,

) H
and in addition the sets W, are bounded then we will have Hk{xk] < oo for all

xkERn and all k. “'

The value of the optimal control law ﬁ'k at a point x,_ can be obtained
from the dynamic programming algorithm as

ﬁk{xk} = ﬁk (2.14)

where G’k ié a point (assuming it exists) where the infinum in equation (2.10}
is attained for the fixed point x, . In the case where for the fixed point x,_
the infimum in (2.10) is attained at more than one point the equation (2.14)
still holds with ﬁk being any one of those points.

Aside from the dimensionality problem, common to every algorithm
of this nature ,.. an additional drawback of the dynamic programming algorithm
is the maximiza_.tiun indicated in equation (2.9). It will be shown later that,
under some guite general assumptions, the functions Jk are convex. There-

fore if the set Wk is a compact polyhedron the search for the supremum in
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equation [2.?}_-:311 be confined to the finite set of the vertices ((R1), Th. f" %

32.2) of W, thus partly alleviating the computational requirements. In g

k
some cases however the sets W, are only indirectly known via their support
functions. This will often occur, for example if the discrete time system | t’
(2.1) results from sampling a continuous time linear syatem.{wz} In this I
case approximation of the sets W, by a polyhedron is possible with any |

desired degree of accuracy. If however this approximation is considered il

undesgirable,use of a dual algorithm (w2) based on equations which will be di

presented in the next section may be advantageous. I _

In any case the DP algorithm provides a good starting point fcr:ilf ob- it
taining existence results and necessary conditions for optimality. In ’éhe |
following section its properties will be investigated. In particular pr::-perties
of the functiogs Ek+1' Hk’ Jk’ k=0,1,...,N-1, of equations (2, 9) through

(2.12) will be deduced. In addition the question of eistence of optimél con-

troel laws will be cansidgred.

4. Properties of the Dynamic Programming Algorithm
and Existence of Optimal Control Laws

Properties of the dynamic programming algorithm will be investigated
under E.usaumptians which cover most special cases of the general Problem
2.1 which are of practical interest, Under these assumptions, the question
of existence c_nf an optimal control law will be answered satisfactorily. It
should be noted that the statement "an optimal control law exists', as we will

use it here, means that for every point xk&'Rn and for every k, k= 0,1,...,N-1,

' n S : : 3 -
there exists a vector u €R such that the infimmum in equation (2.10) is attained.

This does not exclude the possibility that this infimum is oo. With this inter-
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pretation if for some xkERn we have E, [Akxk+Bkuk} + gk{uk} = oo, for
all u,€ R" then, from equation {2.10), Hk[xk} - oo and the infimum in (2.10)
is attained for every ukr:En.. This in turn according to our terminology
implies existence of an optimal control law in as much as the point x, is
concerned.

| The poirt of view that we adopt concerning the existence of an optimal
control law coincides with the usual point of view whenever the given initial
canditinn-t X is such that the optimal value of the cost functional _.fxﬂ is finite.
As explained in the previous sectian,- whenever the sets Wk are bounded, a
value -'.fx = oo may occur due to the presence of state constraints xkEKk im-

[n)
plied by the functions £ in (2.5) where _ :

. X, = ={xk!fk[xk}{ o}

There may also exist control constraints ukEUk implied by the functions g,

in (2.5)
U, = {u g lw) < o}

A value .Txu = @ indicates that for every control law pk{xk], k=0,1,..,MN-1,
there exist disturbance vectors wkEwk‘ k=01,...,N-1, which will cause
either a violation of a control constraint or & violation of a state constraint

at some stage during the operation of the closed-loop system. In other words
a value T"a = oo indicates that there does not exist a control law which can
guarantee the satisf_actiun of all the constraints of the problem. The question

of the existence of such a control law will not be considered in this chapter.

This question however is central in the problem of the reachability of a

target tube and will be answered in the context of that problem in the next chapte:

e
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In order to avoid some rather uninteresting but analytically irri-
tating situations we will make the following assumption which will hold

throughout the remainder of this chapter.

Assumption 2.1:

{a) Each of the functions ‘Tk’ Ek' Hk of equations (2. 8)

through (2.12) is not the constant +oo function,

{b) The; sets Wk, k=0,1,...,N-1, are compact.

Before we proceed with stating the assumptions under which we will
examine the problem of existence of an optimal contrel law, let us consider
the circumstances under which the minimum of a convex function f:R" —
(-0, o] may not be attained. If { is lower semicontinuous the only such
situation arises whﬂn. f decreases monotonically along some direction with the
result that either the function is not buunﬂerl below or the infimum of the func-
tion is finite but "attained at infinity.'" Typical examples are the functions
f(x) = x and f(x) = e * with xeR. Thus in order to prove the existence of a mi-
. nimizing vector it is necessary to impode some conditions which will guar-
antee that the function will not decrease monotonically {recede) along some
direction. Such conditions involve the notion of a direction of recessionofa
closed proper convex function. This notion is introduced in Definition A.10
of Ap[;endixl and its impurtﬁ.nce in providing existence results for optimiza-
tion problems is" stressed in Proposition A.23 of Appendix I. The assump-
tions concerning the cost functional (2. 5) which we will make involve this

notion. We shall consider the following special cases,

Special Case R: In the cost functional (2. 5) every direction of recession of
each of the functions f,, k= 1,2,.. , N, and'gk, k=0,1,...,N-1, is a direc-

tian in which this function is constant.

om———
il T n S

T

i e



-26-

Notice that a closed proper convex function f with no direction of

recession is characterized by the fact that its mnempty level sets

Fa = {x| f(x) < al , a: real number

are compact, a requirement satisfied by the furictions f.» 8, of many cost
functionals of the form (2. 5) which are of interest in practice. However
we allow the functions fk and gy to have directions in which they are con-
stant in order to retain the possibility to weight in the cost functional only - |
certain components of the state and control vecto rs. The case fk{xk} =

xi{ﬂxk where Q is only pus.itive semidéf_inite symmetric matrix is a typical
example of such a situation. The basic property of a function belonging to

the special case R is that there does not exist any halfline {z|z = x+hy, A > 0}

originating at some point xeR"™ and pointing in the direction of some vector
yeR" along which the function is monotonically decreasing. This excludes
the possibility that either the value fk[xk} or the valﬁt_a gk{uk] decreases
monotonically as -eithar X 0T Uy become arbitrarily large {in norm) along
some directiﬂn.

A second special case which we will consider is the following:

Special Case C: The functions g k=0,1,...,N-1, of the cost functional (2. 5)

have a recession function of the form

At e +

{gkﬂ Wz) =+ forz 40, {gkﬁ K0y=0, k=0,1,...,N-1

The notion of the recession function of a closed proper convex function
is introduced in Definition A.9 of Appendix I. Essentially the condition

{gkﬂf}(z) # +o for z 4 0, {gkﬁ+}[(}] =0
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requires that tj::e penaliy to the controller for using control vectors larpge

in norm is suffiéiently great. For example a function B does not satisfy
this condition if it is uniformly Lipschitz continuous. On the other hand

the requirement of the special case C is satisfied if the set Uk = {uk [gk{uk] <
@} is compact or if for instance gk{uk} = u{{Ruk whgre R is a positive definite
symmetric matrix.

Throughout this chapter we shall use the assumption:

Assumption 2.2: The cost functional (2. 5) satisfies the requirements of

either Special Case R or Special Case C.

We are ready now to prove the following proposition which states that
under our assumptions convexity and lower semicontinuity are preserved in

the dynamic programming algorithm and that optimal contrel laws exist.

Proposition 2. 2:

{a) Under the Assumptions 2.1 and 2.2 the -fum':_tions T B Hy
of equations (2. 8) through (2. 12) are closed proper convex
functions for all k. This implies in particular that the as-
surnption -oo < Hkl_'xk:l, for all xkERn in Erupositinn 2.1
holds for all k.

(b} The supremum in equation {2.9) is attained.

{c) An optimal control law exists.

Proof: Consider first the function

Eylx) = sup  INtx+Gy y¥n.y)
N-15"N-1

T e
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By Proposition A.10 of Appendix I and using also Assumption 2.] the func-
tion E.. is a closed proper convex function. The Bu-pr'emum is attained for
every x since the function TN{WN'_I} = fN{x+ GNhle-l} is lower semicon-
tinuous by Pr:ﬁpoaitiun A. 12 of Appendix I and the sét'WN_l is compact.

Notice also that for all WN-1€WN~1 the function of x EN,w ] (x) = .fN{x +

N-1
: g . Dept + _
GN-1Wn-) has the same recession function EN, “’N-I& = £,;07, and thus
by Proposition A.10 of Appendix I END+ = fNﬂ+. Thus if every direction of
recession of N is a direction in which it is constant the same is true for the
function Ey-

Consgider now the ﬁmn:tian_HN_l
\
Hy_yleyoy) = uinf {BylAn.xny + ByopOnog) * 8N ()
el . (z2.14)

By equation {A.2) of Appendix I the function Hy_; is given by
Hy oy = [EyD(-By_plen Ao, (2.15)

where the notation in the above equation is introdaced: in Propositions A. 4
and A.6 of Appendix I. By using Proposition A.13 of Appendix I we have
that both in the special case C and in the special case R the function Hy g
is a closed proper convex function a,.nd_tha.t the lnﬂ_mum is :.i'.tta.j.ned' in equa-
tion (2. 14}, Also in the special case R every diréi_::timi'of ;rec.:essiun of the
function HN-;I is a dil:l.'éctiun in which Hy_, 18 cnﬁe:tta'r.xt. The same is true
for the function 'I.N-l = I-Iqu +fN-1 since by f'r_u_pn%itian A.9 we have

+ + + . ; s : .
In-1 0" = HN-ID + 1y ;0 and every direction 9f recession of the function

f is a direction in which fjy. 19 constant. Thus the proposition is proved

N-1
for k = N and all the necessary facts have been established so that we can

i

o s T by
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proceed in exactly the same manner to prove the proposition for k = N-1
and recursively for all k. Q.E.D. ok

The equation (2.15) shows that the "cost-to-go" function Hy ; can
be nbtaine.d from the functions E. and g through ope rations that have

(R1)

been extensively studied in the lite ratufe. This fﬁ.ct is very helpful in

the search for sufficient conditions for existence of optimal control laws.

For examnple stronger sufficient conditions ¢an be derived in the case where
the functions fk and - of the cost functional (2.5) are polyhedral. By making
use of the results of Section 19 in (R1) it can be readily proved that the Pro-
position 2. 2 holds for this case under assumptions that are weaker than
Assumption 2.2, |

The equation (2.15) can be used also for calculating the conjugate

% 5
functions H, and 'Tk via Propositions A.14 and A.15 of Appendix I. We have:

Hz{x*} = ci{A{([Eiﬂ{x*} + g:{-Bi[:-t#}]} i {2-161
T = el{Hy(x* of (x ) (2.2 |

where the closure operation cl1{- } and the infinal convolution operation g

are introduced in Definition A.5 and Proposition A. 4 of hpp.endix I. The il

conjugate EX

k41 of the function E, , , is given b:-.r_

Ef (") = convTy, =) - o(px* W)} . 2.18)

where o(- |Wk] is the support function of the set Wk and the convex hull
operation is as in Definition A.3 of Appendix I. The equation (2.18) follows

directly from Proposition 25 in (WZ).
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The eguations (2.16), (2.17) and (2.18) can form the basis for a
dual algorithm for calculating the optimal cost similar to the one proposed
in {W2). The implementation of this algorithm will not be discussed in

this thesis. A special case has been analyzed in detail in (W2).

5. Necessary Conditions for Optimality

In dynamic optimization problems necessary conditions for optimality
are usually expressed in terms of the costate vector and the related adjoint

equation. This is true for the case of the Pontryagin Minimum Principlefpl 2

(Atl) .5 well as the Minimax Principle of Zero Sum Differential Games as
described by Isaaca.ﬁa” In both these cases at points of an optimal _;rajectury
where the ';‘cqst-tn-gu” function is differentiable, the costate vector is equal
to the gradient of the "cost-to-go' function. In light of this fact it is not
surprising that the necessary conditions for optimality which we .&e rive for
the minimax problem of this chapter involve vectors in the Eubﬁiffe rentials
(zeneralized gradients) of the "cost~to-go'" functions I, Hk of the equations
{Z.. 8) through (2.12). The notion of the subdifferentia;l 5f(x) of a convex
function of at a point x is introduced in Definition A.12 of Appendix I and some
of the pertinent facts are summarized in subsequent propositions. It should
be noted that the use of subdifferential theory in the analysis is necessitated
by the fact that the "cost-to-go" func:tinn.s J'k and Hk will in most cases be
nondifferentiable even if the functiu;s fI-r. and g in the cost functional (2. 5)
are real valued and di.ffe:reﬁtiable. This is mainly due to the maximization
indicated in equation {2.9) as will be shown Iate.r..

We now prove the following necessary conditions in order that the

supremurn and infimum in the equations
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sup Jk+1{x+(} k}’ k=0,1,..,N-1 (2.9)

WEW

Epp(x) =

H{x,) = inf {Ek+l{Akxk + Byuy) +gk(uk]} k=0,1,..,N-1
Yk (2.10)

are attained at given points.

Proposition 2, 3: For a fixed point xeR" let ;kiwk be a point where the

s
supremum is attained in equation (2.9). Then for all vectors Xy €8Ty L (x+

G, w, } we have

k 'k
R e <x: .., G >
TS L Sl O “;3}‘ e+l S ,
b "R ™ ]
/
where aJk 4 1f:m: +Gkﬁk] denotes the subdifferential of the functi._:m J a2t the

point {x +G k}
Proof: Let xk+lfa.]'k+1{x +Gkﬁk). By.Prnpositi-::m A.18B of Appendix I we have

e ok e
Tl X+ G W) = <x ) XA G > - Ty O ) (2.19)
By equation (2.18) we have

A o St
By (eqy) = convlT o ) - o (Gyxg g Fwy )

A

L £
Tea1 Bopqn) = oGy W)
Using the above inequality in equation (2.19)
% #*
T G ) < x4 G, x> = By o) - (Gl | W)

On the other hand

—

e




* B & #* ® ., ¥
X007 " B £ gpe (x> - By, (o))

Epatx) = Iy ¥ (e.21)

Combining the inequalities {2.20) and [2.21) we obtain

——

G G, >

: S
-1 1
LS k+1’

: 4
(g1 | W) = max <x

- ]
<3
k+1°
w, eW
k" k

which proves the desired equation. Q.E.D.

Consider now the funection ﬁk defined by

H (x) = tllnf .{Ek+1{x +Bu )+ _gk{ukj} _ (2.22)
k
It is clear that if for a fixed point xkERn the infimum in equation (2.10) is at-
tained at a point ﬁk then the infirmmum in equation {2.22) is attained at the same
point ﬁk when x = A, %, . Notice that for all xkEEn we have Hk{xk.} = ﬁ{Akxk}
and that ﬁk = Ep 41 D{-Bk]gk, a relation which is proved in the same way as
equation (A. Zjl.'i.n Appendix I. From Propositions A.14 and A.15 it follows

= N* - i it
then that the conjugate convex function Hk of the function Hk is given by

Bl = Ef, %) + g (-Blx) _ (2.23)

We now have:

Proposition 2.4: For a fixed point xkeRn let G’k be a point where the infimum

is attained in equation (2.10). Then for all vectors x*Eaﬁk{Akxk} we have

L3 - - . *
<x ,Byu. > + gk{uk} = 1:;111 {=<x", B u, > + gk{uk]}
: k
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where ﬁk is the function defined in equation {2.22).

Proof: Let x#e‘ a_ﬁktﬁkxk}. By Proposition A.18 we ha;ve
Hib) = Filayn) = <Apg,x™> - B
or by equation (2.23) _
o) = <Apnax™ - BN - gEED) 0 @.2)
On the other hand by the optimality of {lk
Hbrd = Egyqlagn + B + g (6
' ¢ <oz, + Bifjex > - By ()} + g luy)
2 Mgex - B 6N 4 RGeS g6 @2y
Combining relations (2.24) and (2.25) .
<", Byt gliy) < ~g-Blx)

= l:':f {":K-*, Bkuk} + gktuk}}

which proves the desired eguation. Q. E.D.

Notice that if the matrix A, is invertible then by Proposition A.20

of the Appendix

aH, (A, x,) = AY aHk{xk}

R s

and the necessary condition of Proposition 2.4 be-::omes

= 1 &
<A Bla > g () = mm{{Ak k. Bw > +g, (u )}, ¥ 1 €3H, (x,)
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A sufficient condition for the infimum to be attained at a given point

in equation {2. 10) is given by the following proposition:

Proposition 2. 5: Assume that for some vector X1 and some vector z we

have x]‘:ﬂeaEkH (z) and that for a vector Ek

# - 2 : *
g1 By F g = i {2y Byw> + g lw )}
K

Then we have

ﬁk;z -Ba) = E . (2)+ g () (2.26)

i.e., the infimum in equation (2.22) is attained at the point Elc whenx =z -
- e ~ =
Ekuk' I addition we have xk+lEaHk{z - Bkuk].
Proof: We have ﬁkfz - Bkﬁk] < Ek+1 (z) + gk{ﬁk} and by using equations (2.22)

and (2.23)

b3 - . -
{xkﬂ_’ z=B u> - H’k[z - Byu )

0 II
2 Sy = B () <-Blage, ) 8> - g, (6) l

= Epp(xesr) +gk[ kak-{-]] = k+1‘“k+1}

= sup {{’ﬁcﬂ'z - B> - H (z-B, 4}
K1

Hence equality holds in the above algebra implying equatmn (2.26) and that
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It is interesting to make the following observation in Propositions
2.3 and 2.4, Consider a fixed point ikERn, and let Ek be a vector where
the infimum is attained in equation (2.10). Let also -wTk be a point where
the supremum is attained in equation (2.9) for x = Ak;ck + Bkﬁk' Then for

any vé;':tor :ir.'hl';= such that
¥e3H, (A, X A x 0, + G w
x €3H (A, x, ) N 3Ty 4 (A + Boy + Gywy) . . (2.27)
we have from Propositions 2.3 and 2.4 that
% o L 18 =
x5 B+ Gpw > 4 g ()

= rmin rax {-:x*, By, + Guw >+ gk(ﬁk}} (2.28)
v wiEW, -

or equivalently
W g - o -
<x , J“kak + Bk“k + kak} + gk(uk]

= muinwn;a;; {{x*.Akik + Byuy, -!- G w > + gk[uk]}
ke e Rdle ;

Notice that the expression within bmces in 't'he above relation is the
familiar Hamiltonian. It is evident that if a;lung'an optimal trajectory one
could guarantee for every k the existence of vectors % such that the relation
(2.27) holds and find a law for propagation of thésg vectors (i.e., .an adjoint
equation) tﬁen the Proposition 2.3 and 2.4 would be pieced together into a
Minimax Principle. The remainder of this sé::tioﬁ will be devoted to an
effort in this direction.

We first give the definition of a minimax se;luence and a minimax

trajectory:
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Definition 2.1: A sequence of control and disturbance vectors

R P TERETL VS T AR

iz called a minimax sequence and the corresponding trajectory '[x :{1, el

XN} given by

= Akxk+Bkuk+kak' k=0,1,...,HN-1 .

is called a minimax trajectory if for all k

H (%) = ﬁkmk;’;k} = By (A%, + B, )+ g, (5))

Ik

i:l:f {Ja:khlLl{..aL},::;:k +Byu )+ gk{uk}} (2.10)
i .

Ep18d + Bruy) = T 6004)

sup Jk-Fl {Ak Kk + Bkuk —J—kak)
w EW,
A minimax trajectory results during operation of the system (2.1) .
when an optimal control law is used and when disturbances are selected
(by Nature) in an optimal fashion. It is evident from the Definition 2.1 and.
the dynamic programming algorithm of Proposition 2. 1 that if a minimax
sequence and a corresponding minimax trajectory could be found then the

optimal ¢ost for Problem 2.1 would be obtained as’

. N
Jxﬂ = J =) = Iaf {fkka} + By l{uk 1]}

and the problem would be at least partially solved. In what follows we obtain
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a necessary condition in order fora control and disturbance sequence to
be 2 minimax sequence under some special assumptions,
We shall make the following assumption concerning the convex func-

tions H,, ﬁk defined by equations (2. 8) through (2. 12) and equation (2.22)

Assumption 2, 3;
| (a) For all k the range of the matrix A, contains a
vectn.-r in ri{dem ﬁk}
(b) For all k we have

ri{dnmfk) N ri{dom H,) ¢4 P

where the relative interior of the effective domain ri{dom - ) of a convex

function is defined in Definition A.7 of Appendix I.

The assumption {a) above is needed in order to guarantee by Proposi-

tion A.20 of Appendix-Tthat *

where ﬁk is the function defined in equation (2.22), a relation essential for

the proof of Prupaaitzon 2. E This assumption will hold for most problems.
In particular it will hold if the matrix Ak is invertible or if the functions fk _
are real valued in which case it can be easily seen that the functions Hk
will also be real valued and hence dom Hk = ri{dom I—Ik] = R™. The reason

for introducing assumption (b) above is ta guarantee by Proposition A.19% of the

Appendix I that

pEpe— e
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a relation also essential in the proof of Proposition 2. 8. This assumption
will again hold for most problems and in particular it will hold if the funs:-
tions fk are real valued.

Assume now that {u ; w ul. prere : "-"N-l’ E’N-I} is a minimax se-
gquence and: {xn,xl. e aials xN} is the corresponding minimax trajectory. The
necessary conditions of Propositions 2.3 and 2.4 hold for the vectors u

k

and.;frk. Some preliminary facts concerning the subdifferentials aHk{A k:"

LI e +1} will be proved now in the following two Propositions:

Prnpnsi'ti.on 2.6: Forallk= 0, I, iv0, N=-1 we have

3f (A x ) OBy, (A%, + B, U, )

Proof: let x EaHR{Akxk} By the subgradient inequality (A.4) in Appendix I
we have

f (z) > Ha %) +<z - Ax,x™, VzeR™ (2.29)

Since from equation {2.22}
Hla ) = Ek+1{A1c;l-( + By + gyl ),
By (s) < B, (= +BG) +g @)
using the aﬁnve relations in (2.29) we obtain
Ek+i_{z + Bkﬁk} > Ekﬂmkik + Bkﬁk} + {z - ﬂk;:k,x*}, ¥ zeR"

o . ] o o i '
which implies that x EaEkH{Akxk + Bkuk}. . E. D,

o
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Proposition 2, 7: For a fixed point x let k{x} be the set of points where

the supremum is attained in eguation (2.9). Then
3B, j(x) Dkonvixed s, bx +G )|, e W, (x)} (2.30)
and if xe int (dom Ek+1} we have
. ¥ S s it i
aEk-I!-l (x) = conv{x Ea'Tk-H {x+GEwk]iwkE Wk(x}} (2.31)

where conv{-} denotes convex hull of the set within braces.

Proof: letw F.;Wk[x} and x*ea.}" l{z +G k] then

k

— ) — A
Izt G W) 2 T (x+G W, ) + <z-x,x >, VaeR" (2.32)

Since Jk+1 {x'i-kak} = k+1{x} and 'Ik+1 (= +G k} < E]H_l(z] from the relation

{2.32) we obtain

Ep () > B, (x) + <z-x, x>, VaeR®

k+
implying that x*f'aEk +1 (x) and therefore

341 ) 3Ty (= + G ) Vo €W, (x)
Since aEk+l (x} iz a cloged convex set |

3B, () D convlx"edT, , | (x+ G W ) | W, €W, (x)}

To prove the equality {(2.31) observe that the fuuc:tiun.? (=, Wk} = Jk+1{"'- +

kak] satisfies all the assumptions of Proposition A,22 of Appendix I. The

equality (2.31) follows directly from the conclusion of this proposition. Q. E. D.

