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Abstract

We consider the approximate solution of linear ill-posed inverse
problems of high dimension with a simulation-based algorithm that
approximates the solution within a low-dimensional subspace. The al-
gorithm uses Tikhonov regularization, regression, and low-dimensional
linear algebra calculations and storage. For sampling efficiency, we use
variance reduction/importance sampling schemes, specially tailored to
the structure of inverse problems. We demonstrate the implementa-
tion of our algorithm in a series of practical large-scale examples arising
from Fredholm integral equations of the first kind.

1 Introduction
We consider linear inverse problems of the form
Az = b, (1)

where A is an m X n real matrix, b is a vector in R™ and z is the un-
known vector in R™. Such problems typically arise from discretized Fred-
holm integral equations of the first kind, such as those encountered in image
processing, geophysical prospecting, and astronomy [Gro07], [BB98|. The
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system (1) may be either underdetermined or overdetermined. We consider
a least-squares formulation

min || Az — b]|? 2
min || Az — b2 )
where ( is a known probability distribution vector with positive components.
When n or m is very large, the exact optimal solution x* of problem (2)
becomes computationally formidable.

In this paper, we propose to approximate z* within a low-dimensional

subspace
S ={dr|reR’},

where ® is an n X s matrix whose columns represent basis functions of S. Our
methodology involves subspace approximation, Monte-Carlo simulation, re-
gression, and most significantly, only low-dimensional vector operations (of
order s, the number of basis functions).

We thus focus on the following approximation to problem (2):

min ||A®r — ng
refts

The optimal solution is
r* =G e, (3)

where

G=0'AZAD,  c=dAZb, (4)

Z is the m x m diagonal matrix with components of ( along its diagonal
(we assume throughout this paper that G is invertible).

Since the direct calculation of G and ¢ may be prohibitively expensive, we
propose to estimate their values by simulation, as suggested in [BY09]. For
example, we may generate a sequence {(ig, jo, jo), - - - , (it ji, j¢)} by sampling
1ndependently according to some distribution & from the set of index triples
(i,4,7) € {1,...,n}®. Then we may estimate G and ¢ with G and ¢ given
by

t t

A 1 a; 7 L i
— ol Z kJk ’Lk]k ¢]k¢ Z LIk Zk (bjk? (5)
k=0

glkjk]k k: glk]k

where we denote by a;; the (i, j)th component of A, &;; the marginal proba-
bility of (i, ), &,;; the marginal probability of (i,7,7), and gb; the jth row of

®. One natural approximation of r* is # = G~'¢. When ¢t — oo, as shown



in [BY09], we have G — G and ¢ — ¢ with probability 1, so G~'¢ — r* with
probability 1.

There have been several proposals in the literature relating to the exact
or approximate solution of large-scale inverse problems. Omne of the ear-
liest attempts is by Lanczos [Lan58], which successively approximates the
solution without explicit matrix inversion. Since then a number of iterative
methods have been studied, such as the Landweber iteration, the conjugate
gradient method, the LSQR algorithm (see the survey [HH93| for a com-
prehensive review of these methods). A projection-regularization approach,
proposed by O’Leary and Simmons [OS81], approximates the solution within
a subspace in which the projected coefficient matrix is bidiagonalizable. A
related approach proposed by Calveti and Zhang [DCZ99] suggests the use
of Lanczos bidiagonalization with Gauss quadrature. Later, a trust-region
formulation was proposed by Rojas and Sorensen [RS02], which poses the
regularized problem as an inequality constrained least-squares problem.

Our work differs from those mentioned above in that it involves both sub-
space approximation and simulation, and relies exclusively on low-dimensio-
nal vector operations. The origins of our approach can be traced to pro-
jected equation methods for approximate dynamic programming, which aim
to solve forms of Bellman’s equation of very large dimension by using simu-
lation (see the books by Bertsekas and Tsitsiklis [BT96], Sutton and Barto
[SB98], and Bertsekas [Ber07]). These methods were recently extended to
apply to general square systems of linear equations and regression problems
in the paper by Bertsekas and Yu [BY09], which was the starting point
for the present paper. The companion paper [WPB09] emphasizes generic
methodological aspects of regression and variance analysis for importance
sampling schemes, and may serve as a theoretical basis for the present work,
which emphasizes algorithmic approaches for the solution of practical inverse
problems.

The paper is organized as follows. In Section 2, we present general as-
pects of subspace approximation, regression, and our simulation framework.
In Section 3, we discuss alternative methods for designing importance sam-
pling distributions for simulation, in the context of our algorithmic method-
ology. In Section 4, we apply our methodology to a number of practical
inverse problems of large dimension, and we present the computational re-
sults.