From Propositions 2.6 and 2.7 it cannot be guaranteed that the set

intersection indicated in relation (2.27) is a nonempty set, and in fact
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examples ca.m be found where

FHAZINIT (A% + BE + G =¢
If however fl;e equ.alit}r

aEkH[Ak:T:k + Bkﬁk} = a:kﬂmk:}k + Ekﬁk + Gkﬁi{,\ (2.32)
holds, then frt;m Proposition 2. 6 we obtain

dHAZ)C D Tt B % + Bl + G )

in which case, assuming aﬁk{Akik} # ¢ ;» the minirmax condition of equation
E o~ -
{2.28) would hold for every x € Hk{Akxk].
By Proposition 2.7 the equation (2.32) is asatisfied for every point
X = {%kxk + Bkuk]'fmt {dom Ekﬂ} for which the supremum in equation (2., 9)
is attained at a single point., It may be satisfied also for other points on
the boundary of dom Ekﬂ . Points (A.kxk + Bkuk] for which equation (2. 32)

ia satisfied will he called nonsingular according to the following definition,

Definition 2,.1: For fixed k, k=1,2,..,N, a point x is called nonsingular i

if for every vector ;k such that the supremum in equation (2. 9) is attained,

we have
OBy () = 8Ty 0+ Gywy)

A point x which is not nonsingular will be called singular,

It should be noted that in view of Proposition 2.7, every point x at i

which EH—I is differentiable is by necessgity nonsingular, assumming that it

3 X+ G ) ¥ .
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We shall also need to distinguish initial states x for which the

subdifferential aJ n{xn} is nonempty by the following definition.

Definition 2.2: The initial state X will be called re gular if the subdifferential

a.]'u[x.;} is nonernpty.

Notice that by Proposition A.17 of the Appendix all initial states
x € ri{dom J"}} are regular whereas all initial states for which J ol%.) =
are not regular.

We are now ready to prove the following necessﬁry cotdition for a

minimax sequence.

Proposition 2. 8: Let {u W L0, W, calpg_ e Wy 1} be a minimax sequence

and let {xo,xl, .+ ., Xy} be the corresponding minimax trajectory. Assume

that the initial state %, 1s Tegular and that the points {Ak g +B uk], ="0.:1;

N-1 are nonsingular. Then there exist vectors xl ,xz, Ty x;, Py p:, RS p;_l

satisfying the adjoint equation
* # :

X = Aixxk+l+pk’ k=1,...,N-1 {2.33)
witl'lt

xNEB {JCN}

* =

pkfafk{xk], k=1,2,...,N=-1

and such that

<o, Byl x T G0 +gk{uk}

= min max {-ﬂxkﬂ,nkuk +Gew > +ge(u )}, k=0,1,..,N-1
Y WREWL : (2.34)
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Proof: By the fact that X, is a regular point we have E’Jnt"‘g} # 4" Since

by the Assumption 2.3 we have aJn{xD} = ﬁ_:'._,‘a Hﬂ[ﬂ.uxa] we cohclude that
: *

3 Hufﬁuxn} {¢. Take x; to be any vector in 3 HDEAQJ{Q:I- By Propa.sitinn

2. 5 and the fact that the point [..F!.ﬁ:’m:_::’I + Buﬁu} is nonsingular we have
3 HOIAD::D) c3 El(.ﬁ.axu + Buuc} = a Jl{xl)

and therefore by Propositions 2.3 and 2.4 the minimax condition of equation

(.34} is satisfied for k = 0. By the Assumption 2.3 iwe have

and thus we can find vectors x; and pf such that
4
x| = Ajx, +B,
and x;:_ra H] {Alil}, p;EE, £ [il}. Again by Proposition 2.5 and the fact that

the point {.&lil + Blﬁ.l} is nonsingular we have

BH (A %)) CIE (A X + B8 ) = d7,(%,)

and therefore by Propositions 2.3 and 2.4 the minimax condition of equation

(2.34) is aatisfied for k = 1. By proceeding in a similar manner we construct
* % * 0 k& # : S

the 8EQUENCE X, Xy, » -+ s Xpa Py ]_bz. =+ PNop” For these vectors the adjoint

equation (2.33) as well as the minimax condition (2. 34) is satisfied. Q.E.D,
The Proposition 2.8 states that a minimax principle holds along a .
minimax trajectory provided this trajectory does not go through singular
peints and the initial condition is regular. Thm is reminiscent of the mini-
max principle of differential games which hnlds prnwded the optimal trajec-

tory does not go through singular surfaces.
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Except for the assumption concerning nonsingular points every
other aasﬁmpt_inn used in the proof of Proposition 2. 8 is required in order .
to rule out rather pathological cases which seldom oceur in practice. How-
ever the assumption that the trajectory does not go through singular points
is a formidable one. Except for particulady well behaved problems,
singular points are a comimon occurance and invariably minimasx tra jec~
tories corresponding to some initial states will go through these points.
One can prove in fact that if X, is an initial state which is such that there
exists a minimax trajectory starting from x  which does not go through

singular points then we must have

Tpfx) = I (x,) = Txﬂ (2.35)

where Tx = Jﬂ[xu}l is the optimal cost of Problem 2.1 corresponding to x_
o
and J L[xﬂ] is given by

N
IL(xﬂj - sup inf ? {fk{xk} 2x gk- 1[ I"'k_ 1 ':xk_ 1 )] ]'
W € Wk i k=1

k=0,1,..,N4 k=0,l,. o N-1

The equation (2.35) implies the existence of a aa&dle.point in the zero-sum
game where the players are the controller and nature and the payoff function

is
N .
kzl {fk{xk} + gk_ll Pr_1 {xk- 1 N}

Since we have J L(::ﬂ] < Io{xu} with strict inequality holding in general for
a "large" set of initial states, the equation (2.35) illustrates the limitations

of Proposition 2. 8.
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It appears that, in general, it is a formidable task to determine the
set of initial states whi.r.:h are such that their corresponding minimax trajec-
tories do not go through singular points. The same.is true for determining
whether a particular point is singular or not. Thus even if 2 candidate for
a minimax sequence is found through Proposition 2, 8 it may be very dif-
ficult to verify whether in fact it is a minimax E:equence 4

In cunclﬁsinn the necessary conditions presented in this section should
be expected to provide a complete solution to only a limited elass of problems.
The class of problems for which the singular points either do not exist at all
or can be detected by graphical or analytical methods.

One class of problems where Biﬁg'ular points do not occur is the case

wheﬁ:e the functions fk- of the cost functional (2. 5) are linear

fkka} = "ka, ck-'-'", k=12, ..., N-1

where <+, > denotes inne.:r product and ¢ are given vectors in R™. If the
functions g k=0,1,..,N=-1 satiefy the requirements of special case C
then it can be easily proved that the functions Ek’ H,, Jk of the DP algorithm 5
are linear fgnctiuns. In particular the functions Ey. are differentiable, and
therefore singular points do not appear. A minimax sequence for this prob-
lem can be obtained by making use of the minimax condition of Proposition
2.8,

The minimax principle of Proposition 2.8 imwever can be used in still

a different way. Assume that a sequence :{uu" W ul, Wy iUy g WN-I} with

a corresponding trajectory {xﬂ, ;‘l’ o4y :EN} has been found via the minimax
condition (2. 34}, and that one cannot verify whether indeed this seqguence is

minimax sequence. Let i

|
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N
I, = T [ 0e) + g _q0q )
o k=1 .

be the value of the cost corresponding to the sequence. Then one can easily

prove by making use of Propositions 2.3, 2.4, and 2.5 that the inequality

5, <7, (2.36)
4] 0

holds, where _j:x iz the optimal value of the cost functional (2.5). In some
' o
cages now minimax problems are solved in order to determine the optimal

value Tx and compare it with the worst-case performance, say Jx , of a
[4] o]
coniroller selected on the basis of other considerations. The reasoning

used is that if the difference {J_ - J
Xo *o

concluded that the worst-case performance of this suboptimal controller is

) is relative ly small then it can be

not unduly poor. Since, by using the relation (2.36), we have

a "small" value of {"Tx - 3_.}: ) can guarantee that the worst-case perform-
o o

ance of the controller under consideration is acceptable. .

b. Discussion and Sources

~The basic approach towards the scolution of the problem of this chapter
is dynamic programming. The computational requirements for this algorithm
depend on the dimension of the system and the nature of the sets Wk in which
the disturbance is known to belong. If the ssts Wk are compact polyhedra
with a relatively small number of vertices the computational requirements
are only slightly greater than those for a deterministic optimal control prob-

lem with the same state and control vector dimensions.
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In s;uma cases a dual algorithm involving the conjugate convex func-
tions of the "cost-to-go' functions can offer computational advantages,
particularly if the sets Wy are only indirectly known via their support
functions. .I

New results in this chapter are the existence results of Proposition
2.2 and some of the necessary conditions in Section 4. The minimax prin-
ciple of Proposition 2. 8 should not be considered as a powerful tool for
solving a wide variety of problems. It can be useful however in some
cages and it is of theoretical interest since, together with the developments
preliminary to its proof, it provides insight into the mechanism of optimality
for the problem of this chapter,

Two special cases of Problem 2.1 are of interest in deterministic opti-
mal control theory. In the first case the sets W, consist of a single point w,,

Wy = {Grk} , k=0,1,...,N-1. .For this optimal control problem the Pro-
position 2.2 yields existence results that to the author's itmwledge, are
stronger than those available in the literature. Some of the results on =

L1}

existence of optimal controls in Lee and hla.rkuB{ are along the same
lines. For the same case the Proposition 2, § _}rields a Minimum Principle i
which holds for a linear discrete-time system and a convex but not differ- i 5:
entiable cost functional. This Minimum Principle is. a sufficient as well
‘@88 necessary condition for optimality as can be easily verified by using

Proposition 2.5. Notice that for this case there exist no singular points
due to the nature of the sets Wk. A similar Minimum Principle for a linear i

continuous-time system and a convex but not differentiable cost functional

s r T

has already appeared in (Hel). Necessary conditions along similar lines

can also be found in {R2}, (Lu2), (B3). A second special case of interest in i;‘;_f
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deterministic optimal control theory is the case where the system is de-

scribed by the equation

Xeq1 = A + Gw k=0, Na (2.36)

and it is required to find

N .
T = sup Z f (x, ) {2.37)
Xy woeW. kel K

kT k
k=0,1,..,N-1

where fk’ k=1,2,...,N are real valued convex functions. This problem
can be recognized as the special case of Problem 2.1 with the functions

gk defined as

g (4 ) = oo foru 40, g (0)=0, _k=0,1,-+-,N-1

For this problem Proposition 2.8 yields a Maximum Principle which can be
proved without the assumption that the optimal trajectory does not go through
singular points, and that the initial state is a reguﬁr point. The proof is
based on Propositions 2.3 and 2.7 and an argument similar to the one used
for the proof of Proposition 2. 8. This Maximum Principle holds for a linear
sys-ter.n and a nondifferentiable convex functional and provides a necessary,
but not sufficient, condition for optimality for the problem of equations (2. 36)
a.mi- {2.37). It can be easily generalized for the case of system (2. 36) where

it is required to find
T )
J. = sup I Af (x, )+ h_ . (w, .)
3T e e TR M S
k k
' k=0,1,..,N-1

where hk' k=0,1,...,N-1, are any continuous real valued functions on R”,
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Open-loop discrete time minimax control problems can be viewed
as single-stage feedback problems (N=1), and therefore for the case of
a linear system and a convex cost functional they can be considered as a
special case of Problem 2.1. In addition tb the results of this chapter
the necessary conditions in (Dal), (Da2), (Bral), fDl}, (D2), (D3) and the
computational algorithms in (D1}, [Sal), (Psl), {BS]-can be used for the
solution of such problems. Some of the material in these references is
applicable to nonlinear and nonconvex open-loop problems as we?ll.

Linear discrete-time minimax control problems with perfect state

(Wi (Wi who developed

information were considered first by Witsenhausen
the dynamic programming algorithm and its dual for the case of the cost
functional prﬂ. Byseons HN-I} = vg;gw fN[xﬁ}' He ;ansidered in detail
k=0,1,..,N-1

the implementation of the dual algorithm for this case and gave a necessary
condition which parallels Proposition 2.4 of this chapter. He also observed
that 2 minimax principle in general does not hold due to the presence of
singular points,

The dynamic programming algorithm of this chapter can be extended
to much more Qe neral minimax control problems as will be seen in Chapter 5,
All the other results of this chapter rely on linearity and convexity. Their

extension however to continuous-time linear systems appears to involve

great technical difficulties.



CHAPTER 3

REACHABILITY OF A TARGET TUBE WITH
PERFECT STATE INFORMATION

1. . General Remarks ‘

In this chapter we consider a special case pf.the problem of the
previous chapter which will be referred to as the poblem of the Reach-
ability of a Target Tube by the state of the system when the controller
has available at. each time a perfect measurement of the system state,
The motivation for considering this problem arises from two basic prob-
lems of deterministic control theory, the contfollability problem, and
-the tracking (servomechanism) problem. The controllability problem
is concerned with transfering the state of a system from an initial state-
time pair to a final state-time pair. The tracking problem is concerned
with keeping the state trajectory of the system "sufficiently close' to a
prescribed trajectory.

The problems considered in this chapter can be viewed as the '
analogs of these two problems when there are disturbances driving the
system. In accordance with the general approach of this thesié we as-

sume that these disturbances are unknown except for the fact that they

belong to given sets. Under these circumstances, the most natural ;
analog of the deterministic controllability problem is that of steering i
the system state at the final time into a desire.d target set under all ,
possible combinations of disturbances. In other words, we would like to L
design a feedback controller in such a way as to guarantee that the final
state of the system will always lie in a prescribed target set despite the

pPresence of uncertainties. In a similar vein, a natural analog of the

-49-
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tracking problem under these same conditions is to keep the entire state
trajectory in a "tube" containing the desired trajectory.under all possible
disturbances. We refer to these two problems as those of "Reachability
of a Target Set” and "Reachability of a Target Tube'. Possible applica-
tions of these two problems can be expected. in the control of systems
under uncertainty when either a set-membership description of the un-
certain quantities is more readily available than a probabilistic one, or
where specified tolerances must be met with certainty.

In the next section we formulate the problem of Reachability of
a Target Tube which involves a linear discrete-time systerm. The prob-
lem of Reachability of a Target Set under the same circumstances can be
viewed as a.. special case of the problem of Reachability of a Target Tube
and will not be considered explicit]ly. The solution of the problem by dy-
namic programring will be giveu. in Section 3 by making direct use of
the results obtained in Chapter 2. In Sections 4 and 5 we shift the em-
phasis to the development of algorithms which have pdtential for practical
applications. We consider the case where all the given sets are ellipsoids
in the appropriate Euclidean spaces and we develop an ellipsoidal ai)'proxi-
mation algorithm which results in a control law which is a linear function

of the system state, thus offering attractive implementation advantages.

2. Problem Formulation

We will consider the following problem:

Problem 3.1: Given is the linear discrete-time dynamic system:

XK+l ¥k k

——

= Ax +B uk‘!'Gka, kzo,l,...,N—l (3.1)
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where x, € Rn, k=90,1,..,N, are the state vectors, u € Rm. k=0,1,..,N-1,
are the control vectors, wy € Rr, k=0,..,N-1, are disturbance vectors, and

Ak' Bk’ Gk’ k=0,1,.., N-1 are given matrices of appropriate dimension.

The initial state X, is known and the disturbance vectors W belonpg to
given compact sets WkCRl_., wy € Wk, k=0,1,...,N-1.

Attention is restricted to control laws of the form

n__U

M iR K’ k=0,1,...,N-1
taking values

U = pk(xk). k=90,1,...,N-1
where UkCRm, k=20,1,..,N-1, are given closed convex sets. It is required
to find (if it exists) a control law in this class such that for all k the state

X 41 of the closed-loop system

-= Akxk + kak(xk) + kak ) {(3.2)

X +1
is contained in given closed convex sets xk+l' k=0,1,.. ,N-l, for all pos-

sible values of the disturbance vectors Wi

We shall say that the target tube {XI’XZ' . e ,XN} is reachable if

there exists such a control law.
It is easy to see that the Problem 3.1 is a special case of the Prob-

lem 2.1 of the previous chapter with the cost functional defined as
N )
FBgsbyreeabiy ) = Supw E_ B, | X, ) +61my 6 )T 11} (3.3)
k= 0, 1, “«-ny N"l
where §(x| X) denotes the indicator function of the set X (6(x| X) = 0 if
x€X, 6{x|X)= oo if x¢ X )

With this definition the target tube {X), X,,...,X\]} is reachable if the optimal

value?fxo of the cost functional (3.3) is 0. It is not reachable ifix = ™.
. o
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It should be noted that the problem of this section. has also been
considered in a somewhat more general form in"(B'l'). The approach used
in this reference is purely geometrical and does not. rely on the solution

of the Problem 2.1.

3. The Dyﬁamic Programming Algorithm

Application of the dynamic programming algorithm of Proposition 2.1

of the previous chapter yields the optimal cost

1

- *
Jxo I (x,) = a(xolxo) (3.4)
from the recursive equations

Ek+1(x) = G(XITk-'_l)s k= Onzsl-.-.-N-l
Jelx) = 80 X)), k=0,1,...,N

where the sets T, and X: are given by the relations

XN o= Xy - (3.5)
:k“ = {xl(x-!-Gl;Wk)CX:*_l}. k=0,1,...,N-1I (3. 6)
X: {xkl (Akxk +Bkuk)€Tk+l'A for some ukeUk} n Xk, k=1,2,..,N-1 é

(3.7)
x: = {x_[(A,x, +B,u )eT,, for some u €U ) (3. 8) i

* . . .
If x € Xo’ by equation (3.4), the optimal cost is 0 implying the exis-
tence of a control law that achieves reachability of the target tube {Xl, ) ST
XN}. 1f xoéx: then the target tube is not reachable.

Some of the properties of the sets Tk and X: of equations (3.5} through
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(3. 8) can be obtained by making use of propositioné derived earlier in
Chapter 2. Thus by Proposition 2.2 these sets are convex whenever nonempty, and
if the sets Uk are compact they are also closed.: If:in :init’ion.:the matrices Ak' k =
0,1,...,N-1, are invertible then it can be pljoved that the sets 'I‘k and

X: are compact. Also since the support function and the indicator func-
tion of a closed convex set are conjugate to each other the support func-
tions of the sets Tk and X;: can be obtained by making use of the equations
(2.16), (2.17) and (2.18) of the previous chapter.

A control law that achieves reachability can be obtained as follows.

#* ) | _ o
To every x € xk associate a vector p.k(xk) = we Uk such that

(A, # Bugle Ty )
By definition of the set Xz such a vector exists. It can be seen that.if the
target tube {X,, X,,..., X)) ie reachable from the initial state of the sys-
tem, then if we use a coﬁtrol law defined as above the state x, will belong
to the set X: for all k,and thus definition of the control law for vectors
outside the set X: is redundant,
For purposes of future reference the tube {Tl’ Tpruer, TN} will be

. %* %
called effective target tube. The tube {X_, X},..., X5} will be called

modified target tube and in fact it specifies the region of state space where

the state will lie when a control law that achieves reachability is used.
For practical applications it is important that the sets T, and X:
of the effective and modified target tube can be characterized by a finite
set of numbers. This is possible when the given sets. Xk and Uk are convex
polyhedra. The sets Tk and X: are in this case polyhedra and thus can be

characterized by a finite number of bounding hyperplanes. The corres-

nd
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ponding algorithm(Bl) ie however beset by the fact that the number of -
bounding hyperplanes increases at every step of the algorithm. In ad-
dition the implementation of a control law that achieves reachability can

be quite cumbersome.

In the case where the given séts are not polyhedra, characteriza-

%*

tion of the sets Tk’ )L’k

finite set of numbers is in general infeasible. One can however conceive

of the effective and modified target tubes by a

of constructing sets that internally approximate the séts Tk’ X: and which
can be characterized by a finite set of numbers. One such possibility is
to approximate the sets Tk and X: for each k by ellipsoids —'kaTk,

f:CX: since an ellipsoid is completely characterized by its center and

a weighting matrix. Then in order for the original target tube {}'(l , XZ""'
XN} to be reachable from the initial state X it is sufficient (but not nec-~
essary) that X € E:. This approximation approach is the basis for an el-
lipsoidal approximation algorithm given in the next section, where results
on the optimal control of linear systems with quadratic cost criteriaare

used not only to obtain ellipsoidal approximating sets but also to derive

control laws which are linear.

4. An Ellipsoidal Approximation Algorithm

Consider the special case of Problem 3.1 for which the constraint

sets are the ellipsoids described by:

X, = {"kl"iccicckxkf 1}, k=. 1,2,...,N-1 (3.9)

Xy = fxpglxj¥xy < 1) | (3.10)
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Uk = {uklu.'kRkukﬁ l}' k: O’I'IOI’N-I (3.11)
w, = {wlwQw <1}, k=0,1,...,N-1 {(3.12)

where the ma.‘trices‘l’, Rk' Qk are given positive definite symmetric ma-
trices for allk = 0,1, ...,N-1, and the matrices C,_ are given. We also
assume that the matrices Ak in the system {3.1) are invertible .*

We first internally appraximate the set T, of equation (3.6) by an ellipsoid.
To this end, we state the following lemma: the proof of which can be found in (S}

Lemma 3.1: Consider two ellipsoids E|,E, in R” with support functions

cr(xIEl) = (x'le)l /2,. cr_(.xlEz) = (x'sz)l,z. Their vector sum E1 + EZ

is contained in the ellipsoid E, with support function
sx|E) = {x(plQ, + 1 -pyla,n!/?

where P is a free scalar parameter with 0 < f < 1.

For ellipsocid TN

it is sufficient that'-fﬁf_-l- GN~IWN-1 X The support functions of the ellipsoids

to be contained in f.he set TN of equation (3. 6)

G and X\, for the case considered in this section are, o{x} GNP ®

1/2

N-1YN-1

(x'GN-lQI:II—lGi*I_-Ix) and ‘:r(xlXN) = (x'\l’—lx)llz. By Lemma 3.1 if follows
that the relation TN + GN-IWN-I CXy is satisfied if the support function of

TN is given by

Notice that if the discrete-time systemn (3.1) results from sampling of a
continuous-time linear system the matrices A will always be invertible.
However, it is easy to see that in what follows invertibility of the ma-
trices Ak is not necessary if the matrices Ci(Ck are positive definite for
all k.
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o(x|Ty) = (x'F;le)lI z

where the matrix F;ql is given by

- a-ep ! pilay 0t Gy (.13)

" and ﬁN is a free parameter such that 0 < pN < 1. If the given constraint
sets are such that the set TN has a nonempty interior, there exists a

scalar BN with 0 < By <1 such that the matrix Fyy of equation (3.13) is

positive definite and the ellipsoid
T'N = {x]x'FNx < 1}
is contained in the set TN.

By using the ellipsoid T‘N a set contained in the set X;_l of equation

(3.7) is now defined as the set of points fo-l with the property that both
*N-1°N-1CN3*N-1 £ 3 (3.14)
and
(AN—lxN-l +BN_1uN_1)_€-'fN for éome Un_i€ UN-I’
The second requirement becomes in this case that
x'FNx < 1 for some Ung with ui\l-IRN-luN-l <1 (3.15)
and with
x = AN-lxN-l + BN-luN-l | _(3.16)

The set of points N1 satisfying relations (3. 14), (3. 15) and (3. 16) clearly

contains the set of points XN.i With the property that for some Upn € rR™

f
!




*N-1N-1ON-1%N-1 F UNC RNo e X Py x S 1 (3.17)

X = AN-lxN—l + BN-]“N-I (3.18)

By well known results on the linear quadratic regulator problem of optimal
control(Kl) the set of points XN.-1 satisfying the equations (3.17) and (3.18)
for some un_q€ R” is given by

— S
Xn-1 T B ® N EnoNer £ 1) S (3.19)
where the positive definite matrix KN-I is given by the discrete Riccati
equation

Ky, = AN (Fo + By Rl BL ) la. +cr (3. 20)

N-1 =~ “N-1J'"N. N-1"N-1"N-1 N-1 N-1"N-1 *

Furthermore a control law which achieves reachability is given by

-1
N1 T PNGONeg) = c(Ryly FBR  FBN )T B PN A
(3.21)

By proceeding with similar approximations we define sets

—k S — . A .
TN-I’ XN-Z' ooy TI' Xo. If some ellipsoid Tk 18 empty, then the algorithm

breaks down. This of course does not imply that the original target tube is
not reachable, since approximations were involved in obtaining Tfk. In this
case if we wish to proceed with the ellipsoidal algorithm ..we will have to
start with a "larger' target tube or "Iarger".' control constraint sets. We

summarize the algorithm below:

' *
i’
effective target tube {?i.-'fz, ‘o '-fN} are given recursively by the equations:

. K —
An internally approximate modified target tube {fo, X. . uoo, X;} and

- _ :
X, = {xklekakf 1}, k=1,2,...,N (3.22)
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Tk = {xlx'Fkx <1}, k=L.,2,...,N (3.23)
where
Filo- g-pouxt-slle, .Ql ) (3.24)
kO 1 X P S 1k :
} -1 -1 |
Keer =A@ # B RO B ) A * CiiGi (3.25)
Ky = ¥ - | (3.26)

and the free parameters ﬁk, k=1,2,...,N, are such that 0 < ﬁk < 1 and

the matrices F, are positive definite for all k.

A sufficient condition for reachability is that the set

—f
= ' <
X {xo |x!K x < 1} (3.27)

contains the initial state X where )

_ -1 ~l -1 |
K, = AL(F] +B!R "B ) A (3.28)

Furthermore a control law that achieves reachability is given by the equation

) = (R +BLF, | k) BIF,  Ax., k=01,...,N-1(3.29) b

We remark that another contml law that achieves reachability is the

control law with a dead zone given by equation (3.29) if x} J!Kii(FlH_1 %5 >1 JI

(i.e., if Akxk.‘“fkﬂ ), and p, (x, ) = O otherwise. In certain applications the

use of a dead zone can be particularly beneficial.

It should be mentioned that a similar ellipsoidal algorithm can be

obtained for the case where the given sets xk+1’ Uk’ Wk, k=0,1, , N-1,

are ellipsoids which are centered at given points other than the origin.
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The case where the system (3.1) is time-invariant, the given
constraint sets #re constant and the final time N approaches infinity is
highly interesting. The behaviour and the convergence properties of the

ellipsdidal algorithm imde_r these circumstances will be examined in the

next section.

5. Infinite Time Behaviour of the Ellipsoidal Algorithm
Consider now the case where the system (3.1) is time-invariant
X,y = Ax + Bu + Gwy (3.30)

the given constraint sets are constant, i.e., R, = R, Q, = Q, Ci.Cy =V,
for all k, and the final time N approaches infinity.

The ellipsoidal algorithm of equations (3.22) through (3.26) under
these circumstances, and assuming a constant scalar p with 0 < B <1, i.e.,

pk = B for all k, is given by the equations:

'i: = {x IxKx < 1) (3.31)
T, = {xlxF x< 1} - . (3.32)
where
Pl o= a-eax!-plea o _ (3.33)
k. . = aqFleBr iBy la 4V (3.34)
K1 Fle | '
Ky =¥ (3.35)

under the assumption that the matrix F_ " is positive definite for all k.
Assume that for some scalar p with 0 < p < 1 the algorithm of

equation (3.31) through (3.35) possesses a positive definite steady state
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solution K_m given by

K = A'(F:; +BR™ !B 1A +V - (3.36)

for which the matrix

-1 -1 IS S
Flg = (1-PUK g, - BT GQTGY (3.37)

is positive definite. Then if the initial state belongs fo the set f* =
{xlx'K_mx < 1} the state of the syétem {3.30) can be made to stay indefi-
nitely in the tube {f*, f*, . .-} by application of the linear time invariant
control law

g(x‘)’ = -(R +_B-F_mB)'IBF_mAx (3.38)

Since we will have -f*C X = {xlex < 1} infinite time reachability of the ‘
given target tube {X,X, ...} is achieved.

It should be noted that in the actual operation of the closed-loop
system the initially given tube {X,X, ...} loses its significance since the
systemn state will always remain in the internal tube {f*, E*, ...} the sets
-f* of which will differ significantly from the sets X of the initial tube both
in "size' and "orientation'. Thus in any infinite time desig‘n pmocedure the
given set X and the corresponding matrix ¥ take the role of a design para-
meter which can be adjusted to obtain different steady state solutions K-oo
of the algorithm.

A question of importance is under what circumstances the algorithm
of equations (3.33) through {3.35) will converge to a steady state solution
K_m satisfying the equations (3.36) and (3.37). Clearly given the system

(3.30) and the matrix Q specifying the disturbance constraint set W, the




- usually there is a certain degree of freedom in adjusting the control con-

in view of the comment of the previous paragraph plays the role of a de- 4

-61=

matrices R and ¥ must specify a sufficiently "large' control constraint
set and a sufficiently "large' target tube relative to the size of the dis-
turbance set and the nature of the matrices A, B and G of the system. Thus
if the matrices R and ¥ spec1fy relatively small constraint sets the algo-
rithm of equations (3, 33) through (3. 35) should not be expected to converge
to a steady state and guarantee reachability from some initial states. Now

in any practical situation the designer is given the system (3. 30} and the

mn

matrix Q specifying the set W where the input disturbance belongs, and

straints, and particularly the matrix ¥ specifying the target tube which ﬂg}

sign parameter. In thie sense a possible design procedure is to initially

select the matrices R and ¥ and in case the algorithm does not converge

to a steady state solution, to decrease these matrices by multiplication by
factors less than one and repeat the procedure until convergence and gatis-
faction of the designer. It is important however to know under what cir-
cumstances there exist matrices R and ¥ such that the algorithm converges
to a steady state, and furthermore under what conditions such matrices can
be obtained by repeatedly multiplying any initially selected matrices Rl and
‘I’l_by factors of less than one. This is the object of the next proposition
which states that the design }?rocedure outlined above is successful provided
the system (3.30) is stabilizable, i.e., if there exists a matrix L such that
the matrix (A - BL) is stable (has eigenvalues within the unit disk of the
complex plane). Notice that the system (3.30) is stabilizable provided the

pair (A, B) is controllable (but not conversely)(wol).
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Proposition 3.1: Assume that the system (3. 30) and the positive definite

symmetric matrix Q are given and that the system {3.30) is stabilizable.
Then given any positive definite symmetric matrices \I,l and R 1 of appro-
priate dimension, there exists a scalar 51' 0 < ﬁl < 1 such that for
every scalarf, 0 < p < BI there exist scalars a.l,b1 depending on P such
that for all matrices ¥ = a¥, R = bR, with 0 < a _S.a.l. 0<b<b,, the
algorithm of equations {3.33) through (3.35) converges to a positive def-
inite symmetric steady state sohition K-oo satisfying equations (3.36) and

(3.37).

The proof of the above proposition follows similar, yet a little
more complicated, arguments with a proof of convergence of usual Riccati
(Wo2)

equations to a steady state solution Due to its length this proof will

be presented in Appendix II.

Another important question concerning the infinite time ellipsoidal
algorithm is whether the resulting linear time-invariant control law makes
the closed-loop system asymptotically stable. This question is answered

in the affirmative in the following proposition.

Proposition 3.2: Assume that the algorithm of equations {3.33) through

{3.35) converges to a steady state solution K-oo' where K-oo is a positive
definite symmetric matrix for which the matrix F-oo' of equation (3.37) is
also positive definite. Then the closed-loop system resulting from appli-
cation of the linear time-invariant control law of equation (3. 38) is asymp-

totically stable.

The proof of the above proposition will also be given in Appendix II.
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An immediate consequence of the above proposition is that tran-
sients due to initial states will vanish eventually during the operation of
the closed-loop system. More accurately for any € > 0 it can be guar-
anteed that after a sufficient number of steps the state will be confined

in the set f* + €B, where B is the unit ball in R", and this will occur

for any initial state x_ in R",

6. Diacussion and Sources

The problem of the reachability of a target tube was exandined in
this chapter with emphasis in the development of an ellipsoidal approxima-
tion algorithm that appears to have potential for practical applications.

The attractive feature of the ellipsoidal algorithm is that it pro-
vides a linear control law which in the infinite time case makes the closed-
loop system agymptotically stable. Furthermore for. the infinite-time
case the existence result of Proposition 3.1 guarantees that the algorithm
is applicable to every linear time-invariant system which is stabilizable.
Thus the ellipsoidal algorithm appears to offer practical advantages as a
design method for many i'egulatipn and tracking problems which involve a
linear system, and for which the statistics of the uncertain quantities are
unknown and difficult to measure, or for which specified tolerances must
be met with certainty.

A number of questions concerning the performance of the algorithm
remain as yet unresolved. One such question concerns the quality of the
approximation involved in the algorithm. If appearé to be very difficult
to obtain precise estimates of the approximation which are applicable to

large classes of systems. Thus some further research and simulations

[T
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are required in this area. Another question, and in the author’'s opinion
the most important, touches upon the merits of the whole minimax design
philosophy. Minimax designs are in general concervative, optimal against
the worst case. In the partiéular case of the ellipsoidal algorithm the
result is that the feedback gains of the controller tend to be large in mag-
nitude, a feature which in some cases may be undesirable. Furthermore
this situation is adversely effected by the approximations invelved. Only
simulations and practical experience can give soine answers to this ques-
tion.

Many of the results of this chapter have been reported in(Bl). The
approach used in this reference is purely geometrical and is applicable to
a large class of problems. It not required that the system is linear and
that the given sets are closed, convex or compact. In fact not even the
linear vector space structure of the space of definition of the system is i
necessary. However the ellipsoidal algorithm is applicable only to the
class of problems considered in this chapter. The Propositions 3.1 and 3
3.2 have not appeared earlier. It is interesting to note that the equations :
of the ellipsoidal algorithm are very similar to Riccati equations related

1(RRl)

to linear multistage games with quadratic cost functiona ., In fact

the proofs of Propositions 3.1 and 3.2 were to a large extent motivated
by this similarity. | |

The problem of the reachability of a target set is the special case
of the Problem 3.1 where the sets X, for all k except k = N are equal to
the whole space R™. This problem .fb:_r a linear discrete-time system,
closed-loop control and perfect state information was first considered

by W’itsse-n.haat.is¢=.-nmr"l ), (W2) in the framework of a more general minimax



-65-

control problem. The same problem for a continuous-time system but
an open-loop controllexr was also considered by Delfour.and Mitter in’(De'l),
Problems related to those of this chapter that require attention
are the case of a nonlinear system and the case of a continuous, linear
or nonlinear, system. The__resulta m(BI)’ are applicable to nonlinear
discrete-time systems however no practical algorithms applicable to
nontrivial systems are available at this moment. The case of a continuous-
time linear system is considerably more difficult to handle than the case
of a discrete-time systermn. Some results obtained by the author in this
area are not as yet conclusive.
Finally we note that the problem of the reachability of a target tube
with imperfect state information, including the case where instead of the
entire state only a linear output of the system is measured exactly, will be

considered in Chapter 6.

A e L
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CHAPTER 4

STATE ESTIMATION PROBLEMS FOR A SET
DESCRIPTION OF THE UNCERTAINTY

I. General Remarks

In this chapter we digress from minimax_' control problems in order
to consider some state estimation problems which involve a set-membership
description of the uélcertainty. Such problems, though important in their
own right, are essential for the solution of minimax control problems with
imperfect state information. Although the concepts to be presented are
applicable to much more general situations we will be concerned exclusively

with the case of a linear discrete-time dyna.inic system

k=0,1,...,N-1 (4.1)

=‘Ax -I-Bkwk.

k+1 Kk

to which there are available noise-corrupted measurements
Zk = Ckxk + Vk (4.2)

where x € R" is the system state, Wy € RY is an input disturbance vector and
v € RP is the measurement noise vector. We assume that there is no control
input to the system. The algorithms that we derive however can be trivially
modified to take into aécount the effect of any known deterministic input by
virtue of the linearity of the system and measurement equations.

In a stochastic estimation problem involving the system (4. 1) with
the measurements (4.2) the uncertain quantities, i.c¢., the initial state and
the input and n. . urement noise vectors, are modelled as mutually inde-
pendent random vectors with known probability density functions. In this

case all information about the system state at any time that is provided by

the measurements i3 contained in the probability density function of the state

~66-
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canditionéd on these measurements. This conditional probability density
function is then used, explicitly or implicitly, to determine an estimate
‘of the systemn state which is best in some prescribed sence.

In the case considered here, the uncertain qﬁantities are not mod-
elled as random vectors, but are considered instead to be unknown except
that they belong to given subsets of appropriate vector spaces. Under
these circumstances, all information about the system state at any time
that is provided by the measurements may be summarized in the set of all
states consistent with both the measurements received and the constraints
on the uncertain quantities., Once this set of possible states is characterized
a point estimate can be selected using some criterion such as the minimax
error criterion for example. In what follows however we will be concerned
exclusively with the characterization of the set of possible states or some
approximation thereof. Since for the special cases that we will consider this
set will be an ellipsoid, if a point estimate is desired the center of the ellip-
soid is the natural candidate.

Two distinct types of constraintas on the uncertain quantities will be
considered. The first is the energy-type constraint

-1 N

) -1 -1 .
L] E .
x¥x  + kfl(wk_lqk_lwk_l +viR V) <1

where‘I’. Qk' R, are given poasitive definite symmetric matrices for all k.

k
For this constraint we show that the set of possible states at any time con-
sistent with the output measurements is an ellipsaid whose center and

weighting matrix are generated by equations identical to those associated

with the best linear estimator (Kalman filter) for a certain stochastic esti-
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mation problem. We shail demonstrate a one-one correspondence be-
tween estimation problems where the uncertain quantities satisfy an energy
constraint and linear minimum variance stochastic estimation problems.
Once this correspondence is established we will be able to use available
results in stochastic estimation theory to derive estimators for the energy
constraint case for a number of problems of interest including the filtering,
prediction and smoothing problems.

The second type of constraint that we consider is the more practically
important case where the uncertain quantities are constrained at each instant

of time to lie in ellipsoids, i.e.,

-1
-1 . -1
wWx <1, wi QW S L wRv <1, k=L2,..,N

In this case the set of states consistent with the measurements is hot an
ellipsoid and it is not, in general, characterizéd by a finite set of numbers.
However, an ellif:soid bound to it can be detemmined by bounding the instant-
aneous constraints by an energy constraint and using the results derived for
that constraint. The resulting estimator for the case of the filtering and the
prediction problem is similar to that proposed by Schweppetsn but it has
two important advantages: firat the gain matrices do not depend on the
particular measurements received and are therefore precomputable and,
second, it reduces to a constaﬁt system as the finé.l time becomes in.finite.
In all other respects it is comparable to that proposed by Schweppe. Further-
more our approach perfnits the derivation of an estimator for the smoothing

problem which has not been previously considered in the literature.

Bl ol
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2. Formulation of the Problem with an Energy Constraint

In this section we formulate a general estimation problem involving
a linear discrete-time dynamic system and a combined energy constraint
on the uncertain quantities. This problem includes as special cases the

filtering, prediction, and smoothing_problems.

Problem 4.1: Consider the linear discrete-time dynamic system

= A x, +B, w k=0,1,...,N-1

Xr+1 KKk k' k'’

to which there are available noise-corrupted mea.su'r'gments
e = St Vi

where x) € R" is the system state, w, € R" is the input disturbance vector,
vke RP is the measurement noise vector, and tl_ie matrices Ak’ Bk' Ck have
the appropriate dimensions. The initial state x, and the disturbances Wi

are assumed unknown except that they satisfy the energy constraint

k
' _ ' -
x; x  + 121 (Wl -IQk-Iwk-l + v Rk vk) 1 (4.3)

where‘}'. Qk-l' Rk' k=1,2,..,N, are gi\fen.positive aefinite symmetric
matrices. Let i, k be arbitrary integers, 0<i< N, 0<k < N. It is re-
quired to find the sét xilk of poasible system states x, at time i which are
consistent with the constraint {4.3) and the measurements z,,2;, ..., 2,

up to time k.

We remark that if i = k this problem is usually called the filtering

problem, if i > k it is called the prediction problem, and if i < k it is called

the smoothing problem.



In the next section we will obtain a general solution to the above
problem by associating it with a stochastic estimation problem, the solution
of which is well known. We will then use this general solution to obtain

estimators for the special cases of filtering, prediction, and smoothing.

3. A General Solution to the Problem with an Energy Constraint

Given any estimation problem where the uncertain quantities are
unknown except that they lie in some given set it is possible to give a precise
characterization of the set Xilk of possibie states x; at time i consistent with
the measuremgnts ZysZgrccy Zy in terms of the given constraint set and
the system and measurement equations. This characterization is usually
quite elaborate but for the Problem 4.1 it takes a particularly useful form.
A great deal of insight can be obtained through it, and most importantly it
leads to a direct correspondence with linear minirnum variance stochastic
estimation problems. We will first introduce some notation.

Let ue Rn+N(r+p) be the vector consisting of all the uncertain quan-
tities according to the relation

u = (x:), w"a, w'l,...,wiq_l,vf,vz',...'.v'i\l)' (4.4)

Let us also combine all measurements received up to time k into

one vector

§k= (2y, 2hs--s 2p) (4. 5)

Both the state of the system X, at any time i, and the vector Ck can

be obtained from the vector u of equation (4.4) by a linear transformation

%, = Liu _ (4.6)
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ck. - Du | (4.7)

where the n x [n+N(r+p)] matrix L, and the kp x [ n+ N{r+p)] matrix D,

are given for all i and k by

L, = [®0),9E1B,... (i, i-DB 5,8, 1,0,...,0] {4.8)

c1¢(1,0). C,B,, 0, 0,...,0 0,..,01,0,..,0 0,..,0

——-———————-—————-——_—-—_—-—-—-—_—--—

_ (4.9)
where the transition matrix @(i, j} is given by
&, = Ai_lAi_z...Aj for j < i
Dy,i) = I

and where the dimensions of the zero and identity matrices in the above
equations are consistent with the multiplications indicated in equations (4. 6)
and (4.7).

The energy constraint (4.3) implies that the vector u of equation (4.4)

belongs to the ellipsoid
v = {ulumtu<1) (4.10)

where the positive definite matrix M is defined as

Yo o

Q,

Ay

M = Qg (4.11)
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Now, for fixed _meaéurements ck‘ the set Xi I which solves the

Problem 4.1 can be conveniently characterized as

Xk = {x|x = Lyu, § =D vel} (4.12)

Fa)
By defining the set Uk of all possible vectoxrs u consistent with the mea-

surement vector gk

A

U {u} &, = Dw, ue u) (4.13)

k:

we have from equation (4. 12) that the set xili& is given by the equation

M
ik - LU, | | (4.14)

X
" Thus the set X. ifk can be obtained by a linear transformation on the
set U which is the set intersection of the set U with the linear variety
(manifold) {ul ; =D u} defined by the measurements. Since the set U is
an ellipsoid in the space Rn+N(r+p) the set intersection Uk is also an ellip-
soid and the set xilk is also an ellipsoid since by equatiot} (4.14) it is
obtained through a linear transformation on an ellipsoid. We proceed to

characterize the center and weighting matrix of the ellipsoid Xilk in the

following proposition.

Proposition 4.1: The ellipsoid xi|k which solves Problem 4.1 is given for

alli,k, 0<i<N, 0<k<Nby

Xk = x| ("'gi[k?'zi-llkxx"?ﬂk) <1- 82 (k)} {(4.15)

where the matrix E._i bk is given by

] -1y
Z, = LIM- MD} (D,MD})” D MIL (4.16)

ilk

the n-vector §1| Kk is given by
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A _ -1
L = LMD} (D, MD} 1) Ck (4.17)

and the nonnegative scalar & (k) is given by

%K) = chn moy) ' &, o (4.18)

In the case where the matrix zil I is only positive semidefinite but not positive
definite the ellipsoid xil K is characterized by its support function

IR St SR L Ul T SHE @9

It should be mentioned that, as will be shown later, the matrix EiIk is invert-
ible provided the matrices Ak in the system equation (4.1} are invertible;
Proof: Since tiae equation (4, 19) implies the equation (4.15) whenever the
matrix Eil K is invertible, it will be sufficient to prove

o ix X314 = sup<x.x> <x*"&|k>+“ 2001 1 % x zilk"*)llz

I~
We will first characterize the support function of the ellipsoid U, of equation

(4.14)

-1
U, - {ul8, = Dyu, WM Tus1} (4.14)

Consider the space Rn+N(r+p) with the norm

Hull = (v lw?/?

With this norm the set U = {u|u‘M'lu < 1} becomes the unit ball in g iN(r+p)

and the set U of equation (4.14) is the intersection of the unit ball with the
linear vanety {u] ; =D u} Let uk be the {unique} vector of minimum

norm on this linear variety given by the projection t.heorem(L ul)

¢_ = MD}(DMD}) IC (4.20)



-T4-

It can be seen from equation (4. 9) that the matrix D has full rank and
therefore the matrix (DkMDi:) is invertible thus justifying the notation

used above.
. -h .
The set Uk is riow given by:

G, -
and can be also characterized as

: A
6 = & +a- 11815,

2 A 2 ' '
{‘l.l‘ ”u'ak” _<_ 1'||“k|| ’ ;k= Dku}

k
unit ball with the nullspace N(Dk) of the

A
is the intersection of the
for the support function of Gk

| where Uk
matrix Dk' From the above equation we have
cw*ify = <’ §>+a- N8 IBY/% eup  <wliu>(4.2D)
fhallg< 1
ueN(Dk)
By using Theorem 5.8.1 in (Lul) we have
X
Bu <y ,u> = ||3*||
Huall2£1
ueN(Dk)
*
where 4" is the projection of the vector u on the subspace N(Dk). Using
again the projection theorem we obtain
0 *, NS | * 1/2
(a1 = {e [M - MD} (D, MD}) D, M]u }

Using this relation in (4.21) we bave

o(u*lﬁk) = <u*, G’k> +(1- ”ak”

[
Using the fact that xilk = LU, in the above equation, we have

2\ /2 % [ - MDL(DkMDi()"l D, Mju

*}1/2
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* * N
o(x |xilk) = o(Lix |Up)
R Y A 2,172 % . -1 *y1/2
- ex® L8> + (- 18 126N - MDD MDY DM L)
'Now from equations (4.16), (4. 17), (4 .18) and {4.20) we obtain

o be*1X ) = < B>+ - 5% (k) lfz(x*'zukx*)”z

which was to be proved. Q.E.D.

The equations (4.17) and (4.16) for the center Qilk and the weighting
matrix Eilk of the ellipsoid xi‘k appear to quite formidable in view of the
complicated expressions (4. 8) and (4.9) for the matrices L, and D, . Yet we
will be able to obtain efficient recursive algorithms for the computation of

LA Ik

mum variance estimation problem.

and Ei by associating the Problem 4.1 with the following linear mini-

Problem 4.1': Consider the Problem 4.1 where the vectors x , w ,W,, .., W

V1V VN instead of satisfying the energy constraint (4.3), are independent

random vectors with zero mean and covariances

Elx, x.} =¥, Elw,_ %} =9 E{vyy} = Ry i=1L,2,..,N

Find the linear minimum variance estimate ?‘i Ik of the system state x, at time
i given the measurements ZysBgreots Zy and also find the covariance of the

estimation error

b

A t
AR R T -2

By using the relations (4.6) and (4.7) it can be seen that the above

problem is equivalent to finding the linear minimum variance estimate




A ' h
X3 ik of the vector x;

x, = L.u (4.6)
given the measurement

£ = Do | (4.7)

where u is a zero mean random vector with covariance M given by equation
(4.11). The solution of this problem is well known and given in many sources
(Lul !'_ (:_Br.”. The estimate Qilk is given by equation (4. 17), i.e., by the
same expression as the center of the ellipsoid X, Ik in Proposition 4.1. The
covariance matrix Ellk is given by equation (4. 16), the same expression which
gives the weighting matrix of the ellipsoid xilk in Proposition 4.1. Thus
there is a one-one correspondence between Problem 4.1 and the stochastic
" estimation Problem 4.1 which is reflecteiin identical expressions for the
center :?i lic and weighting matrix zilk of the ellipsoid X, Ik on one hand, and
the linear minimum variance estimate Qi Ik and error covariance Zilk in
Problem 4.1' on the other. Now froim the well known -i-e sults in stochastic
estimation theory the estimate :’c\i.lﬁ'and‘érrs)i covariance El ik are comﬁuted
by efficient récursive algorithms (Kalman estimators) which do not require
storage of the measurements. The same algorithms are applicable and can
be used for obtaining the center Qi I and weighting matrix Eilk-of the ellipsoid
xilk' solution of Problem 4.1.

Concerning the scalar Gz(k) of equation {4.18) the following recursive

relation can be proved for all k

2 2 " ' ' .
67(k) = &7(k-1) (2 - CrePre- 1 8e-1 ie- 17" (CrBic - 15T SR ?
(4.22)
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This relation can be used to calculate the acalar GZ(k) recursively without
requiring storage of all the measurements up to time k. The equation (4.22),
the continuoqs counterpart of which has been proved in ,iBZi, can be proved

" in a number of ways. One possible method is by direct manipulation from
the equation (4. 18) using the equations (4. 8), (4.9) at_1d {4.11). This method
is straightforward but too lengthy and tedious to be profitably displayed
here. Another method to prove the equation {4.22) is by considering the
filtering case of Problem 4.1 and by casting it as an optimal tracking prob-
lem as was done -in'{Bé)‘. "The equation (4.22) follows directly from the solu-
tion of this tracking problem.

The preceding discussions have demonstrated that the ellipsoid xilk-
solution of Problem 4.1 can be characterized from Proposition 4.1 by using
results of stochastic estimation theory (Kalman estimators) for the recursive
computation of fhe center ?‘ilk and the weighting matrix Ei[k and by using
equation {4.22) for the computation of the scalar Gz(k). In the next section
we shall explicitly characterize the solution of the Problem 4.1 for the case
of the filtering problem. .

We finally note that the correspondence between the Problems 4.1
and 4. 1! can be extended to some related problems not explicitly considered
here. Such iz the problem where there is no ermr in the measurement
equation (4.2), i.e., zZ) = Ckxk. In this case the eﬂe,rgy constraint (4. 3)

becomes

1 N -1
[}
x“,‘I’- x, + ifl wi-lQi-lwi-l <1

The Proposition 4.1 can be easily shown to hold with the matrices Li’ Dk' M
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a.pproprtately modified. Under these circumstances however the matrix
Dk need not have full rank and consequently the matrix (D MD! ) may not
be invertible. In this case it can be proved gimilarly as in Proposition 4.1

that the center §1| K of the ellipsoid xi' K’ the weighting matrix zilk and the
scalar 62(k) in equation (4.19) are given by

Ty = LM - S DML
where the matrix Sy is any solution of the equation

SkaMDic = MD{c

and

A —
Xk = WMDYk

2
8%(k) = ykaMDkyk
where the vector y, is any solution of the equation
D MDYy, = &y

The correspondence with a stochastic estimation problem similar to Problem
4.1' which involves no measurement noise can still be established and the
regults for this problem(T”" ('1‘2“1 can be used for the solution of the esti~

mation problem with an energy constraint but no measurement noise.

4. Filtering for the Case of Energy Constraints

In this section we will utilize the general solution of Problem 4.1
as given by Proposition 4.1 and the one-one correspondence with the sto-
chastic estimation Problem 4. 1! that was demonstrated in the previous

section to write down explicitly and in recursive form the solution for the
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filtering case. Entirely similar equations can be written for the prediction
and smoothing cases(.Bz)' (Fr1) (Ral) Although it is possible to write the
solution for the general caaeuu) for simplicity we will assume in this and

subsequent sections that the matrices Ak in the syatem (4.1) are invertible

for all k. This assumption will guarantee the existence of all the inverses

that will appear in the expre ssions that follow.

Proposition 4.2: The solution of Problem 4.1 in the filtering case is the

ellipsoid xklk given for all k, 0<k<N, by the equation

Xl = {xl(x-:?k)'ﬂﬁk{x-ﬁk) < 1-62(K)} (4.23)

where the positive definite symmetric matrix Ekl K is given recursively by

the Riccati equation

s -1 -1 -
Zg, = (Bilia +CIR{ Cy) (4.24)

ili
Zili-1 T A% )ie18he1 T Bi1fia B R (4.25)

Eo|o =y (4.26)

the vector Qk is the solution of the equation

M

L AR+, S 1+1(’i+1 Cit184 N (4.27)

£ =0 (4.28)
and the nonnegative scalar Gz(k) is given by the equation
A
l) {(C, p ili- 1C'+R ) ( CiAi-lxi-l) (4.29)

2 k
6(k)=2( -C.A,
i=1

- i 1-1\1-
1=
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Proof: The proof follows directly from Proposition 4.1 for i = k, by uti-
lizing the correapondence mth the stochastic estimation Problem 4.1°

demonstrated in the previous section, and by usmg also equation (4.22).

5. Formulation of the Problem with Instantaneous Constraints

While the preceding sections show it to be of theoretical interest,
the model for the uncertainty described by the enerxgy constraint (4.3} is
of limited use as far as practical applications are concerned. A situation
which appears more often in practice is that in which the uncertain quan-
tities are individually constramed at each point in time. In this section
we formulate such a problem which is ‘then solved in Sections &é and 7 using
the results of the preceding sections. In partxcular. we bound the instant-
aneous constraints by a single combined energy constramt and apply the
results of Section 4. We concentrate our attention to the filtering case.
Similar estimators can be derived for the prediction and smoothing prob-
lems by using the same approach. The resulting estimator is shown to be
simpler but otherwise comparablé to the one proposed by Schweppe(SI)

with the additional advantage that it possesses a steady-state strucure.

Problem 4.2: Consider Problem 4.1 in which the single energy constraint

(4. 3) on the uncertain quantities is replaced by the three individual instant-

aneous constraints

1 | |

W x, <1 : | (4.30a)
ka w, < L k=0,1,..,N-1 (4.30Db)
vIR, < 1, k=1,2,..,N (4.30c)

kk Yk =



==
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where ¥V, Qk' Rk aTe positive definite symmetric matrices. As in Prob-
lem 4.1, ﬁnd the set xi|k of aystem states at time i that are consistent
with both the measurementé Zps 2o s Zy P to time k and the constraints

(4.30).

6. The Filtering Problem with Instantaneous Constraints

Contrary to the case of energy constraints, it is very diffiolt to
obtain the exact solution of Problem 4.2. As mentioned earlier the energy
constraint (4.3) defines an ellipsoid in the space RB-I-_N(I‘-#p). Since the
measurements z;,Zps ¢+ Zy define a linear variety in this space and since
the intersection of aﬁ ellipsoid with a linear variety is also an ellipsoid, the
set of possible system states xi|k' obtained by a linear transformation on
this ellipsoid intersection, is also an ellipsoid, as found in Sections 3 and 4.
The individual instantaneous constraints (4. 30) do not, on the other hand,
define an ellipsoid, and thus the intersection of tﬁe linear variety defined
by the observed measurements with the subset of Rn+N(r+p) satisfying (4.30)
is not in general an ellipsocid. Consequently, the set o_f system states at
time i consistent with the meagurements z,, %y, ¢ ik is not in generai an
ellipsoid: it is a convex set that, in contrast to the ellipsoidal case, cannot
in generai be characterized by a finite set of numbers.

Thus one is forced to seck approximate solutions to Problem 4.2.
The approach taken by Schweppe(Sl) is to compute a bounding ellipsoid to
the set xil K Since an ellipsoid in R" is complete}y characterized by an
n-vector (its center), and an nxn weighting matrix, the storage pmblem is
reduced to more manageable proportioné. Schweppe considered the filtering

and prediction problems for a discrete-time system in (S1), and gave a



-82-

recursive ialgorithm for the center and weighting matrixof a bounding
ellipsoid to the set of possible states. The approach used was to bound
recursivelf the set of possible states at each time instant by an ellipsoid.
This algorithm was later extended to a continuous-time system using a
discrete-to-continuous limiting argument. (s2y The following lemma gives

the filtering algorithm that is presented by Schweppe in (S1).

Lemma 4.1: A bounding ellipsoid to the set of system states X, Ik of Prob-

lem 4.2, is given for all k, 0<k<N, by:

Xl = {xI(x-?:k)'z;1k(x-£k) < 1)

where the positive definite matrix rk|k is given zecursivély by the equations

_ 2 -1, ,-1
3, = a-s5Na-p)F] L, +eCRy G (4.32)
_ -1, |
L1 = G-Pioy) A 15 )i-181 v B 19,8y, (433
zolo =W (4.34)
the vector Qk is the solution of the equation
R = AR toy a-6271 c! (%;,,-C AR)
i+l +1 i+1)  Fn li+1 i+l 1+1 i+1747
(4.35)
with the initial condition
A .
x, = 0 (4.36)

and the nonegative scalar éiz is given for all i by

6? = {z, -

Al o 1)'[(1"’1’-1Ci§|i-lci +p;13i] (2-CiA 1% 1)

(4.37)
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where the scalars pi_l. py» are free parameters with 0 < ﬂi-l < 1,

0<p,<1, i=12,....N.

The estimator of the above lemma has the same basic structure as
the stochastic Kalman filter. It should be noted, however, that the gain
matrix p,,,(1- Gfﬂ)'lziﬂ |i+lcli+1Ri-:l depends on the measurements
received at a particular run and must be calculated from the equations
(4.32) through (4.34) on-line. Furthermore, even for a time-invariant
system, this estimator does not possess a steady state structure due to
the fact that the solution of equations {(4.32) through (4. 34) does not converge
to a steady state as time increases. |

These disadvantages are a.voideﬂ in the estimator we now derive.
The approach is again to bound the set of possible states consistent with
the observations by an ellipsoid. In contrast to (S1), we do this indirectly
by boundii:g the instantaneous constraints (4.30) witl; an energy constraint of
the form (4.3) and then using the results of Section 4 to produce an ellipsoidal
bound on xk| oo We will restrict our attention to the filtering problem. En-
tirely similar arguments can be used to derive estimators for the prediction
and amoothing problerhs.

An energy bound for the instantaneous constraints (4. 30) is given in

the following lemma:

Lemma 4.2 'fhe set Ukc R“"'k(!""p) where

- : 1 : -1
Uk - {xolwol".W_lpvl’-o.vklx;’v xo _<_~ 1. wi“lqi"lwi—l S 1,

v!R.'lv. <1,i=1,2,..,k}
1 1 1 -
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is contained in the set
u¥ - { v v |a,x ! 4-',‘4‘.c v 7!
MR C T AT T LR A TRRL R s b L -izl(az,i-l“’i—l i-1%-1
+a, i"iRi-l‘-'i < 1} (4.39)

where ap 32; io1° 'a3' 3 i=1,2,..,k, are any nonnegative real nlumbers
with
K _
a; + izzl(az’ i-1 + a3’ i) = 1 . (4.40)

Proof: Multiply (4.30a,b,c) by a,, a3 ;_ 1» 23 respectively, sum the
———— » »

last two fromi=1toi= k and use (4.40).Q.E.D.

Having bounded the instantaneous constraints (4.38) by the energy
constraint (4.39), we are now in a position to apply the results of Proposi-
tion 4.2 to give a bounding ellipsoid to the set xklk' The equations that
result by application of Pro_position 4.2 become simpier if we write a,, a, i-l’.

and ag in the following form:

(1-B)(1-p))(1-By M1-pp)_ . (- 1}1-A)

w
-
n

32’ 0 = po(l—pl)(l "pl )(l'pz)- - “(l-ﬂk-l)(lﬂpk)
oy (1B 18y )- - ~(1-B_;)(1-R) (4.41)

----------------------------

where pi_l. Py i= 1,2,..,k are any real numbers with 0 < pi-l <1, 0<p < 1.
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It is easy to see that for the parameters a;, 35 ;_ }» a. . as defined
1’ 22,i-1° 23,4

' k _
by equations (4.41) we have a, + _El(al.2 i-1 +a, i) = 1.
1= ¥ »

By combining now Lemma 4.2 under the identifications (4.41) with
Proposition 4.2 we have after straightforward manipulation the following

'solution to Problem 4.2 for the filtering case.

Proposition 4.3: A bounding ellipsoid to the set of system states xkl K of

Problem 4.2 is given for allk, 0<k<N, by the equation
% -1 A Y
- - 1 - < -
(el e -REL[ - %) < 1 - 6°(k)} (4.42)
where the positive definite aymmetnc matrix Zkl K is gwen recursively by

the equations

_ -1 -1, ,-1

AT L LT E S +0CiR; Gy | (4.43)
. Y :

Ziji = B A 1Ei) 1R +By B, QB (4.44

Zolo =V - (4.45)

the vector Qk is the solution of the equation

~ A . -1
i = AT pi+lzi+1|i+1C'i+1Ril+l(zi+1-C1+1A1Q1) (4.46)

with the initial condition

£ =0 | - (4.47)

and the nonnegative scalar éz(k) is the solution of the equation
2,. 2. _
s2G) = (1B, Mi-p )8 (1)

+(z;-C A =gy e B 151G e LRY ey -CiAL R )

(4.48)

111
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with the initial condition
2
5%(0) = © (4.49)

and 3, Pys i=1,2,..,N, are any real numbers with 0 < pi-l <1,

i-17
0 < Py <1,

It can be seen that the estimator of the above proposition has a similar
structure with the stochastié~ Kalman filter as well as with the estimator
of Lemma 4.1. However, it has the important advantage over the latter that
the gain matrix {pi+lzi+1| i-l-lC! IR‘-:I} is precomputable once the parameters
ﬂl 1* Py ave selected. Furthermore, as will be discussed in the next section,
for a time- mvanant system the estimator of Propomtmn 4.3 can be imple-
mented as a time-invariant system if the final time N approaches infinity.

In practical applications this last advantage can be of extreme importance.

A vital question concerns the comparison of the quality of approxi-
mation to the set of possible states provided by the two estimators. It turns
out that the approximation is comparable in the following sense. Let
{ﬁ;, p'l, .o ,ﬁh_l,pk} be a set of parameters used in the estimator of Lemma

4.1 and {ﬂo,pl, N NS pN} be a set of parameters used in the estimator of

*
Proposition 4.3. Then if we select fori=1,2,..,N

B, .
p! = i-1 : -~ {4.50)

[1-6%(-1)1(1-B,_,) +B;_,

Py
g! = {(4.51)

L7 {1-6%-1101-8,_)) + B, }(-p)) +

This fact was brought to the author's attention by F. Schlaepfer.
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where 52(1-1) is the measurement dependent term of equation (4.48) in
Proposition 4.3, the estimate ellipsoids x; Ik provided by the two esti-
mators are identical for all k and for all sets of received measurements
for which equations (4. 50) and (4. 51) hold.

Another important question concerns the quality of the approxi-
mation of the bounding ellipsoid x:lk produced by the estimator of Propo-
sition 4.3 to the exact set of possible states xklk‘ This is a question
largely unresolved to this date. It appears to be very difficult to obtain
estimates of the approximation involved which will be applicable to a large
class of problems. For any given problem however to is possible to esti-
mate exactly the approximation in any direction as-it willbe discussed in
Section 8. A related problem which will also be discua.sed in Section 8 is the

question of the optimal selection of the parameters ﬁi-l and Py

7. Constarit Systems and Infinite Time Intervals

In this section we consider the special case of Problem 4.2 where
the system and the disturbance ellipsoid sets are constant, i.e., Ak = A,

B.-=B, C, = C. Qk = Q, Rk = R for all k. If we select the parameters ﬁk’

k k

Py to be also constant (i.e., ﬂk = P, Py = p for all k), the equations (4.43),

(4.44) for the matrix zklk in Proposition 4.3 become

B - [(1-p)z;l‘;}k_1 +pcr" 1)t (4.52)
B et - (l-p)'lAZibllk_lA'+ﬂ'IBQB‘ (4.53)

with initial condition Eo lo =W . These equations can be put into the usual

discrete-time Riccati equation form
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Bk ® E k-1 + C'RY Q) (4. 54)
= * *1 *a
Tyt © A zk-1|k-1A +BQ B (4.55)

by defining the matrices A*, Q*, Rtas '

A - ey 2a-t2a, gt s ae e, R 0RO (4056

It is well known(Tl) that the solution Ekl X of equations (4. 54.), {4.55) con-
verges to a positive definite symmetric matrix Eco as k — w if the pair
(A*, C) is completely observable and the pair (A*. B) is completely control-
lable. The pair (A*, B) is completely controllable if and only if the pair
(A, B) is completely controllable i.e., the constant system (4.1) is com-
pletely controllable. This can be seen by the fact that the matrix A¥is a
scalar multiple of the matrix A and therefore the subspace spanned by the
column vectors of the matrix AmB is the same as the subspace spanned by
the column vectors of the matrix A¥mp fgr allm=0,1,...,n-1. Similarly,
the pair (A*, C) is completely observable if and only if the pair (A, C) is com-
pletely observable. Thus, for a completely controllable and observable
time -invariant system, the gain {Ek‘kC'R*'I} in the estimator of Proposi-
tion 4.3 after an initial transient will converge to a steady state constant
gain {EmC'R*_l}. For practical reasons, one would like to implement the
estimator as a time-invariant system using the steady-state gain for the
whole time interval, i.e., starting at the jnitial time k = 0. This is possible
since, as we will prove below, the approximation that results by neglecting
the initial transient vanishes as time goes to infinity.

Using the identifications (4.56), the estimator of Proposition 4.3 for

a time-invariant system gives the estimate ellipsoid
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X = Ul NI 8% k1) (4.57)

where
*-1 -1 '

Alk-1 T A*Ek-l|k-1A*‘+ BQ'B! - (4.59)

Res1 = A%+ Ik+1C'R*-1(zk+1 - CAR)) (4. 60)

5200 = (1B N1-pyle (-1}

+ (zk' CAQk-l)'(CEk‘k—IC’ +R*)-1(zk - CAJ?k_I) (4. 61}

with

Blo ¥+ %, = 0 52(0) = © (4.62)

f Bl — Zoo and T |k-1 ——%o as k — oo and we implement the estimator as
a time-invariant system using the steady-state gain {z;mC'R*-l} the resulting
estimate ellipsoid will be given by |
‘ -1 2
- - ' - -
Y = (el - § 2 x 9 <1 -5 (4.63)
where '

epr = AR zmc'n*'l (34, - CAS (4. 64)

P2k = (1-BN1-p)3 2(k-1) + tzk-CA?k_l)(d”zmc'm*)‘l(zk-CA{?k_l)
{(4.65)
with

§. =0, 32(0) = O (4. 66)

Using the fact that Dl — Zo and Belk-1 3:;0 as k — o, it will now be
proved that ?k —_ ?:k and 3'Z(k) — 6z_(k) as k — oo, i.e., that the estimate
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-0

*
ellipsoid Yk| K of equation (4.63) nconverges'' to the set xklk of equation
(4.'57)_3.3 % — . To this end let zklk = Em + Hk where Hk — 0 as k — .
Then from equations (4.60) and (4. 64) we have

A A _ -1 A %=1 oAl
sl ~ Tier = BB CR carl, - P + HOR T (2 - CAR) (4.67)
Now note that the matrix (A - BmC'R*'lCA) is stable (has eigenvalues within

the unit disk), since by equation (4. 56)

A- E-wC'R*'lCA = (1-311’2(1-p)1’Z(A*-zmc'R*'ICA*)

and the matrix (A% - zdoc'R*‘ICA*) {s stable by a well-known property of the
Riccati equation. Furthermore, the driving term HkC 'R*—l(zk T CAQk)
goes to zero as k —™ oo since Hk —~ 0 as k —~ oo and (zk+1 - CAQk) is bounded.
Therefore, the solution of equation (4. 67) goes asymptotically to zero as

k “ooandhence?k —-ﬁkas k - w.

Also from equations (4. 61) and (4.65)

Eiil) - T(kHl) = (1-9)(_1-p)[52(k)-'5'2(k)] fepy (4.68)
where '

_ A *, -1 A
€rp1 = (Biay - CARP(CE | &'+ R ) (zyy - CAXY)

A ; *, -1 A
(21 - CAFIMCE C' + )z - CAYY)
Since ¥, — % b > 0
1nceyk-—-xkand k+l|k_' mask-—-oowehave €l ask—_-ooand
since 0 < (1-B){1-p) < 1 the solution of the equation (4.68) goes to zero as

k - oo. Hence?z(k) —- 6z(k) as k — .

Thus, in applications where the system is constant and the final time
approaches infinity, one can use the steady-state time-invariant estimator
and be assured that the error that results from neglecting the initial trans-

ient of the solution of the Riccati equation vanishes as time increases.
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8. Discussion and Sources

Two state estimation problems which involve a linear system and a
set-membership description of the .uncertainty were examined in this
chapter. For the case of an energjr constraint on the uncertain quantities the
set of poésible states consistent with the measurements was shown to be an
elhpsoxd which was characterized by recursive estimators similar to
Kalman estimators used in stochastic estimation problems. The results
for the .energy constraint cage were then used to obtain bounding ellipsoid
estimators for the, more often a.ppearitig in practice, case of instantaneous
ellipsoidal constraints on the uncertain quantities. These estimators have
the same basic structure as the Kalman .estimators and offer distinct ad-
vantages over existing s:z:hemes(Sl » (SZ).

The basic practical advantage of the estimators proposed in this
chapter is that they provide intelligent designs with a minimal amount of
information. Instead of requiring precise statistics of the uncertain quan-
tities only bounds on the magnitude or energy of the uncertain quantities
are necessary. ' Since the estimators have the same basic structure as
Kalman estimators the approach used here in effect suggests an intelligent
way of selecting the gain matrices of the estimator with a minimal amount
of information.

One of the queations yet largely unresolved concerns the quality of
the approximation involved in the algorithms for the instantaneous constraint
case. Related to this question is the problem of optimal selection of the
free parameters ﬂi and p. that appear in the algorithms. There are two

difficulties related to this problem. First a criterion for optimization must
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be chosen. Second an optimization algorithm must be devised based on
this criterion. Even choosing a good criterion is a difficult question.
For instance a method which appears at first sight to be reasonable is to
find the parameters' ﬂi.pi for which the trace of the weighting matrix EN' N
at the final time is minimized. An algorithm for selection of the parameters
so as to optimize this criterion was derived by the author yet for some
simple examples the resulting selection of the parameters led to an indeed
poor design. Presently there exists no optimization algorithm for selecting
the parameters Bi,pi, and some trial and error must be used for their selec-
tion. For the case of a time-invariant system and an infinite time interval
this is not vefy troublesome since in this case only two parameters B,p
must be selected with 0<pg <1, 0<p<1,

Given now any bounding ellipsoid estimator of the form appearing in
Proposition 4.3, and any set of measurernents ZysZps s By @ comparison
of the bounding ellipsoid X:l Kk with the exact set of possible states Xk| | can
be made in any direction x* by comparing the value of the support function

A

& 1/2( *y *)1 /2

x zklkx

with the value of the support function u-(x*] Xk | k). This latter value can be

e le|Xpp ) = <xN R+ E1-60m)

calculated from

subject to the constraints
X, = Aixi+Biwi , i=0l,l,..ik-1

z. = C,x, +v. , i=1,2,..,k
i ii i
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-1 _ :
xV¥V 'x <1
(o] o -
wiQlw, <1, i=0,1,...,k-1
VR v, <1 i=1.2,..,k
it i - ’ TIRE

a linear program with linear and quadratic constraints. A comparison of
these values for a number of directions of interest and for a variety of sets
of measurements can be informative concerning the quality of the approxi-
mation of the estimates provided by the given bounding ellipsoid algorithm.
We mention that the question of parameter selection and of the quality of
approximation have been discussed by Schla.pfergsc” Some simulations
can also be found in the same reference.

Similar results to those obtained in this chapter can be derived for a
variety of problems not explicitly considered here. One such problem was
briefly discussed in Section 3 and concerns the case where there is no mea-
surement noise in equation (4.2) and the energy constraint is of the form

N-1

-1 -1
[ ] 3 1
xo\If x + iz-;o wiQi w

. <1

i —

The estimator for this problem is very similar to the cbrresponding sto-
chastic estimator(: 1.)} and can be used to obtain a bounding ellipsoid algo-
rithm for the related instantaneous constraint case where there is no mea-
surement noise by using a similar bounding operation to the one in Section
6. Another problem that can be treated similarly is the static estimation

roblem (._SZ-)? which does not involve a dynamic system.
P

The continuous time counterparts of the estimators of this chapter

have zlready appeared in (B2). The approach used in this reference was
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to associate the estimation problem for the energy constraint case with
the standard tracking problem of optimal control theory in which time is
reversed. This approach can also be used for most of the problems con-
sidered here, and has the advantage that it demonstrates in a direct way
the duality between linear estimation problems and linear quadratic optimal
control problems. However the approach used here is more efficient in
that it is applicable to more general cases. In particular it is applicable
to those problems for which fhe estimate ellipsoid is degenerate (has a
weighting matrix which is positive semidefinite but not positive definite).
Furthermore it proves explicitly the one-one correspondence between
estimation problems with an energy constraint description of the uncer-
tainty and linear minimum variance stochastic estimation problem. The
reader familiar withithe Hilbert space formulation of stochastic estimation
problems(Lu” will have no difficulty observing from the proof of Proposi-
tion 4.1 that the solutions of Problem 4.1 and Problem 4.1' involve dual
applications of the projection theorem which result in identical equations.
Estimation problems involving a set-membership description of the
uncertainty were first considered by Witsenha.usen(w” in the framework
of minimax control problems with imperfect state information. The set
description approach towards the estimation problem gained attention fol-
lowing the work of Schweppe(sn’ (s2) who demonstrated that by using ellip-
soidal approximations, algorithms with potential for practical applications
could be devised. The re sults of this chapter were in fact largely motivated
by Schweppe's work. Extensions of Schweppe's algorithms to distributed
parameter systems were obtained by Schlaepfergscn Such extensions should

be possible for the results of this chapter as well. An estimation problem
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which does not involvé ellipsoids is the one which involves a linear discrete-
time system and instantaneous polyhedral constraints for the uncertain
quantities. Such constraints are interesting because the resulting set of
possible states consistent with the measurements can be characterized
precisely by a finite set of bounding hfperplanes. However the number of
these bounding hyperplanes increases with time thus possibly creating a
serious storage as well as computational problem. A method for obtaining
polyhedral approximations to the set of possible states using only a fixed
number of boundiﬁg hyperplanes is discussed by Hnyilidzang)
Finally it should be noted that the results presented in this chapter
rely heavily on the linearity of the system, and it appea&s to be quite dif-
ficult to obtain extensions to nonlinear estimation problems. However such

problems have not been sufficiently explored up to now and are worthy of

attention.



CHAPTER 5

MINIMAX CONTROL PROBLEMS WITH
IMPERFECT STATE INFORMATION

1. General Remarks

We now turn our attention to minimax control problems with im-
perfect state information. We will consider the general Problem 1.1
which was introduced in Chapter 1. The special case of this problem where
the system is linear, the cost functional has some convexity properties, and
the controller has available an exact measurement of the system state has
been examined in Chapter 2. The additional structure of this special case
allowed us to obtain results that are considerably stronger than those that
can be deduced for the general Problem 1.1. For thislatter problem if is
very difficult to obtain results concerning existence of solutions or neces-
sary conditions for optimality. Furthermore the solution of the problem by
dynamic programming, which will be presented in Section 3, becomes ex-
tremely complicated in general. This is due mainly to the fact that, as will
be demonstrated, the optimal controller performs the dual function of state
identification and system actuation. The complexities of this situation are

(F1), (A1) We will be

well known from stochastic optimal control problems.
able to obtain insight into the dual function of the optimal controller through
the notion of a sufficiently informative function which parallels the familiar
notion of a sufficient statistic‘sﬂ) of stochastic optimal contrcl. The notion
of a sufficiently informative fanction will be introduced in Section 4, and it

will be used for demonstrating the separation of the optimal controller into

an estimator and an actuator:. The special case of a linear system where
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the uncertain quantities satisfy an energy constraint will be further inves-
tigated in Section 5.. For this case it will be shown that the estimator part
of the optimal controller can be easily and efficiently characterized. Still
for this case the actuator part of the optimal controller cannot in general
be easily characterized although we shall demonstrate the characterization
of this actuator for the special case of 2 reachability problem in the next
chapter.

In the next section we restate and briefly discuss the Problem 1.1

which is the object of study of this chapter.

2. Problermn Fo rmulation

We shall consider the following problem:

Problem 5.1: Given is the discrete-time dynamic system

xk+1 = fk(xk, uk!!wk)‘p ) k = 0. 1! L '!Ndl (5" 1)

where xke Rn, k=0,1,...,Nis the state vector, ukf:' Rm, k=0,1,...,N-1,

is the control vector, wke Rr, k=0,1,...,N-1, is the input disturbance

vector, and f :Ranmer — Rn are known functions.

k

Available to the controller are measurements of the form

2y hk(xk.'vk), __k=0.1,...,N—1 (5.2)

where z, € R-S, k=1,2,...,N-1, is the measurement vector, V| € RP, k=
1,2,...,N-1, is the measurement noise vector, and hk :R® x RP — rR®
are known functions.

The uncertain quantities lumped in a vector Q€ Rn+Nr+(N— Lp

q = (x:__,aw‘l)aw'ls--vnw.b]_.lv{?isﬁ'zv“‘l\;‘l\l‘_l)' (5'3)
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are known to belong to a given subset Q of Rn+Nr+(N'1)p

qeQ (5.4)
Attention is restricted to control laws of the form
. gk(stm) . g™ k=01,..,N-1 (5.5)

Pk
taking values
“k = “k(zl'ZZ’..’zk'uo'ul"'.'uk—l)' k=0,1,..,N-1

(5.6)

where Po is interpreted as a constant vector.

It is required to find (if it exists) the control law in this class for

which the cost functional

J(P'o' ﬁn .« P‘N__l) = sug F[ xl'x2' =y xN' |-"°y “'l(zl’uo)’ .. 'PN-I(ZI'“ -.uN_l)]
q€
(5.7}

is minimized subject to the system equation constraints (5.1), and where

F :RN(n+m) —~ (-00, +w] is a given function.

As in Problem 2.1, the use of the (semiclosed) extended real line as
the range of the function F permits the incorporafi’on of state and control
constraints in the cost functional by adding to the function F the indicator’
functions of the state and control constraint sets.

In the next section we will present a dynamic programming algorithm
for solution of the Problem 5.1. Using thia algorithm we will then be able

to reach some conclusions concerning the structure of the optimal control

law.
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3. Solution by Dynamic Pro gramming -

Consider the optimal value of the cost function (5.7)

-J_ = inf sup F(xl’xz' . -’xN’uo,ul' .. 'uN—l) (50 8)
'S €8
k=0,1,..,N-1

The purpose of the dynamic programming algorithm is to convert the mini-
mization problem indicated in the above equation to a sequence of simpler
minimization problems by taking advantage of the sequential evolution of the
system state, and the ‘information available to the controller according to
equations (5.1) and (5. 2). However matters are somewhat complicated in
the above problem by the presence of uncertainty since in the process of
generating the state and measurement vectors the disturbances are inter-
mediately selected by, say, Nature with the objective to maximize the value
of the cost. For this reasén the development of the dynamic programming
algorithm will require a somewhat elaborate construction. We give first
the following preliminary definitions. |

Let P(Rs) be the power set (set of all subsets) of R® and consider

the following function

~

Z . :R™— p(RP)

1
which assigns to the vector uoeRm the set £l(uo) c R.P\_consibti_ng of all
possible measurement vectoTs z, given by equation (5. 2) which are con-
sistent with the constraint set Q, the system equation (5.1) and the control
vectbr u . In other words we have zlegl(uo) if and only if there exists a

vector q = (x;, w:). w'l. ves wk_l, v'l, v'z. .us viq_l}‘eQ such that

1 - hI[ fo(xo’ B! Wc>)’ vl}
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Similarly we define for k = 2,3,..,N-1 the function

A

2 k-1)s+km __

.r! P(R®) (5.9)

K’
which assigns to the vectors z,,z;5,+--1 % 1Y, PO ey g the set
k(zl' Zprecos zk 1* U Ve s e U 1)t::R of all measurement vectors z, given
by equation (5.2) which are consistent Wl.th the constraint set Q, the previous
measurement vectors Zys Zys ey Zp_ 1’ and the previous control vectors
U LUy ey g
We also define the function

r(N-1)s+Nm _ P(Rn+Nr+(N-l)ti) {5.10)

A
Q:
which assigns to the vectors ZysZys o Zna1 Yot U JUN_y the set

n4Nr+{N-1)p of all vectors q =

A
Q(zi.zz,...zN_l.u ,ul,..,u I)CR
(x w wl...,wN 1.'#' v'z.... )whlch belongtothe set 3 and are con-

gistent with the measurements ZyrZprtes zN-l’ and the control vectors u

In other words a vector q = (x' , w! 'w'l' . "Wi\l-l’vil’vé’ "'vi\I-l)'

ul,.. ,'U-Nl °

belongs to the set Q(zl. Zoyssees z2n-1’ Y% A TERRY N-l) if and only if ge Q and
the vectors x'o,w:), ey WN-I’vl’ “en 'vN-l’ Zys oo ZN-1 Yt »Un ) together
satisfy the system and measurement equation (5. 1) and (5.2) for all k.

In order to simplify the notation we will make use of the following
vector ; K’ k=1,2,...,N~1, which consists of all the information available

to the controller at time k

;k = {zl’ZZ'"'zk'“o’ul""’uk_-l} (5.11)

A A
Using this notation we write for the control law B and the functions Zk’Q

of equations {5.9) and (5. 10)
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pk(zl,zz,..,zk,uo.ul,..,uk_l) = uk(;k) = u (5.12)
2 - 2.t
Zk(zl,zz,...,zk_l.uo,ul,..,uk_l) = k_( k_1.1.11(_1) (5.13)
A A c .
Q(ZI,ZZ.ol|zN‘1.“o’.ul’--'uN_1) - Q( N-l,uN—l) (54 14)

It should be noted that for some vectors Qk_l it is possible that the

set 2 (; u ) the set 8(; u ) is empty for all u R™
k'® k-17 "k-17 OF € N-1*"N-1 Pty k-1°
implying that the vector ; k-l - (z'l, zi, .y zi(_l,ti"), ui, . ,u{c_'z)' is incon-
sistent with the constraint set Q and the system and measurement equations.
A

Notice also that whether the set Zk( gk-l’uk-l) is empty or nonempty depends
on the vector ;k-I alone and is entirely independent of LT In equations to
follow in which empty sets appear we will adopt the convention stated in
Appendix I that the supremum of the empty set is -co (sup $ = -o). Another
possible approach would be to restrict the domain of definition of the functions
2 . 8 to include only th tors § | | for which the sets Z, ({
Zk' o include only those vectors 5, or whic e sets k( k-l'uk-l)'
A
Q(gN_I,uN_l) are nonempty. Since in any actual operation of the system these

sets will always be nonempty this restriction results in no loss of generality.

We are now ready to state and prove the following dynamic program-

ming algorithm.

Proposition 5.1: Assume that for the functions Hk defined below we have

o)
-0 < - - ,
(o) Hk(ck), k=1,2,..,N-2, for all vectors gk such that the set Zk+1(‘t'k’“k)
is nonempty (for all u, € R™), and -0 < HN_I(gN_I) for all vectors ;N-l such
A -
that the set Q( gN-l’uN-l) is nonempty. Then the optimal value J of the cost
functional (5.7} is given by |

J = inf E(u ) {5.15)

o
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where the function El :R™ -+ (-0, +o0] is given by the last step of the

recursive algorithm

sup F(xl, Xoy o« 2 XpjpUg Uy “’uN-l)

E (; _1*t BN } =
N*'“N-1 N_l qea(gN-l’“N-l)

(5.16)

H (b, = inf Ep, (bpud k=120, Nl (5.17)
Ek+1(ck’uk) . :EP & )Hk+1(§k’uk’zk+l)
k+1€%Kk+14 7k, : (5.18)
o £ )Hk+1(;k+l), k=0,1,..N-2
Z+15“k+1' Pk’ k

Proof: Consider the cost functional {5.7)

J(_I“o: P’l’ L) pN-l) = ::up F[ xl’xZ' ~» Xpp» |J'°: Pl(cl)’ . i“N-I(;N;l)]
| (5.7)

and the functions

JN-I(HO'HI’ “'PN-Z) = “inf J(Fogl-lvlgoo.P-N_l) (519)
N-1

Jk(}'toil'lli“"pk_l) = in‘f Jk_l_l(plpz"'lp'k), k: 1!21"JN-2
_ P (5.20)

We have for the optimal value of the cost functional

T = infJy (s ) = infJ,(8) (5.21)
IJ.O u0

To prove the proposition we will recursively show the equations

J (B s bhqs ool ) = P eene sup H’N (g }
N-1"0""1 N-2 . 3 -I'"N-1
z2,€2,(8,) N1 2n-1EN2on-2

(5.22)
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T (i Buseesby_q) = SEP  eee sup H(8.) (5.23)
ket - z1“é1(?‘.-.,) ”k‘zk(;k-l'“k-l’ ok

Ei(uo)'- (5.24)

Jp y=J,(a )= 8 H, (z,,u )=
1Yo 1o zle‘é;;(uo) 11’ "o

where in the above equations 1, denotes, for all k, the value of the function

Py at the point L K
The equation (5.15) which is to proved follows then by comparing
equations (5.21) and {5.24). |
We begin by proving equation (5.22). Considei‘ the function EN of

equation (5.16)

EN(;N—I’uN-l): A BUP F(xl,xz,..,xN,uo,ul,..,uN_l)
q€Q(Sy_1 un-1)

A
We bave Ep{Sy_ys9n.y) = - for all vectors § .y such that O(Sy jouy )
= ¢(for all uNﬁleRm) and we have EN( "'N—I’uN-l) > -0 otherwise since the

function F does not take the value -0o. By the assumption that HN—I( ;N-l) >

for which 6( gN-l'uN;l) # ¢ we have

-0 for all g N-1
~o0, for all 8y | such that

By, (Epop) = 0 En(Enorone) s
YN-1 |

a( ;N_lnuN_l) = ¢

HN-l(cN-l) = inf Eg(Ey g
‘I.:I.N_l

uN-l) > -, for all gN—l such that

& Cron-1? ? ¢

Thus for every € > 0 there exists a function

L(N-1)(stm) __ g™
""N-l,e'R R such that
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BN-1
| ‘ . . (5.25)
= inf EN( N—l’uN"l) + € = HN-I( N"l) + €
157
N-1
(N-1)}{s+m)
all §N (€R

We have now from equation (5. 22) for any fmed functions B _,Hhys -
2 With }10 = P_'olul = P'l( ;1)3 . '°'“N 2 = p‘N 2(;N 2)

JN_I(IJ-O: p.l’ « oy P’N_z) = inf sup F{xlu zs . s'.xN, u-O" ula . °.suN_1)
PN-19€00

= in{ syp v P F{xqy,0s, .« s Xnps yasy )
BN-1 zle%l(%) Zn.1 e§ N2 cgéuﬁq_l,}N_ll)uz NV Byt UN-L

EngN 1°*N- 1(;N )]

= inf syp . s sup
¥N-1 ."1‘§1(“o) PRI AL SNRT Y
< spp  --e- sup E Ay ing o En-1)]
€2 (u,) ’N-l"’ZN-l(;N 5 Uy _2) NION-1'PN-1,€" " N-1

{by using relation (5. 25))
inf EN[; _1"PN- 1(;N 1)] + €

f_ syp v
T omeZy(u)  Z2nopf l(gN 2 ON.2) PN-1
{(by using the minimax inequa.lity)
< inf EN[;N-I’PN-I(;N-I)] + €

BUP e up
bn.1 26400 zN-IEEN-I(;N-Z'uN-Z)
= JN—I(“O'HI"”'F’N-Z) te

Since these relations hold for any € > 0 we have equality throughout

above algebra proving equation (5. 22) _
L TOPRR S R L sup inf Ey{Sy phn. l(;N P
° ’1‘21‘“0) €2y 1(;N 20 UN-2)PN-1
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- ko & sup

= sup Hy, (; )
2 €2, (0,) zN-leﬁN-l(;N-Z’“N-Z) Nor TR

By using now equation (5.22) the equation (5.23) can be proved recursively
for all k by using identical arguments as the ones useéd above to prove
equation (5.22). The conclusion of the proposition then follows from

equations{(5.21) and (5.24). Q.E.D.

We remark that the value Hk( ;k) of the function H, of equation (5.17)
has the interpretation of the ncost-to-go' at time k from the point of view of
the controller on the basis of the current information vector L K If the
vector ;k is consistent with the constraint set Q and the system and mea-
surement equations {as it will always be in any actual operation of the system)
the value Hk( Ck) iz either a real number or +oo. In the case where the set
Q is bounded a value of +oo indicates gimilarly to the related case discussed
in Chapter 2 that there exists a disturbance selection policy (on the part of
Nature) that can cause a violation of a state constraint regardless of the
control law that the controller uses subject to the control constraints that
the extended real valued function Flof the st functional {5.7) implies.

The optimal control law if it exists can be obtained from the algorithm

as

pk(;k) = ukl k=0,l,-..,N-1

where Ek is the point where the infimum is attained in equation (5. 17) for
the fixed point & .
The dynamic programming algorithm of Proposition 5.1 can be

profitably interpreted in terms of game theory, and in particular in terms
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of multistage games of perfect information. (Bl1) The optimal value of the
cost J can be viewed as the upper value (or min-max) of a game played by
two opponents, the controller selecting the control law Bortyr oMy o
and Nature selecting the uncertain quantities q frérn the set Q. The infor-
mation based on which the decision of the controller is made, is fixed by |
the form of the functions Py i.e., by the information vectors gk' Since
however only the upper value of the game is of interest here a variety of
equivalent methods of selections of the vector q and corresponding infor-~
mation patterns can be assigned to Nature. One such information pattern
and method for selection of the components of the vector q corresponds to

the following sequence of events

(1) Controller selects u
(2) Nature selects zl from the set Zl(uo)
{3) Controller selects u,

{4) Nature selects z, from the set Zz(zl._ uo,ul)

(2N-1) Controller selects uy_,
(2N} Nature selects all the uncertain guantities q =
(x;, w;. w'l. .y wh_l, v'l, v‘z, -y Vh;l)' from the set
Q(by_onar)
Each selection by either Controller or Nature is made with full knowledge
of the outcomes of previous selections.
This sequence of events is fictitious, however it accurately reflects
the sequence of events as viewed by the controller whose only information
concerning the course of the game at time k is the information vector ;k’

i,e., all measurements, and all control selections up to that time.
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A moment's reflection shows that in fact the dynamic programming
algorithm determines the (pure) value T of the game of perfect information
described above. This value is the same as the optimal cost J of the Prob-
lem 5.1.

Finding the optimal cost T and the optimal control law from the dy-
namic programming algorithm of Proposition 5.1 is in general a very dif-
ficult task. Part of the difficulty stems from the fact that, loosely speaking,
the objective of the controller is dual in nature; first to actuate the system
in a favorable fashion and second to try to improve the quality of his esti-
mate of the uncertainty in the system. This is a familiar situation from

(F1) the for-

stochastic optimal control, known as dual control problem,
midable complexities of which have been widely discussed in the literature.
In stochastic optimal control insight into the structure of the optimal con-
troller, and its dual fun_ction, can be obtained through the notion of a suf-
ficient statis_tic(su) Similar insight will be obtained for the minimax con-

troller of this chapter by introducing in the next section the related concept

of a sufficiently informative function.

4, Sufficiently Informative Functions

Let us consider the following definition:

Definition 5.1: A function Sk:Rk(s+m) —- Z'k where Ek is sorhe space will

be called sufficiently informative with respect to Problem 5.1 if there exists

a function Ek-i-l :Zk x R™ — [-oo, +oo] such that

Ek"'l[sk( ;k)s uk] = Ek+1( gk’uk) (5.26)
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where E|_ ) is the function defined in equations (5.16), (5. 18) for k = 0,
1, e ou gy N" l .
The value of a sufficiently informative function at any point will be

calied sufficient information.

The clear consequence of the above definition is that if Sk is a suf-
ficiently informative function and an optimal control law —'Ik exists, then

this optimal control law can be implemented as the composition
.- - w* .
i B = Bpest 5 o (5.27)

where ﬁ.t is a suitable function which can be determined by minimizing the

function E, _, of equation (5,26) with respect to u. As a result the control

+
at any time need only depend on the sufficient information Sk( gk)’ and
therefore if this sufficient information can be more easily generated or

- stored than the information vector ;k it may be advantageous to implement
the control law in the form of equation (5. 27).

‘Factorizations of the optimal control law into the compoasition of two
functions as in equation (5,27) have been widely considered in stochastic
optimal control theory, and are commonly referred to as separation theo -
rems. In such problems the function Sk or its value is usually called a
sufficient statistic. Particularly simple sufficient statistics have been
found for problems involving a linear system, linear measurements and
Gaussian white input and measurement noises. (St1) In other problems suf-
ficient statistics of interest take the:= form of conditional probability density
functions conditioned on the iaformation available, (St1) Such sufficient |

statistics imply the factorization of the optimal control law into an esti-

mator Sk computing the conditional probability density function of some
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quantities, which may differ depending on the problem given, and an actuator
ﬁ.: applying a control input to the system. In Chapter 4 it was demonstrated
that in estimation problems which involve a set-membgrahip description of
the uncertainty the set of possible states consistent with the measurements
received plays a role analogous to that of conditional probability density
functions in stochastic estimation problems. Thus it should not come as a
surprise that for the Problem 5. 1 we will be able to derive sufficiently infor-
mative functions that involve sets of pos sible system states {or other quan-
tities) consistent with the measurements received. In what follows we de rive
such sufficiently informative functions and further concentrate in the well
behaved case of a linear systermn and an energy constraint on the uncertain
quantities for which, as was demonstrated in Chapter 4, the set of possible
states can be characterized by a finite set of numbers. We first introduce
the following notation.

We denote for all k by
Sk(xl’ R SRR "wN-l'_ Vig1? "t VN-I, ;k) (5.27)

the subset of Rkn+(N-k)r+(N-k-l)p which consists of all vectors (x;, ..., ¥,
Wi e s Wi Viegls 't VN-I) that are consiqtent with the measurements
2T PYRRRD 2y the control vectors “o'ul’ cea Uy qs the system and mea-
surement equations (5.1), (5.2) and the constraint set q€ Q.

We denote similarly by

Sk(xk.wk,...,wN_l.vk+1....,vN_ll £ (5.28)

Sk(xl'xZ' .o .,xkl Ck) (5.29)
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S, (%, | Ck) ' | (5.30)

the respeé.tive sets of all possible quantities within the parentheses that are
consistent with the information vector .gk’ the system and measurement
equations, and the constraint qe Q.

With the above notation we have the following propo sition.

Proposition 5.2: A sufficiently informative function with respect to Problem

5.1 is the function

k(s+m) __ P(Rkn+(N-k)r+(N-k-1)p) x ka

Sk:R

given for all k by

Sk( gk) = [_Sk(xl...,xk,wk, o W1t Viet]? ..,VN_II Ck),uo,ul, . "uk-l]

(5.31)
Proof: Consider the function EN of equation {5.18)
EN(gN-I'“N-I) = 63;‘11) F"‘l"&""’i\[’uo'ul“”‘&\]-l)
T a5y UNay)

This equation can also be written as

En( ‘CN—I’“N-I)

su
R VR L RLLITTRTE VPP SV S
F{x‘la&s . -:’N_ln &-l(m-l'%-l'“h-l)’uo'_ﬁ' . .'uN-I]

ENISn_105ps oo X0 Wy ) ol ugeups - euy piuy ]

for a suitable function EN’ proving that the function SN-I( ;N-l) of equation

(5.31) is sufficiently informative according to Definition 5.1.
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The function HN-I of equation (5. 18) can now be written as

HN-I( ;N- 1) = ::: EN[%-].(XT "’_:‘N-PWN-IICN-I)' uoi u'l' cos Uy _ 20 UpyL 1]
-1

= HN-IISN-I(xl’ .o 'xN_-l’wN-ll CN-I)’ u, Uy, ’uN-Zl

for a suitable function ﬁN—l‘

Now for the function EN&-I of equation (5. 16) we have

Ey-y{ SnozroNe2) 2 sup

zN-leeN-l( Cno2sON-2)

Hy_ 1810 - P RN-10 *N-1 ;N-l)'uo'ul' PNy
{(5.32)

A
The set ZN-I( gN-Z' uN-Z) can be desc:ribgd as

A

2yl 2 un.2) = {ayglenoy = Ay qlfN_ 2N o2 WN-2o "N -2 VN1 ]

(g2 "2 - 176 SN - 2N -2 PN-2 V-1 )
(5.33)

where the set SN-Z(xN-Z’wN-Z' vN_llﬁN_z-) is f.he set of all possible vectors
(xN.2' WN.2? vN-l) which are consistent with the measurements z,,2z,,.., %y,
and the control véctors U sUps Uy 3 according to fhe system and measure-
ment equations, and the constraint set Q.

The set SN-Z(xN-Z’“"N-Z'VN-ll ;N-Z) can be obtained as the projection
of the set Sy _5(xy, . “xN—Z'wN-Z'wN-l'vN-ll ;N-z) on the space of vectors

(epy 20 WN-2? vN-1)* Therefore the equation (5.33) can be written in the form

Ak - :
Zn-108No2o une2) = NS - N2 w20y 10 -1 v i)
| ~ B (5.34)
for a suitable function ZN_I(' " )

Also the set SN-l(xl’ s s XN_1* WN-1 l ;N-l) can be written as
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SN_I(xlso-’)N_li“Tq’_llgN_l)= {xl'&'..’xN—l.wN-ll ) . . (5-35)
XN-1° fN-_Z(xN—Z'uN-Z'wN-Z)’
Zn.y T BN NG VNG (R X v e XN WNC2P WNLP YN )
€Sn.plxgs .. ’xN—Z’WN-Z’wN—l’VN-lIgN-Z)}
Al .
= SN.p[SN.2(Xpr e Xy 20 WL WN-I'VN-llc‘N-Z)’ ZN.1* UN-2]
for a suitable function S;_l(- S
By substitution of equations (5. 34),{5.35) in equation (5.32) we
obtain

sup

EN-I(;N-Z'uN-Z) - hx
=_ zN-f-ZN-IISN-?Z"fP’"XI\I-Z’“N-Z""N-I"N-IILN-Z)’“N—Z]

— ¥
HN- 1[ SN" 1 {SN_z(xl yora m_Z’ “N-Z'WN—I’VN-].I CN_z)ozN_lsul\]_zl,uo,u.,uN_z]
>N N PTE NPT VIPTL VIRPL VN LSV SNSRI

for a suitable function EN-I’ proving that the function SN-—Z( QN*Z) of equation
(5.31) is sufficiently informative according to Definition 5.1.
By using identical arguments as above the function S, ( ;k) of equation

(5.31) is proved to be sufficiently informative for all k. Q. E.D.

From the proof of the above proposition it can be easily seen that a
simpler sufficiently informative function can be derived if some of the states
x, 1= 1,2,..,N do not appear explicitly in the cost functional (5.7). Thus

if, for example, the function F in equation {5.7) is of the form

F(xl, Koy e os Xpp U sy, - -,-.uN_l) = f(xN, LIPS uN-l) (5. 36)

then the function
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Sk( Q() = [q((xk'“it'“i('l'l'." W-l'vk+l'vk+2"'" VN'_II ;k)a uosul....,uk-ll
(5.37)

is sufficiently informative.

Further simplifications result if the constraint. set Q for the un-
certain quantities has a property implying that the set of vja.lues that any
particular uncertain quantity can take is independent of the values of the
other uncertain quantities. We will consider the case where the set O

has the form
Q= {xo,wo,wl, s Vg 1 Ve Voo -.,VN_II xdexo,wiewi, i=0,1,..,N-1,

VeV, k= 1,2,..,N-1} (5.38)

where Xo, Wi. V, are given subsets of the corresponding Euclidean spaces,

k
The case where the constraint Q is of the form (5.38) should be considered
analogous to the case of white input and measurement noises in the corre-

sponding stochastic problem. We have the following proposition:

Proposition 5.3: Assume that the constraint set Q has the form of equation

(5.38). Then the function Sk given for all k by
Sk;( Q() = [Sk(xl' xzs .y xkl gk)’ uoa ull -3 uN-].] {5.39)

is sufficiéntly informative.
. If the function F in equation (5.7) has the form of equation (5. 36)

then the function Sk given for all k by

sk!(Ck) = I8t [ B ug ug0 iy ) (5.40)

is sufficiently informative.
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Proof: The prdof follows by trivial modifications of the proof of Proposi-
tion 5.2 to take into aécount the special structure of the set Q in equation

(5.38). Q.E.D.

The above propositions clearly illustrate the dual function of the
optimal controller. By equation (5. 27) the optimal control law is of the

form

=%
P’k = p'k. Sk (5.41)

i.e., it is the composition of the sufficiently infornia.tive function Sk and the
function ﬁi The function Sk in the case of Propositions 5.2 and 5.3 re-
presents an estimator and the function fi;: represents the actuator. Al-
ternatively the optimal controller can be viewed as being composed of two
cascaded parts. The first part produces an estimate set and the second
part accepts as input this estimate set and produces a control vector. This
control vector is stored and recé.lled in the future by the controller.
It‘should be noted that there is an important difference between the
sufficiently informative functions derived for the Problem 5.1, and suffi-
cient statistics for the corresponding stochastic optimal control problem
in that the possible additivity of the cost functional (5.7) results in no sim-
plification for the sufficiently informative function. Thus the function Sk
of equation {5,31) cannot in general be simplified if the function F in the

cost functional (5.7) is of the form
N
R TRRTE N N TR Y Lo £ilxpug_y)
wheTe fi and g;.1 are given functions. In the corresponding stochastic prob-

lern however important simplifications in the sufficient statistic re sult!Stl)
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This difference is due to the fact that whergas the expectation operation
is linear and distributes over addition the maximization operation is not.
The equation (5.41) which demonstrates the structure of the optimal
contrc;l law as the composition of an estimator and an actuator can provl.ide
insight concerning the complexity and the impilementation of this optimal
control law. For example as was illustrated in the previous chapter a
case where the astimator has convenient structure is the case of a linear
system and an energy constraint for the uncertain quantities. The suffi-
ciently informative functions of Propositions 5.2, 5.3_ for this case can be

characterized by a small set of numbers and can be computed recursively.

As an illustration we state the following propos1t10n.

Proposition 5.4: Consider the special case of Problem 5.1 where the system

is linear

- A x, +Bu +G W k=0,1,..,N=1 (5.42)

Xk+1 Kk ' "k k

with linear measure ments

Ck"k.{-vk. k= l’z,ol,N"'l (5.43)

and the set Q for the uncertain quantities is specified by the energy constraint

N-1 1 N-1 -1
WV ix + ZwiQ, w + = viR, v, <1 (5.44)
o =0 1 oy ¥ 2 17

where ¥, Q., R are positive deﬁmte symmetric matrices for all i.

Asgsume also that the cost functional is of the form of equation (5.36)

F(xl.:%, vorXpgs s s -t 'uN-l) = f(xN,uo,ul, .- 'uN-l} (5.36)

Then the function Sk : Rk(5+m) — R®*x[0,1]x ka'g_iver_x by



~116-

[gkn az(k)s uo'ul' “'uk-l] {5. 45}

s (80 =

is sufficiently informative for all k, where the n-vector ;Ek and the scalar

éz(k) are generated' recursively by the estimator equations

A A A _ -1, _ A
Re1 = AR+ B A B0 ClagRin G - Gt By
i: 0' l’...k-l (5.46)
A —
£ =0 (5.47)
%, = (54, +cr ey (5. 48)
ili T Yifi-1 i .
Z)ie1 = AerZie1]i-18e1 G191 G (5.49)
o =¥ (5. 50)
s2(i41) = 62(1) + (2, - C;, (AKX, - C.  BUIC, 15,1 1:C1, R y!
i41 - G Can PN i S [ T i
A
(241 - Cinn A% - G By (5.51)
52(0) = 0 - (5. 52)

Proof: From the results in Chapter 4 we obtain that the set

Sk(xk' Wi - - 'WN-l'.'vk+l’ . "VN-II ;k) is given by

51 Wier > Wago10 Vi1 -+ V=11 S

- Do oo Wi Vit -+ Y1 O R B )

- N-1 -1 N-1 1 2
+ T wiQiw,+ T ViR vy S 1-8 (k)} (5. 53)
i=k:* i=k+1

Since the matrix Ek|k is precomputable and the matrices Q. and R, are given

the set Sk(xk, W e P W17 V41t °? VN-Il ;k) is completely determined from
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the vector Qk and the scalar 62(3). By combining the equation (5.37) and
the Definition 5.1 the result follows. Q.E.D.
Thus for.the problem of the above proposition the estimator part

of the optimal controller can be completely and efficiently characterized.

For the reachability case of this problem, i.e,, the case where

N-1
= 6(ui| u,)

flxpgs Ugr Upe - a9y _p) = SlayglXy) + z

with XN, Ui given sets, the actuator part of the optimal controller can also be
completely characterized as we will demonstrate iﬁ the next chapter. Sim-
ilar results with the Proposition 5.4 can be obtained for a general cost func-
tional of the form of equation (5.7). However in this case, as can be seen
from the Proposition 5.2 and the results in Chapter 4, the sufficiently infor-

mative function will be of the form
_ A 2
Sk(;k) = [Q'llk'QZIk'..'xklk'ﬁ (k)iuoauli"suN_ll

where 5}1] i Will be given by smoothing equations for all i < k.

For the case of a linear system with instantaneous ellipsoidal con-
straints on the uncertain quantities the sufficiently informative functions of
the Propositions 5.2 and 5.3 cannot be characterized by a finite set of numbers
neither can they be easily generated by an estimator as was demonstrated in
the previous chapter. This indicates that for such pfoblems the characteri-
zation of the optimal control law should be in general very difficult. How-
ever for the problem of the reachability of a target tube which involves such
constraints on the uncertain quantities a method for obtaining subbptifnal
controllers that can be more easily implemented ﬁu be developed in the next

chapter.
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5. Discussion and Sources

The basic method for the solution of minimax control problems
with imperfect state information is the dynamic programming algorithm
of Proposition 5.1. It should be noted that both in the development and
the proof of this algorithm we did not make use of the fact that the state
space, control space and disturbance spaces are Euclidean spaces and in
fact the Proposition 5.1 can be generalized for the case where these spaces
are arbitrary sets.
In general the solution of the problém by dynamic programming is
a very difficult task, and only for simple systems and simple constraint
sets such a solution can be practical.
It appears that the most well behaved special case of Problem 5.1
is the case where the system is linear and the set of the uncertain gquantities
is specified by an energy constraint. For this case a sufficiently informative
function can be recursively generated by estimators developed earlier in
Chapter 4. Even for this case the actuator part of the optimal controller
may not be easily characterized. In the next chapter we will give a pre-
cise characterization of the actuator for the special case of a reachability
problem. However it appears that there is no special case of the Problem
5.1 with a solution as elegant as that provided by the separation theorem
of stochastic optimal control for linear systems and quadratic criteria.ul)' (G1)
The only source fo:r.minimax control problems with imperfect state
information appears to be the original work of Witsenhausengwn who dem-

onstrated the application of dynamic programming to this problem. The

use of dynamic programming in sequential games has been known at least
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since the proof that finite games of perfect information have a saddle
point.(v” The concept and the development of the Proposition 5.1 is
based on game theory considerations, and it involves the construction of
a sequential game of perfect information in its extensive form!Kul) The
algorithm of Proposition 5.1 differs in its form and is more general than
Witsenhausen's algorithm however the same basic ideas are involved.

The notion of a sufficiently informative function is introduced for the first
time here in analogy with the notion of a sufficient statistic of stochastic
control. It has mainly theoretical value in that it forms the basis for
demonstrating the decomposition of the optimal controller into an estimator
and an actuator. This decomposition provides insight into the structure of

the optimal controller, and in some cases it can serve as a starting point

for developing suboptimal control schemes.



CHAPTER ¢

SOME REACHABILITY PROBLEMS WITH IMPERFECT
STATE INFORMATION

1. General Remarks

As was demonstrated in the previous chapter it is in general very
difficult to characterize completely the optimal controller in minimax
control problems with imperfect state information. For the case of a
linear system with an enexrgy constraint for the uncertain quantities it
was shown, however, thét the optimal controller may be realized as an
estimator followed by an actuator and that the estimator can be easily and
efficiently characterized using the results of Chapter 4. We shall dem-

- onstrate in the next section that for the case of the problem of the reach-
ability of the target set the actuator part of the optimal controller can also
be precisely characterized, and thus we shall give a complete solution to
this problem. However the implementation of the optimal controller will
still be quite difficult despite the simplification achieved.

In Section 3 we will consider a problem of reachability of a target
tube which involves a linear system and instantaneoué ellipsoidal constraints
for the uncertain quantities. For this problem it appears that, in general,

a practical implementation of the optimal control law is indeed very difficult.
For this reason we present a suboptimal control scheme for this problem by
making use of the bounding ellipsoid estimation algorithm pre sented earlier

in Chapter 4.
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2. Reachability of a Target Set for the Case of Energy Constraints

We first formulate the reachability problem that we will consider

in this section.

Problem 6.1: Consider the linear discrete-time dynamic system

X4l = Akxk+Bkuk+kak' k_= 0,1,..,N-1 {(6.1)

with the linear measurements

= C k=1,2,...,N-1 (6.2)

zZp = Xk + Vi
where xkeRn, k=0,1,..,N, is the state vector, ukeRm, k=0,1,..,N-1,
is the control vector, kaRr. k=0,1,..,N-1, is the input disturbance
vector,. zkéRs. k=1,2,..,N-1, is the measurement vector, vkeRp, k=
1,2,..,N-1 is the measurement disturbance vector, and Ak’ B Gk’ C
are given matrices of appropriate dimension.

The initial state X and the disturbances w. » V) aTe assumed un-

known except that they satisfy the energy constraint

1 N
¥ 'x + = (w!
o - o

-1
B 191V ¥ vk R, vk) <1 (6.3)

k=1,2,..,Nare given positive definite matrices.

where V¥, Qle’ Rk'
Attgrition ig restricted to control laws of the form

. pk(s+m) __ _ N
MR U, k=0,1,...,N=1

taking values

uk = Hk(z]vzzpo-nzkiuoaulo‘*auk_l)n k=0,1,..,N-1
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where By is interpreted as a constant vector and where Ukl‘: Rm, k=0,
1,...,N-1, are given sets. It is required to find a control law in this
class such that the final state XN of the resulting closed-loop system be-
longs to a given set XN©E R® for all possible values of the uncertain quan-

tities.

We will say that the target set X, is reachable if there exists such
a control law.

The above problem can be recognized as the special case of Prob-
lem 5.1 of the previous chapter where the system and measurements are
linear, the constraint set Q is specified by the energy constraint {6.3) and

the cost functional is

N-1
Hingrtys ooty ) = oup [obeygl Xpg) + Z 60u;] U (6.4)

where é(y] Y) denotes the indicator function of the set Y. Consequently it
follows by Proposition 5.4 that for this problem the optimal control law is

of the form

I*k(zlo Zy “'zk’uo'ul' ..'uk-l) = “l*([ 'néz(k)iuos s ..'uk-l] (6. 5)

where Qk and 62(1:) are given for all k by the estimator equations (5.46) through
(5.52}). We will now characterize the optimal control law (6. 5) in the follow-

ing proposition.

Proposition 6.1: Consider the sets ﬁkc R"x[0,1], k=0,1,..,N-1 defined

recursively by the relations
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N _ A 2 ' .
Xyg_p = Byopd -1l 3wy €Uy, such that

(A EN +B u +G W, YeXis Vx w

N-1*N-1 TON-1¥N-1 " ¥N-1¥N-17"N? N-1* ¥N-1’
A ~1 A ' -1 2

(o1 = 2N- PN N1 TN NG ONL N 2 10 (N-1)}
S A 2 _ '
X, * {®.8 ki 3 ue€U sucp that

' A -1
(A% + B + B e Sl Ricr1 9
2 a1 A
(6°0) + A(C, 1 B 1|k Cha1 + Rie) SN € Xy

-1 2
Vo 4y Tepa|kChtt * Ripr) G S 1-670 (6.7)
. k= 0’ 1' -8 .,N-Z

where the matrices Ek+1 |41 zk+1|k are given for a.li k by the equations
(5.48) through (5. 50).
Then the target set X, is reachable if and only if

[
(0, 0)eX {6.8)

Under these circumstances a control law {ﬁo’il’ s r"N-l} that achieves

reachability can be obtained as

B = BlEge e B s uy ) = i (8 6500

where for each pair [:?k, Gz(k)] e%k the vector ﬁk is such that ﬁke Uk and if

k = N-1, we have (AN-lxN-I + BN-lﬁN-l + GN_IWN_I)GXN for all XN-1°

w.p With Gey_p RNy Nz ey - R ¢ 1@ 7N-1 < 1~ 8AN- 1),
ifk=0,1,..,N-2, we have [(A, %, +Ba, +Z, | kHCLHRLiIdk),

(6200 + (€, 11 Z 141 |1Cha1 * R'k“rldk)]e:"ik+1 for all d,_ with

-1 2
B C 118141 | kChkt1 ¥ Riar)” G £ 1 - 87 (k)
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Proof: We shall use the dynamic programming algorithm of Proposition
5.1 for the cost functional {6.4), and the equations (5.46) through (5. 53)

in Proposition 5.4. We have from (5.17)

Hy ) = inf [6(Ay .x +B, ,u
N-1'6N-1 N-1"N-1 ¥ BNo1UNo)
UN-1 qu(cN 1 "N-1) |
N-1
+ GN_IWN_IIXN) + ifoafuil Ul
= inf , sup [5(AN IXN + By
-1 T"N-1
UN-1 O N S gy o S GD

N-1
+GN ™N- IIXN)+ Z 8 lu

Since by equation (5.53)

-
N-108- 10 -1 e ) = Do g Wiy gl Sy )) IN-1iN-1 g - Ry y)

-1 iy 2
+ W QN VNoy S 1-8°N-)
we have that for every cN-l such that SN-]"‘N-I'“N-IIQN-I) ¥ 4’

N-2 :
N-1(8np) = SRy _p. 82 N-1Ry )+ R lu,

where QN-I is the set defined in equation (6.6).

Using now equations (5.17), (5.18) we have

. - . A 2 A
HN_zth_z) = inf z Bup(; {)5[xN_1,6 (N-IHXN_I]
: UN-2 2N-1%4N-1{5N.2"ON_2
N-2 | _
+ .EOM“iIUi)} . (6.9)
i= :

ol
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o
for every ; N-2 such that ZN-I(;N-Z’ uN-Z) # ‘# . According to the equations
{5.46), (5. 51} we write

A

_ A -1
Ryl = Ane2*N-z P BN-2UN-2 Y Zyo1|N-1CN-1BN-19n-2  (6-10)

2 2 : -1
6°N-1) = 8°N-2) + a3 ACN-18N-1]N-2CN-1 * Bno) Ong (6-11)

where

o
dnoz * ?Noi - ON-1AN-2*N-2 T ON-1PN-2UN-2 (6.12)

Also it can be easily proved using the results in Chapter 4 that the

[a) : B .
set ZN-I(cN-Z'uN-Z) is given by

2 ) -1 , :
Zy-qEnzron-2) - {21 | O3 O Bt | N2 * Bt N2 = 1-55(N-2)}

where dyy_, i8 given by (6.12).
From equations (6.9) through (6.12) it follows that

t ) N N-3
Hy_,{0n_p) = %y 28 (N-2)| X _,] + if:oa(uilui)

N
where X , is defined in equation (6.7).
By proceeding similarly we obtain that the optimal value of the cost

functional (6.4) is

—

A 2 A
J = blx,6 (0x]
Since we have x = 0, 62(0) = 0 we obtain
— M
T = 0 <<<==>|{0, 0)€X°

T = 0 <> (0, O)b’?o

Since we have J = 0 if and only if the target set XN is reachable the condition

(6. 8) is proved.
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The fact that the optimal control law is of the form indicated in the
proposition can be easily seen from the preceding arguments. Q.E.D.

A closer examination of the Proposition 6.1 reveals the following
mechanism for the optimal controller., First the estimator of equations

(5.46) through (5. 52)
1

A A -
X1 = At Bt By et Sk Rier1 % (6.13)
52 2 : , -1 '

(k#1) = 820k) + A(C, 1 B [kChar + Rid (6.14)

— - . a3 -
de = Zi1 ” Gl T C1 Bk (6.15)

is used to generate the sufficiently informative function which in this case
is sk(;k) = [:?k, ﬁz(k)] . Then for any given [2 . éztk}']e)?k the controller
selects the control vector u in a way that the ''state'’ [’?k-!-l' 62(k+l }1 of the
estimator (6.13), (6.14) at the next time instant {k+1) will belong to the set

2

K+l for all poésible values of the error residual vector dk

A = 21 " i Cen B
Thus in effect the optimal controller operates in a way that achieves reach-
ability of the set £k+1 by the sufficient information [:?ki-l' 62(k+l )] and
eventually reachability of the set ﬁN-l by the sufficient information
[Ry.p,8°(N-1)]. The sufficient information [, (k)] can be viewed as
the state of the (n+l )-dimena.ional system defined by the equations (6.13),

(6.14) with the initial state
A 2
: [xosa (0)] = (oa 0)

This system is driven by the control Yy and perturbed by the disturbance
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vector d, of equation (6.15), and it is linear in the state and the control

k
but nonlinear in the disturbance. Furthermore the disturbance dk satis-

fies at eac_h time the constraint
-1 2.\ .
1 Ter{ kChk1 * Byr) G S 1 - 67 () | (6. 16)

which is a state-dependent constraint.

We can conclude from the above discussion that in efféct the solu-
tion of the Problem 6.1 involves the solution of a target set reachability
problermn with perfect state information. This reachability problem however
does not involve the original system (6.1) but instead it involves the (n+l)-
dimensional estimator described by the equationa (6.13), (6.14) the state
of which is the sufficient information [:?k, éz(k.)] . The objective of the
controller is to achieve reachability of the target set )?N-l by the final
state [Q'N_.l, GZ(N-I)] of this estimator since if [’?N—l' Gz(N-l)]G}?N_l the
reachability of the target set X, can be guaranteed by equation (6. 6). Since
the controller can use the estimator which produces at each time k the suf-
ficient information [%k, Gz(k)] this is a reachability problem with perfect
state information. However this problem is more complicated than the
re#chability problems that we considered in Chapter 3 since the disturbance
dk of equatidn.(6. 15) enters nonlinearly in the equation (6. 14), and the con-
straint (6.16) is state dependent. For this reason the construction of the
sets ﬁk’ k=20,1,..,N-1, is considerably more complicated than the con-
struction of the effective and modified target sets that we considered in
Chapter 3. As a result the implementation of the optimal controller of
Proposition 6.1 is very difficult in general. By using however internal

A
approximations to the sets Xk it is possible to derive suboptimal control
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schemes that achieve reachability, and can be more easily implemented.
We shall not pursue this matter here since our p:rim;ry objective in this
section has been to demonstrate the interesting fact that, for the case that
we consider, the problem of state reachability with imperfect information

is equivalent to an estimate reachability problem with perfect information.

3. Reachability of a Target Tube with Instantaneous
Ellipsoidal Constraints

In this section we consider the natural extension of the problem of
the reachability of a target tube that was considered in Chapter 3 to the case
‘where, instead of having perfect knowledge of the system state, the controller
has access only to noise-corrupted me_asuremeﬁ?:s of the system output. We
will examine the case of a linear system and ins:tant.aneous ellipsoidal con-
straints for the uncertiain quantities. As was explained in the previous
chapter the implementation of the optimal controller for this problem is in
general very difficult. Our objective in this section will be to develop sub-
optimal control schemes that achieve reachability of the target tube, and
that can be more practically implemented.

We will consider the linear system of equation (6.1)

X411 ?-Akxk+Bkuk+kak ' k=0,1,..,N-1 (6.1)
with the linear measurements
zk = Ckx-k+vk' k= l‘z'.o.N"l (6.2)

We assume that the initial state x, and the disturbance vectors Wy Vi satisfy

the constraints
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1 .

xo‘P x <1 _ (6.17a)

. WLQk Wk 5. 1, k = 0313”3N'1 (6'17b)
-1

vi(Rk Vk < 1, k=1,2,..,N-1 (6.17c)

where ‘I’,Qk. R, are given positive definite matrices.

k

We are seeking a control law

by = rK(st®) .y k=1,2,..,N-1
‘I.'.I.k = pk(zl.ZZ’o-’zk,uog.ul’-b'uk-‘l)
u, = P,

where Upo k=0,1,..,N=1, are given sets, which is such that the state x,,
of the resulting closed-loop eystem (6.1) is contained in the given sets X,
l; =1,2,..,N, for each k, and for all possible values of the initial state X,
and the input and measurement distrubances w;, v, which satisfy the con~
| straints (6.17).

We shall say that the target tube {XI, Xpsees XN} is reachable if
there exists such a control law.

Given at time k the measurements ZysZoseciZy and the prior con-
trols LA RRY oy the controller can calculate a bounding ellipsoid X: |k

to the set X of all possible states x, consistent with these measurements

k| k
and controls by using the bounding ellipsoid estimator of Proposition 4. 3.
By taking into account the presence of control vectors in Proposgition 4.3

we have for all k:

x:lk = {"k“"k"gk)'rﬁk("k - Qk) £1- s(x)) (6.18)
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where Eklk’ Qk' .-éztk) are given recursively by:

-1, -1 '
| = [(1-p, )z‘li | HP;CIR TG R | (6.19)
. -1 -1 -
Ziier = OBiiy) A B g er Ao PP BB, 6.20)
Eo|° =W {6.21)
.., =A% +Bau, +p.,,Z C! R, (z -C, -G, By
i+l e T b B TS R TO I TS R T S T | 1418 TS
| (6.22)
Q°.= 0 (6.23)
82(1) = (1-8,_;N1-p)6%(i-1) + (z, - GA, %, , - GB, y
- i-1 i i i-1 ii-1%-1
N
[(1-5;)" Czﬂxl +pg R] =, i~ GAL%1 - CBy )
(6.24)
2
§°(0) = 0 (6.25)
and ﬂl 1* Py i=1,2,..,N, are any real numbers with 0 < pi-l <1,
0< pi< 1.
Consider now the ellipsoid
= {xlx'El:llkx <1}, k=1,2,..,N (6.26)

The ellips_oiii S, is precomputable, since the matrix zklk does not depend on

k
the measurements, and expresses the maximum possible (62(k) = Q) amount
of uncertainty about the state x when the estimate :?k' is known. Since from

equations (6.18), {(6.26) we have

* A
Xk'kc xklkc x, + S<k (6.27)
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it is clear that in order for the state Xy to belong to the set Xk it is suf-

ficient that the state estimate xk belongs to the set
N ,
X, = {lex + 5. <X} (6.28)

Thus for the purpose of obtaining sufficient conditions for reachability, we
can shift emphasis from the problem of the reachability of the target tube

{Xl. XZ' . ey XN} by the system state Xy to the problem of the reachability
of the target tube {5{\1, iz, ey ﬁN} by the state estimate Qk. This latter
problem will be shown to be a reachability problem with perfect state infor-
mation of the form that we have already considered in Chapter 3.

By substituting equations (6. 1), (6.2) into {6.22) we have that the

estimate x, is generated by the equation

X+l Akxk + Bkuk + Lk-l-ldk (6.29)

n

- where the lumped disturbance d, is given by
de = CrprAl®y = ) + Cpy Gywy + vy (6.30)
and the (precomputable) gain matrix L. ,, is given by

_ -1 |
Litl © Prat Bl |kt Sk Rl (6.31)

Furthermore it follows immediately from equation (6.30) that dk belongs to
the known set

Dy = Crar®™iSk * Crr1GiWik ¥ Vien (6.32)

where 5; is defined by (6.26) and the ellipsoids W, ,V, ., are specified by

the constraints (6.17b) and (6.17c)
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- [ ] s
Wy = {w Wi iw < 1)
_ -1
Vit = e MR Vi £ 8 |
Thus a sufficient condition for the rea.chabilif:y of the given target
tube {X,,X,,..., XN} by the system state x, in the presence of imperfect
A .
information is that the target tube {ﬁl’ 22' ceny XN} defined by (6.28) be
reachable by the state ;Ek of the estimator (6.29) in the presence of the
disturbances 4, which belong to the known set D of equation (6.32). Since
the estimate Qk is generated by the controller and known to him at each
time k, we are faced with a target tube reachability problem with perfect
state information of the form that was examined in Chapter 3.
The solution of this estimate reachability problem can be given using
the results of Chapter 3. Define analogously to equations {3.5), through

A A
(3. 8) the effective target sets Tk+1’ and the modified target sets X: by the

equations
X% = Ry (6.33)
Py = (Rlk+ LkHDk)Cﬁ:_l_l} . k=0,1,...,N-1  (6.34)
ﬁ: } {Qk I(Ak:?k + Bkukk?k-l-l' for some uke.Uk} N Qk 6.35)
k=1,2,...,N
5‘:’: = {Qol(AOQO + Bouo)etfl, for some uerq}. | (6.36)

A A
Then the target tube {Ql' XZ' sy XN} is reachable by the state Qk of the
estimator (6.29) if and only if

A Ak
x = 0eX
o o
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A
Since the reachability of the target tube {ﬁl’ > SYRERY ﬁN} is a sufficient
condition for the reachability of the target tube {Xl. Xoseves XN} by the
state x, of the system (6.1) in the presence of imperfect information we

have the following proposition,

Proposition 6.2: A sufficient condition for reachability of the target tube

{xl. X .,XN} is that

2. - 8
F.N

oex”

[ 4]

where the set Q: is given recursively by equations (6, 33) through (6. 36).

The control law that achieves reachability of the target tube {X

Xps+++s Xy} is the one that achieves reachability of the target tube {X
)

X2 X } by the estimate ::ck of the estimator (6.29). and it is of the
form

- A - -
uk—l-lk(xk), k—o,l,..-,Nl

A possible method for obtaining such a control law which in addition is
linear, is to make use of the ellipsoidal algorithm of Sections 3,4 in
Chapter 3 assuming that the sets ﬁk and Uk are, or can be approximated
by, ellipsoids. In this case we can use the following ellipsoid D: which

bounds the disturbance set D, of equation (6.32)

{dkldic[“‘Pk+1’-lck+1§<+1i-kcic+1 +oiRieyn) g < 1)
The inclusiqn D,C D; can be easily verified from equation (6.19), (6.20),
(6.31),(6.32). The infinite time version of the ellipsdidal algorithm can
also be used for constant systems with constant constraint sets when the

final time N approaches infinity. In this case the infinite time bounding

ellipsoid estimator will be used to generate the estimate :?k.
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It should be noted that in the derivation of the sufﬁcient condition
of Proposition 6.2 we have made several weakening assumptions. We
assumed that the controller uses the bounding ellipsoid estimator to pro-
duce the estirmate set X;:I k whereas the controller could conceivably cal-
culate the exact set of possible states Xk| K’ Furthermore we have not
taken advantage of the possibility to obtain a smaller estimate set by using
the term 6z(k) in equation (6.18). A stronger sufficient condition for
reachability can be obtained by making use of this term. However the
additional complexity which would be introduced would make the resulting
control scheme impractical. On the other hand our approach to reduce the
state reachability problem with imperfect information to an estimate rea;:h-
ability problem with perfect information results in a control scheme the
implementation of which presents no more difficulty than the one considered

in Chapter 3.

4, Discussion and Sources

In this chapter two reachability problems with imperfect state infor-
mation were examined, both involving a linear system. The first problem
is a target set reachability problem where -the constraint set for the uncertain
quantities is specified by an energy constraint. For this problem we char-
acterized completely the optimal control law. This control law is in general
quite difficult to implement, although suboptimal schemes can be derived
which can be implemented more practically. However our primary objective
has been to demonstrate that, for this problem, the state reachability problem
with imperfect information is equivalent to an estimate reachability problem

with perfect information, where the estimate is generated by an estimator
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derived earlier in Chapter 4. This equivalence should be expected to hold
in some form for more general reachabilify problems not involving an
energy constraint for the uncertain quantities. However in such cases the
necessary estimator, which will produce some estirnate set, will in gen-
eral require a very complicated implemeﬁtation.

The second problem considered is a target tube reachability problem
with instantaneous ellipsoidal c.onstraints. for the uncertain quantities. This
problem was first e;ﬁamined in (B1). Our objective in this problem was to
obtain suboptimal control schemes that can be practically implemented.

We achieved thia by reducing the state reachability problem with imperfect
state information to a state estimate reachability problem of perfect infor-
mation. The state estimate is produced by the (s_ubdptimal) bounding ellip-
soid filtering algorithm developed.earlier in Chapter 4. The resulting con-
trol law, though obtained through substantial approximations, involves no
more difficulty in ita implementation than the corresponding perfect infor-
mation control law considered in Chapter 3, This control law can be easily
modified for the case where the constraint sets for the uncertain quantities
are defined in a somewhat different form than those considered in Section 3.
'Such for example is the case where the ellipsoids specified by .the consiraints
(6.17) are not centered at the origin,. or the case where there are no mea-
surement disturbances. In these cases appropriate modifications must be
made in the bounding ellipsoid estirnator. Another case sometimes appearing
in practice is when the measurements are received by the controller with
some delay. Thus in time i the controller may know the measurements only

up to time k, k < i. Under these circumstances the controller must use a
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predictor to generate the estimate ;“ilk instead of the filter of Proposition
4.3, and the corresponding estimate reachability problem must be ap-

propriately redefined.




CONCILUSIONS

In this thesis the subject of the feedback control of uncertain sys-
tems has been examined for the .ca.se where the uncertainty has nonsto-
chastic description. In addition to theoretical invéstigations an effort
has been made to provide design algorithms for the feedback control of
uncertain systems which have potential for practical implementation.. The
set-membership description of the uncertain quantities appears to be at-
tractive from the point of view of the designer who is often faced with a
situation where he has an incomplete statistical description of the uncertain
quantities. in such cases the designer often subjecfively and arbitrafily
assigns a probabilibtic description to the uncertain quantities with the pos-
sible result of a poor mathematical model fof the physical problem in hand.
It is the author's belief that some of the algor_it.hxn. in this thesis, partic-
‘ularly the ellipsoidal algorithms of Chapters3 and 4, can provide a serious
alternative to such a procedure when the set-membership description of the
uncertainty is available. This is particularly so since, where applicable,
these ellipsoidal algorithms lead to designs which have desirable features
from the engineering viewpoint. The estimators of Chapter 4 have the same
structure as linear minimum variance stochastic estimators, a structure
which is desirable from the implementation point of view, and the ellipsoidal
algorithm of Chapter 3 leads to a linear control law which again can be im;
plemented with relative ease.

When considering the minimax approach towards a problem of deci-
sion under uncertainty one s:Iuld constantly be aware of the fact that this

approach is conservative in njture. In some problems where specified

performance tolerances must/be met with certainty the minimax approach
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is the natural one. However in many other problems the minimax ap-
proach may lead to unduly conservative designs, and the algorithms pro-
posed in this thesis should be viewed in the l_ight of this consideration. If
the design obtained through the minimax approach is deemed too conser-
ative, other approaches such as a stochastic formulation of the problem
can be considered.

Chapters 2 and 5 of the thesis are primarily §f theoretical nature,
and contain results which require, in general, a substantia] computational
effort for their use in a practical situation, They are important, however,
for providing a general framework for considering minimax problems, for
obtaining existence results, for providing insight into the structure of the
optimal controller, and for yielding results in special cases such as some
of those considered in Chapters 3 and 6. On the other hand, the emphasis
in Chapters 3 and 4 and in part of Chapter 6 is in the development of algo-
rithms which have potential for practical applications. These algorithms
are applicable to the case of a linear discrete-time system where the con-
straint sets for the uncertain quantities are, or can be approximated by,
ellipsoids. Although these algorithms have some attractive features, their
performance has not as yet been sufficiently evaluated either analytically
or by simulation. Furthermore the question of the quality of the approxi-
mation involved in these algorithms remains as yet unresolved. Thus
some research and simulations are required to provide more insight into
the merits and the drawbacks of these algorithms.

Other areas where further research is required are the situations

where the system is nonlinear and/or continuous-time. ‘The feedback control
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problem which involves a nonlinear system and a set-membership des-
cription of the uncertainty requires, in general, excessive computational
| effort for its solution aé discussed in Chapter 5. In this area optimal or
nearly-optimal algorithms that are computationally fgasibie can be ex-
pected only for problems with special structure. The same appears to
be true for the state estimation problem involving a nonlinear system.
The state estimation problem involving a continuous-time linear system
and either an energy constraint or instantaneous ellipsoidal constraints on
the uncertain quantities presents no more difficulty than its discrete-time
counterpart and has been considered in (B2). The feedback control prob-
lem involving a continuous-time system appears to present considerably
greater technical difficulties than its discrete-time counterpart. This
problem is essentially a differential game for which a saddle point in
pure strategies is not necessarily assumed to exist, and is worthy of
careful consideration. |

Finally is should be mentioned that while in general the complete
characterization of the optimal controller ina minimax control problem is
a very difficult task, the same is true of stochastic optimal control prob-
lems with the exception of the case of the separation theorem for linear
systems and quadratic criteria. Unfortunately no result comparable in
elegance to the stochastic separation theorem appears to exist in connec-

tion with any particular minimax control problem.



APPENDIX 1

ON THE THEORY OF CONVEX FUNCTIONS

In this appendix some definitions and results are s;xmmarized
concerning convex functions defined on a finite dimensional Euclidean
space. Only the results that are necessary for the devélopments in
Chapter 2 are presented here. A complete exposition of the theory can
be found in (R1).

The range of the function that we will be concerned with is the
extended real line Re = [-, ®]. The conventions adopted concerning
arithmetic operations on Re which involve -~ or m -are- as follows:

Concerning addition we have:

a+om = o+a= o0, for ac (-o, ®]

a-w = -mw+a= -m, for a€ [~o0, o)

Concerning multiplication we have:

20 = wa = 0, af(-w)=(-w)a=-0, for ae(0,w]

-, a(~w)= (-o0)a =00, for ae [-00, 0)

400 = ma

0 = O(-oo) = (-00)0

0o ® 0
The sums @ -, -m +o are undefined and are avoided. Under these
rule_s addition and multiplication are commutative and associative, and the
distributive law
a(al + az) = aa, + aa,
holds provided the sum (a.1 + az) ig neither of the forbidden sums o - o and
-oo + oo. |

The ca.ncelia_tion laws hold as follows

~140-
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ata = ata, =.aca, foraf-o o
aa; = aa, #al = a,, fora # 0, -c0, o

Order on the extended real line is defined in the natural way.

Concerning inequalities we have the cancellation laws:
ata; £ata, =5a; <a, for af-w, o
aa, < aa, — a; £ a,, for ac(0,)

aa, < aa, — a; > a,, for a€(-o,0)

One of the advantages of the extended real line is that it is closed
under taking the supremum or the infimum of any of its subsets with the

additional convention that for the empty set

inf ¢=cn, sup ¢ = -
The familiar minimax inequality
sup inf9 {(x,y) < inf sup? (x, y)
yeY xeX x€X yeY
holds for any function'?: R™ x R™ - [-0, 0] and any sets X C.Rn, YcrR™,
In calculations which involve the supremum or infimum operation
care sometimes must be eﬁ:ercised so that the forbidden sums oo - oo,
-o0 + o do not appear. For example if f1 :R" — (-00, o0], fz :R™

(-, ] are functions and X, Y are subsets of R”™ and R™ respectively

we have

inf [flfx)-i-fz(y)] = inf linf [fl(x)+fz(y)]
X,y xeX YGY
x€X,ye Y
= inf [fl(x) + inf fz(y)]
xeX yeY
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only if either -0 < inf fz(y) or fl(x) < o, ¥ xGX.I-
yeY |
Such calculations are common in dyramic programming algorithms
and will be used frequently in the text of the thesis.
We now introduce some of the notions related to convex functions.
Let £:R® — [ -00, 0] be a function.

Definition A.1: The epigraph of f is the subset of R™!

epif = {(x,p)lxeR", peR, p > £(x)}

n+l .
i

Definition A.2: The function f is called convex if the set epif CR 8

convex. If -~oo < f(x), ¥ x€ R" this is equivalent to

£RY -a)x+ay] € (1 -AE(x)+afly), ¥ A€ (0,1), ¥ x,ye R

Definition A.3: The convex hull of a function f, denoted by conv{, is the

convex function which has as epigraph the set conv (epif) {convex hull of

epif).

Definition A.4: A convex function f is said to be proper if -oo < f{x},

Vxe R" and f(x) < oo for at least one xe€ R®. 1t is said to be closed if epif

is a closed set.

Definition A.5: The closure of a proper convex function f, denoted by clf,

_is the closed proper convex function which has as epigraph the set cl({epif)
(closure of the set epif).
Concerning closed proper convex functions we have the following

proposition;

Proposition A.1: Let f be a convex proper function. The following




-143-

conditions are equivalent
{a) f is closed.
{b) The level sets {x|f(x) < a} are closed, ¥ a€ R.

(c) fis lower semicontinuous.
Proof: See Theorem 7.1 in Refg¢rence (R1).

Definition A.6: The effective domain of a convex function f is the convex

set
domf = {x|f(x) < o}

A subset L of R® is called affine (linear manifold) if (1 -)) x + Aye L,
¥x,ye L, ¥ A€ R. Given now a convex set C in RP the affine hull of C is the

smallest affine set that contains C, With these definitions we have:

Definition A.7: The relative interior of the effective domain of a convex

function f, denoted ri {domf), is the interior of the set domf relative to its

affine hull.

Definition A. 8: A convex function f is said to be positively homogeneous if
f0x) = M(x), YV xeR", Vie(0,)

An example of a positively homogeneous convex function is the

support function of a convex set C

' *
afx|C) = sup <x,x >
x¥e C

Concerning continuity of convex functions we have:

Proposition A.2: Let f be a proper convex function on R". Then the re-

striction of f to any subset C of domf which is open relative to the affine
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hull of domf is continuous. In particular the restriction of f to ri (domf)
is continuous. This implies that a convex function which is finite on all

n ., .
of R’ is continuous.

Proof: See Theorem 10.1 of Reférence (R1).

Some important operations involving convex functions will now

be introduced:

Proposition A.3: If f), f, are proper convex functions in R" the function

f, +1, is convex. It is proper if domf, ] clt:'mf2 ;Hﬁ.

Proof: See Theorem 5.2 in Reference (R1).

Proposition A.4: If £, fz are proper convex functions in R" the function

f defined by

f(x) = inf{fl(x-Y) +fz(y)}
y

is convex. The function f is denoted as f = f, 0 f, and the operation O

is called infimal convolution.

Proof: See Theorem 5.4 in Reference (R1}.

Proposition A.5: Let fi’ ieI, be convex functions, where Iis an arbitrary

index set. Then the function f defined by

f(x} = sup fi(x)
i€l

is convex.

Proof: See Theorem 5.5 in Reference {R1).

Proposition A.6: Let A be a linear transformation from R™ to R™. Then
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for each convex function g on R™, the function gA defined by
{gA)x) = g(Ax)
is convex in 'Rn.. For each convex function h on R_n, the function Ah
defined by | _

(Ah)y) = inf h(x)
Ax=y

is convex on R™ {Notice that in accordance with the convention inf P= oo

we have (Ah)y) = w for all y which are not in the range of A). The func-

tion Ah is called the image of h under A and the function gA is called the

inverse image of g under A,

Proof: See Theorem 5.7 in Reference (R1).
We now introduce the notion of the recession function of a convex

function. This notion is extremely helpful in proving closure and propérness -

of functions resultirig from functional operations introduced earlier as well
as in proving existence of solutions in convex optimization problems.

Let C be a nonempty convex set in R™. We say that C recedes in
the direction of the vector 'z # 0 if and only if x +Xz€ C for every )\ > 0 and
x€ C. The set of all vectors ze R™ that satisfy this condition together with

z = 0 is called the recession cone of C, denoted by otc.

Definition A.9: Let f be a proper convex function. The recession function

f0% of f is the convex function which has as epigraph the set 0+(epi f).

Proposition A.7: The recession function f0% of a proper convex function f

is a positively homogeneous proper convex function given by

{f0+)(z) = sup {f{x+ %) - £(x}]xe dom f}
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If £ is closed then fo* is closed also.
Proof: See Theorem 8.5 in Reference (R1).

Definition A.10: A direction defined by a vector z # 0 is called a direction

of recession of the proper convex function f if (f0+)(z) < 0. It is called a

direction in which f is constant if (f0*)(z) = (£0¥)(-2) = o.

Thus a proper convex function f every direction of recession of which is a direc-
tion in which it is constant is characterized by the fact that (£01)(z) > 0,
and (£01)(z) = 0 implies (£0%)(-z) = 0. |

Some criteria for properness and closure of functions resulting from

functional operations of convex functions will now be given.

Proposition A. 8: If fl’ fz are closed proper convex functions and fl +fz is

not identically o then fl +f2 is a closed proper convex function and
+ _ + +
Proof: See Theorem 9.3 in Reference (R1).

Proposition A.9: Let fl’ fz be closed proper convex functions in R™ such

that there exists no ze€ R” such that
(£,0")(z) + (£,0")(-2) > 0
(£,07)(-2) + (£,0")(=) < 0
Then fl 0 fz ié_ a closed proper convex function and the infimum in the

equation

(£,0£,)x) = i;f{fltx-vaz(v)}

is attained by some y for each x. Moreover
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- ot + +
{IIEI fz)O = flo szo
Proof: See Corollary 9.2.1 in Reference (R1).

Proposition A.10: Let fi’ i€ I, be closed proper convex functions where

1 is an arbitrary index set. Then the function f defined by

f{x}) = sup fi(x)
i€ I

either is the constant co function or it is a closed proper convex function

and fo' is given by

(f0*)(2z) = sup (£,0")(z)
jiel

Proof: See Theorem 9.4 in Reference (R1).

Proposition A.11: Let h be a closed proper convex function on R", and

let A be a linear transformation from R to R™. Assume that there exists
no ze R" such that Az = 0, (h0+){z) < 0and (h0+)(-z) > 0. Then the func-

tion Ah, where

(Ah)y) = inf h{x)
Ax=y

is a closed proper convex function and (ah)o? = A(ho'). Moreover for

every y such that (Ah){(y) < oo the infimum in the definition of Ah is attained

for some x.
Proof: See Theorem 9.2 in Reference (R1).

Proposition A.12: Let g be closed proper convex function on R™, and let A

be a linear transformation from R™ to R™. Assume that the function gA

defined by



(gA)x) = g(Ax)

is not identically 0. Then gA is a closed proper convex function and
(ga)0* = (g0h)A.
Proof: See Theorem 9.5 in Reference (R1).

As an application of the above propositions consider the function

H, in R™ defined by

k
H (x,) = 1::; {E, (A, +Bw)+g (u)] (A.1)

m
— (-, ] are closed proper convex

n
where E, ;:R" — (-00, ], g iR
. functions and Ak :R" — R", Bk :R™ — R™ are given linear transformations.
The function Hk above is of great interest in Chapter 2. Asgsume that Hk is

not identically co and consider the following assumptions:

Assumption R: Every direction of recession of each of the functions Ek+1

and g, is a direction in which this function is constant.

Assumption C: The recession function of &) is of the form

(8, 0°)z) = 0 for=z#0, (g 0°)0) =0
The following proposition holds:

Proposition A.13: Under either Assumption R or Assumption C the function

H, of equation {(A.1) is given by

He = (B BEBgl A, | (4.2)

and it is a closed proper convex function. Furthermore for each X € R" the
infimum in equation (A.1) is attained by some u, € Rm, and in the case of

Assumption R every direction of recession of the function Hk is a direction
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in which Hk is constant.

Proof: Under either Assumption R or Assumption C the conditions of
Proposition A, 11 are satisfied so that the function (-Bk)gk given by:

[(-B,)g,)ly) = inf | g (a,)
k8K y=-B k'K

is a closed proper convex function and | (—Bk)gk] 0+ = (-Bk)gk0+.
We have now
Hylx) = inf {Ep (8, + By ) + g (uy)}
Kk

= inf inf  {E_ (A x - y) + g lu))
Yo%
y=-Byuy

= inf {Ek+1 (Akxk -y)+ inf gk(uk)}
y h ™
y=-Byu,

= inf {E (Ax, -y} + (-B)g, ()}

= [[E10¢-Blg A ](x)

where by our assumptions none of the forbidden sums o - 0 or - +o
 appears in the above algebra. Thus equation (A.2) is proved.

The relation [(-Bk)gk] ot - (—Bk)gk0+ implies in the case of
Assumption R that every direction of recession of the function (-Bk)gk is
a direction in which this function is constant as cém be easily seen by
applying the appropriate definitions and Proposition A.11l. In the case of

Assumption C we have
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((-B g, 0" (a) = w forz40, [(-B)g10" (0)=o.

In both cases the conditions of Proposition A.9 are satisfied so that

the function Ek+l

gition A.12 the function Hk

D(-—Bk)gk is a closed proper convex function and by Propo-
of equation (A.2) is also a closed proper convex
function.

To see that the infimum in equation (A.1l) is attained observe that
if X is such that Hk(xk) = oo then the infimum is attained for every u € R™.

If x, is such that Hk(xk) < o then attainement of the infimum follows by

k
making use of the conclusions of Propositions A.9 and A.1l in the equation

H (x,) = inf {Ek 1A X - Y) + inf gk(uk)}
y=-Bk11k
In the case of Assumption R the conclusion that every direction of

recession of the function Hk is a direction in which it is constant follows

from the equation

+ + +
HO0" = [BE 107 0(-By)g, 014,

which holds by PropositionsA.9, A.ll and A.12, Q.E.D.

The important notion of the conjugate function of a convex function

is now introduced.

Definition A.11: Let f be a convex function in R®. The conjugate function

f* is defined as

f*(x*) = sup {< x.x* > ~f{x)} = -inf {f(x) - <x,x.* >}
' x x

and is a closed convex function in R", proper if and only if f is proper.

Moreover (clf)* = f* and {f*)*=. clf.
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An important example of a pair of conjugate functions is the indicator

‘function and the support function of a closed convex set C. We have

5(xIC) = 0 if x¢C, &(x|C) = oo if x¢X

%
s%x¥1C) = o(x"|C) = sup <x . x >
xeC

Concerning conjugate functions of convex functions resulting from the
operations introduced earlier we have a duality between addition and infimal
convolution, and between the image and the inverse image of a convex func-
tion under a linear transformation, in accordance with the following propo-

sitions:

Proposition A.14: Let f,, f, be proper convex functions in R". Then

(6,06,)" = £F+1*

(c1f, + clfz)* = clffO1))
and if ri{dom fl)ﬂri(dom fz) # ¢ the closure operation can be ommited from
the second equation.
Proof: See Theorem 16.4 in f{eference (R1).

Proposition A.15: Let A be a linear transformation from R™ to R™. For

any convex function h on R™ we have
(Ab)* = h¥A

For any convex function g on R™ we have
[c1)a]” = c1(arg™)

and if there exists an x such that Axe ri (domg), the closure operation can

be ommited from the second equation.
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-Proof: See Theorem 16.3 in Reference (R1).

The notion of the directioﬁal derivative and the related notion of
the subdifferential is fundamental in the problem of finding the minimum
of a convex function.

Let f be any function from R™ to [-00, oo] and let x be a point where

f is finite. The one-sided directional derivative of f at x with respect to a

vector y€ R™ is defined as the limit

flx+My) - f(x)

f'{x;y) = lim (A.3)

—0
if it exists (oo and -co being allowed as limits).

Proposition A.16: Let f be a convex function, and let x be a point where f

is finite. Then for every y the limit in equation (A. 3) exists and the func-

tion f'(x;y) is a positively homogeneous convex function of y.
Proof: See Theorem 23.1 in Reference {R1).

* : R
Definition A.12: A vector x € R™ is said to be a subgradient of a convex

function f in R" at a point x if

fz) > f(x) +<x» z-x>, VzeR" (A.4)

The set of all subgradients of f at x is called the subdifferential of f at x,
it is denoted by 3f(x),and it is a closed convex set. If df(x) # ¢ then f is

gaid to be subdifferentiable at x.

Proposition A.17: Let f be a proper convex function. For x¢domf,3f(x) is

empty. For xeri{domf), 3f(x) is nonempty and f{' (x;y) is the support func-

tion of 3f(x). Finally 3f(x) is a compact set if and only if x€int{dom f).
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Proof: See Theorem 23.4 in Reference (R1).

It should be noted that if f is differentiable at a point x then Jf(x)
consists of a single point the gradient V{(x). Another important case to
note is when f is the indicator function of a2 closed convex set C. Then
for x€ C, 3f(x) = 36(x|C) = {x'10 > <x*, z-x >, VzeC), i.e., 36(x|C)
is the set of all vectors normal to C at x.

Dualit);r is prevalent in the theory of subgradients due to the following

fact:

Proposition A.18: For any proper convex function f and any x the following

conditions are equivalent:
%
{a) x €3f(x)
' ¥
(b} < z,x > - f(z) achieves its supremum in z at z - x.

{c) f(x)+ t’*(x*) = < x_,x* >

Proof: See Theorem 23.5 in Reference (R1).

We also have:

Proposition A.19: Let f'I', fz be proper convex functions on R™ and let

f= fl + IZ' T_hen
3f(x) 273, (x) + ¥f,5x), VxeR"
If ri(domf;) N ri(domf,) # ¢ then actually
difx) = df,(x) + df,(x), ¥ xeR"

Proof: See Theorern 23,8 in Reference (R1).

Proposition A.20: Let f(x) = h(Ax), where h is a proper convex function

on R™ and A a linear transformation from R" to Rn_‘. Then
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3f(x) D A'3h{Ax), VxeR"

If the range of A contains a point of ri{dom h) then
3(x) = A'h(Ax), VYxeR"

Proof: See Theorem 23.9 in Reference (R1}.
If {xn} is a sequence converging to a point xeR"™ it is not generally
true that for any yeRn the sequence {e (xn;y)} converges to f'(x;y). The

following proposition however is useful in some cases.

Proposition A.21: Let f be a convex function on R™ and let C be an open

convex set on which f is finite, Let { fn} be a sequence of convex functions
finite on C and converging pointwise to f on C. Let xe C and let {xn} be a

sequence of points in C converging to x. Then for any ye R"” and any sequence

{yn} converging to y we have

lim sup f {x ;y,) < £{xy)
n— oo '

Proof: See Theorem 24.5 in Reference (R1).

As an application of the above we prove the following proposition
which will be useful in Chapter 2. This propo sition is a generalization of

results in References (D1) and (Dal).

Proposition A.22: Lef:'?:Rﬂ x R™ — (-c0, oo] be a function and let Y be a
compact subset of R™. Assume further that for every vector ye€Y the func-
_tion9 (*,v) :R™ — (-o0, ] is a closed proper convex function. Consider

the function f defined as

f{x) = sup'?(x,y)
yeY
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Then if f is finite somewhere it is a closed proper convex function,
Furthermoré if int(dom f) # cﬁ and '? is continuous on the set int{(domf)x Y

then for eirery x€ int{dom f) we have
3f(x) = conv {3{(x, y)|ye ¥ (x)}
where Y(x) is the set

Yo = e ¥Iftey) = maxgixy))
y€.

Proof: The fact that f is a closed proper convex function follows immedi-
ately from Proposition A.10. Let xeiht(dom f) and let C be an open convex
neighborhood of x such that f is finite on C. Then? is finite and continuous
on CxY since CC int(dom f). Now for any zeR" let {xn] = {x+hnz} be a
sequence of vectors in C with: > 0, {ln} —~ 0. Let also {)'rn} be a se-
quence of vectors such that f(xﬁ)=9 (xn. )—rn). i.e., ;rne?(xn) CY. Sucha
sequence exiﬁts by the compactness of Y and the contitiuity of the funcion
? (xn,') on Y. Furthermore by compactness of Y the sequenge {frn} has a
subsequence which converges to a vector yeY. Thus without loss of gener-
ality we can assume that thel sequence {xn} is selected so that the corre-
sponding seguence {;n} converges to the vector ye Y; We now prove that
in fact ye Y{x), i.e. » that{p(x, ¥) = ;.nea%c?(x, y}). We have by the continuity

of f on C for any € > 0
f{x) - € < f{x ) for n > N,

and by the continuity of ? on CxY

o
Iv
2

) =P (0 7,) SGPlxy) +€ for

and therefore
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f(x) = max@(x,y) <& (x,y) + 2¢€,
yﬂ,? Ny

and since the above inequality holds for any € > 0 we conclude Ymea%:?(x, y) =

Ef(x, y) and ye Y{x),

Now we have:

Hx+Xz) - £x)  Qlx+dz, y,) - F0x¥)
A - A
n n
< Glx+X z,y)-LPxy) L, o(x )
2 X =G ayyiz)
n n
O(Xn) .
with lim ~—g— = 0. Taking limits in the above inequality we obtain
n—+go n '
‘. - .
f'{x;z) < l{.llx;supg(x. yn,z) (A.5)

Now the sequence of functions of x {3(- ,f}n)} converges pointwise to
the functions’(- ,¥) on the open set C by the continuity of ? on CxY, and by

applying Proposition A.21

4 4 .
lim sup @ (x,y_ :z) < P (x,y:z)
n—co 4 n F b

Using the above in relation (A.5) we obtain
fi(x;z) <Y (x, yiz) . (A.6)
On the other hand we have for every vector ye Y (x)

Hx+r2) - fx) QAT ) -PP)
X - = X
n n
Flx+X 2, ¥) -@(x, §)
A

n

>
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'Taking limits in the above inequality we obtain -
' -—
f'(x;z) > 9(&?::). Vye Y(x) - (A7)
From relations _(A.G)'and (A.7) it follows that

f'{x;z) = max g'(x. yiz)
}'EY(x)

) [
and since by Proposition A.17 5’{:\:. y;* )} is the support function of the convex
compact set aS'(x, y) and f'{x;:) is the support function of the convex compact
set 3f(x) it follows:
3f(x) = conv {3Ylx, ) yeY(x)} Q.E.D.
Consider now a closed proper convex function of f and the problem

of finding its minimum in R™. The set of points x€ R" such that

f(x) = inf £(x)
X

will be called the minimum set of f. We have the following proposition:

Proposition A.23: The following statements are valid for any closed proper

: *
convex function f and its conjugate f .

(a) inf f(x) = -£7(0). Thus { is bounded below if and only if Ocdom f .
X

(b) A vector x belongs to the minimumset of { if and only if O€ df(x).
(c) The minimum set of f is Bf*(O). Thus the infimum of f is
attained if and only if f* is subdifferentiable at 0. This condition
is satisfied in particular when O€ ri{dom f*); motreover one has
Oe ;’i(dom f*) if and only if every direction of recession of f is

a direction in which { is constant.
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(d) The minimum set of f is a nonempty compact set if and

only if O€ int{dom f*). This holds if and only if f has no
directions of recession.

(e} The minimum set of f consists of a unigue vector x if and

only if £ is differentiable at 0 and x = V£(0).
Proof: See Theorem 27.1 in Reference {R1).

The above Proposition illustrates the fundamental role of the sub-
differential in convex minimization problems and shows the importance of

the recession function in such problems.



APPENDIX 1I

In this Appendix we present the proofs of Propositions 3.1 and 3. 2.
We begin with the proof of Proposition 3.1. For the purpose of clearer
presentation a few lemmas, some of which are well known, will be given

first:

Lemma A.I1: Let El' EZ be positive definite symmetric nxn matrices,

Then

() Z, £ Z if and only if z]

2
(b) There exist positive scalars 4, vV such that
v-EZ < El < p.ZZ _

Proof: (a) For allyeR®, ¢'=;ly}2= sup <y> >  sup <y = =34 2q.E.D.
' .x'.fale_ 1 x'Ez;: <1

(b) For any two norms in R™, || - Iill, 11 oo there exist positive scalars
I, Vv such that

1/2 1/2
w1721 4] /

2 < =il < w Hxll, for all xeR"

Taking l|x||l_. = (x! Elx)llz, l|xl|z= (x' Z‘Zx)l /2 the result

follows Q. E.D.

Lemma A.2: Let F be an nxn matrix such that for every eigenvalue

X = a + bi of F we have az +bz < 1. Then there exists a positive definite

symmetric matrix M such that

FIMF < M

Proof: This lemma is a direct consequence of the fact that if p(F) =

max {Ja +b2“\ = 'a +bi, Aeigenvalue of F} then for every €.> 0 there exists
-159- -
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a Euclidean norm ||x|] = (x'M.m:)”z such that
1
p(F) < |IFIf = sup YEXL = sup LF MF’{}Z < p(F) +e
x ' x ( 'Mx)

{see for example, Reference (I1)

Since p(F} < 1 there exists a positive definite symmetric matrix M such that

(' E'MEx e

x 'JMx) /2

implying F*'MF < M Q.E.D.

Lemma A.3: Let {Ek} be a sequence of positive definite symmetric nxn

matrices such that Ek < Ek-l-l

2
symmetric matrix. Then the sequence {Zk} converges (in any norm in R )

< M for all k, where M is a positive definite

to a positive definite symmetric matrix }Jm.

Proof: This lemma is a special case of a result for positive operators in

( Ka__ 1}

Hilbert space and has appeared in this form in Reference (Wo2).

Lemma A.4: Consider the sequences of matrices {Kk}’ {Ek} generated

by the equations

K, = _A_r(xl'(l -cale + BR B A 4 (A.8)
K, =¥

T - (A-BL)'(E;;I—GQ‘IG')-I(A-BL)f\I’ + L'RL (A.9)
=z, =¥

where A, B, G, L are given matrices of dimensionnxn, nxm, nxr, mxn
respectively and ¥, Q and R are given positive definite symmetric matrices.

Assume that for all k the matrix %, is positive definite and symmetric and

k
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that

calgr < 2;1 for all k

Then we have for all k

-1 -1
0< K, <Z andGQ™ G < K

Proof: We prove the .lemma by induction. For k = N it holds. Assume

0< K, <Z

k k*
write

M= (5 -6 eyt > x!-Galay!

Then from equations (A. 8) and {A.9)

Z 1 -Key = (A-BLPM(A-BL) +¥+ L'RL

- ank;'-ca lareBr™ IR 1A W
> (A-BL)M(A-BL) + L'RL - AYM" ! +BR !p) 1A

By using the well known matrix identity

1 1 -1

(M"" +BR™"B') M - MB(B'MB +R)'IB"M

in the above inequality and by expanding we obtain

z I-K

. > A'™MA + LYB'MB +R)L - L'B'MA - A'MBL

k-1
- A'TMA + A'MB(B'MB +R)" !B'MA
= LY{B'MB+R)L - A'MBL - L'B'MA

+ A'TMB(B'MB +R) 'B'MA

= [L- (R+B'MB)'1B'MA]"(B'MB+R)[L - (R+B'MB)-1B'MA]

| v

0

It will be proved that 0 < Kk—l < Ekél' For convenience
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Hence Kk—l < zk-l' Since GQ-IG' < KI:]' it follows from equation
-1 -1

(A. 8) that 0 < K ; and a'ince‘GQ-lG' < Z,_1 £ K, we also obtain

GQ~ G'<K IQED.

Lemma A.5: Consider the sequence of matrices {Ek} generated by the

eguation

Z ., - F'(E;:I -ca oy lFr + ¥4+ LRL (A.10)

T =V o (A.11)

n
where‘l’ R,Q,G,F, L are given matrices of appropriate dimension, ‘I’ R and
Q are positive definite and symmetric and for every eigenvalue A - a + bi of

"the nxn matanwe have az +b < 1.

Let M be a positive definite symmetric matrix such that F'MF < M,
let q be a positive scalar such that
-1 -1 :
GQ "G < qM (A.12)
and let p be a positive scalar such that
F'MF < (1 -gqu)M, q@ <1 (A.13)

The existence of such a scalar p is guaranteed since by Lemma A.1 there
exists a positive scalar v such that VM < M - F'MF and any scalar u with

0<pc< —;— satisfies the inequality (A.13). Assume further that the matrices

‘I’, R and L are such that

¥+ L'RL < TEZ (1 -au)M - FIME) (A.14)

Then the sequence {Ek} converges to a positive definite symmetric matrix

E-oo' Furthermore the matrices Ek are positive definite and for all k
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ca lo < z;l . I, <uM {A.15)

Proof: It will be proved under our assumptions that

0 < Ek < zk-l < pM _ (A.16)

then by Lemma A.3 convergence will follow and furthermore the inequality
{A.15) will be satisfied since from (A.12) and (A.13) we have

m k

g < oM™

GQ
The relation (A.16) will be proved by induction. We have from (A. 14)
0 <V¥ = Z < #M which also implies ('\I/‘l - GQ'IG‘)-I is positive definite

and from equation {A.10) we have ¥ = EN < ZN—I' Assume that Ek-l-li Ek <

M. Then
1 -1.,,-1 .
Z, = F(E.-GQTGY) F + ¥+ L'RL
: -1 “1,.,.~1 _
> FYZ.,,-GQ "G') F+V¥+LRL = z
and also
-1 -1.,,-1
. = F'(E-Ga7a) F+VW¥+ L'RL
L1 -1 -1,,,-1
< F(MT-GQTGY) F +¥+ L'RL
< FpM - oM 4 W s LRL

= —J‘—l_qp F'MF +¥ + L'RL < aM

where the last inequality follows from relation (A.14). Thus we obtain

Z\ £ ) _; < »M and the induction proof is complete Q.E.D,

We are now ready to state the proof of Proposition 3.1:

Proof of Proposition 3.1: It is required to prove that there exists a scalar
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'bl such that for every f with 0 < B < pl there exist positive scalars al,b1
such that for every a, bwith 0 < a < a;, 0<b< bl_the sequence {Kk}
generated by the equation

B -1_1-B -1, 1__-1
Ky = ALK "-—5=GQ "G'+ BR]

B']'IA + a\Ifl (A.17)

Ky = a‘yl . {A.18)

converges to a positive definite symmetric matrix K-oo and furthermore

we have

-1
k

1 -
pGQ

1

G' < K for all k {A.19)

The Lemma A.3 will be used to reduce the proof of the proposition to
proving a different statement. We first make the following observation:

If for some B,2,b the inequality (A.19) holds for all k then
K < Kk-l for all k (A.20)

We prove this fact by induction. For k = N we have from equation (A. 17)

a¥= Ky < Kyn.p- Assume K| . <K, . Then from (A.17)

k+
Koy = Ala-ek - 4B color v L er B lA £ 0y
N L R L T UL Ay
or Kk < Kk-l‘

Now if we could find a positive definite symmetric matrix S such that

K, < 8 for all k ' {A.21)

k
and furthermore

L

BGQ"IG' < g1 : (A.22)
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then the inequality (A.19) would be satisfied for all k and from the relations
(A.20) and (A.21) we would have Kk < ‘Kk-l < 8 for all k. This in turn
would imply by Lemma A.3 that the sequence {Kk} converges to a positive
definite symmetric matrix K-oo

Thus in order to prove the proposition it is sufficient to demonstrate
a positive scalar 61' <1 and for every B, 0 <P <P, positive scalars a), b,
such that for all a,b, 0<a< a, 0<b< l:n1 there exists a matrix S satisfying
relations (A.21) and {A.22).

Since the pair (A, B) is stabilizable there exists an mxn matrix L
such that the matrix {A-BL) is stable. Let ﬂl be a sc;alar, 0< ﬂl < 1 such

that the matrix

-1/2

Fj = (1-8;)" %4 -BL)

is also stable. Clearly sﬁch a scalar exists and for every f, 0<p < |31, the

matrix
F = (1-p) %481 ' (A.23)

is also stable. It will be shown below that P, satisfies the requirements of

the proposition.

1/2

Let now for any §, 0<p <B,, A = (1-B) %A, B = (1-[3)’1/2]3,

The equation (A.17) can be rewritteén as

B') 17+ a¥ (A.24)

k-1

. Tl Ll an-l 1=
.K = A'[K, 5GR7G' +4BR

and since the matrix F of equation (A.23) can be written as F = A -~ BL, by

using Lemma A.4 we obtain that

<z : for all k _ (A.25)

K k

k

i
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where }:k is the solution of the equation

Z - F'(z:l:I - %GQ_IG')'IF + a‘I'1 +bL'R L | (A.26)
EN = a‘l’i | (A.27)
provided .that o< Ek for all k and
——ﬁl—-GQ'lG' < z! for all k. (A.28)

Now by Lemma A.5 if

a¥; + bL'R;L < T:%F [ (1-qu)M - F'MF] (A.29)

where M is a positive definite symmetric matrix and q, » are positive scalars

such that
F'MF < M | (A.30)
-B’-GQ“G- < qMm”! (A.31)
F'MF < (1 - qu)M - (A.32)

the sequence {Ek} generated by equation (A.26) converges to a positive defi-

1 -1
B T %k
Z:k < M for all k. Thus for a,b satisfying the relation (A.29) we have from

nite symmetric matrix E-m and we have GQ—IG' < Z

for all k and

(A.25) that for S = uM

Ky < 8 for all k
Furthermore since 0 < qu < 1 from equation (A.31)

1

-1 1 1 ,.~1 -1
8 GQ

G' < gM~ <M =8
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Therefore for S = uM the relations (A.21) and {A.22) are satisfied and
consequently the sequence {Kk} converges to a positif_e definite symmetric
matrix K_m and the inequality (A.19) is satisfied for every a, b satisfying
the ineéuality {A.59). It is clear from Lemma A.1 that there exist positive
scalars al’bl such that for every a,b, 0<a < a,, 0<b< b1 the inequality
(A.19) is satisfied. Any such scalars a],b1 satisfy.t.he requirements of

the proposition. Q. E. D.

We next present the proof of Proposition 3.2,

Proof of Proposition 3.2: We will prove that for the state of the closed-loop

system

X4y = (A - BLpx (A.33)

-1 ;

- ] ] ;

L = (R+B'F__B) B'F__A ?
and for any positive integer N we have .

N-1 i

t ¥ ' < tyr . :
X{K_ XN +k§0xk(\lf+ L'RLkx, < x'K__x_ (A.34) !

Then from the positive definiteness of (W+ L'RL) asymptotic stability of the

system (A.33) follows.

To prove the relation (A.34) we will use the following identity which

is familiar from Riccati equation theory. This identity can be verified in a

straight forward manner

K, = (A-BL)F__(A-BL)+V¥+L'RL (A.35)

We also have
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1
w

-1 -1 1 .,-0 S SN JPRE -
Fp = (1-BMK_ -5GQ G) < K -5GQ G 2K

il

implying

K < F (A.36)
B -00 .

By using relations {A.35) and (A.36) we now have:

: N-1
K *n t fioxi‘ (V+ L'RL)x,

N-1

< xpF__xy + fzoxi((\I’+L'RL)xk

- N-2
= x'  [(A-BL)F__(A-BL) +¥+ L'RL]xy_; + © x}(V+ L'RL)x,
N-1 k=0

N-2
= xi\I-IK-me-l + ioxi{ (V+ I..'.'RL)xk

el | 1
< XK *yop ¥ X (V+L RL)x

< x'[(A-BLYF (A-BL)+W¥+ L'RL]x = x*K x
2] - D o -0 0

or
N-1
1 1 .
XK XN f; . x} (V+L'RL)x, < x'K _x

Q. E. D,
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