2 Approximation Methodology Based on Simula-
tion and Regression

2.1 Simulation Framework

We want to estimate the matrix G and vector ¢ of Eq. (4), which define the
optimal low-dimensional solution 7* [cf. Eq. (3)]. Equation (5) provides one
such approach. In this section we will present a few alternative approaches.
One possibility, proposed in [WPB09], is to estimate each component of
. L =t .
G and c using a separate sequence {(zk, jk,jk)}kzo. Then we may estimate
the (¢, ¢)th component of G or the ¢th component of ¢ with

Z SixCisiiey g, (6)

G —
“a t+1 i

1 Clkalk]k ik
E ¢jk€¢ , Cp =
Jkq

t+1 k=0 ik JkTk

where we denote by ¢j, the (j,¢)th component of ®. This component-by-
component approach requires (s? 4 3s)/2 separate sample sequences (since
G is symmetric), which increases the time complexity of the computation.
Nonetheless, as we will discuss later, this allows the customization of the
sampling distribution to the particular component, according to principles
of importance sampling, so fewer samples per component may be required for
the same solution accuracy. Another possibility is to generate one sequence
per column or row of G and one sequence for ¢, which requires s+ 1 separate
sample sequences.

More generally, we may partition the set of components of G and ¢, and
then generate one sample sequence per block. With a judicious partitioning
strategy, the potential advantage of this strategy is twofold: first, grouping
together components that can be estimated using similar distributions so as
to improve the efficiency of the sampling process, and second, estimating
“almost independent” components independently so as to reduce the bias
induced by correlation among the components of the estimates.

We now briefly discuss alternative mechanisms to generate sample triples
(i,7,7). The simplest scheme is to sample iy, jx, and j; independently from
one another, according to distributions p1, p2, and us3, respectively. Then
the marginal probabilities for pairs (i, j) and triples (i, j, jx) are

Sirir = Ml 2,55 Sininie = Mg 2,5, M3 7, -

An alternative is to generate an independent sequence of indices {Z’o, 1, .- }
according to a distribution u, and then generate j, and j; conditioned on



each iy, according to transition probabilities g;,;, and ¢, 5, . In this case,
the marginal probabilities are

A somewhat more complex scheme is to generate a sequence of state tran-
sitions {io, 1, .- } using an irreducible Markov chain with transition prob-
ability matrix P and initial distribution &. Sampling ji and ji according
to some transition probabilities ¢;,j, and ¢;, 7, yields marginal probabilities
for pairs (ix, jx) and triples (ix, jk, jk):

k k ~

Here the choice of P should ensure that all row indices are sampled infinitely
often, so that G — G and ¢ — ¢ (and hence also G~1¢ — r*) as t — oo, with
probability 1. In particular, if P is an irreducible Markov chain, we can use
as & the distribution of long-term frequencies of state visits corresponding
to P.

2.2 Regression Methods

Given G and ¢, we may estimate r* [cf. Eq. (3)] with G~1¢, but this estimate
may be highly susceptible to simulation noise, particularly if G is nearly
singular. As a more reliable alternative, we consider the estimation of r*
using a form of regression and the model

¢=Gr+ e,
where e is the vector representing simulation error,
e=(G-G)r+é—c

The standard least squares/regression/Tikhonov regularization approach
yields the estimate
P = arg Hl%?Il {(GT _ é)/zfl(ér _ é) + (T‘ - f)/rfl(r o f)},
refs
where 7 is an a priori estimate (for example 7 = G 1éora singular valued-

based estimate of G_lé), and X and I' are some positive definite symmetric
matrices. Equivalently,

A~

F=(GLIG+T Y YE's e+ 17 1), (7)



An effective choice is to use as ¥ an estimate of the covariance of the error
e = ¢ — Gr*. Such an estimate can be obtained from the simulation using a
nominal guess 7 of r*, i.e., the matrix

t

X(F) = . > erel = L (Gr—G)i+(e—cr)) (Gr—G)i+(e—cp))
) (8)

where each e can be viewed as a sample of e, and G, and ¢y, are correspond-
ing sample terms that are averaged to form the estimates G and é. We refer
to the companion paper [WPB09] for further discussion and a derivation of
an associated confidence interval for the estimate 7 of Eq. (7).

For the experimental results reported in this paper, we have used the pre-
ceding regression procedure with Y(7) as given above, and with a nominal
guess 7 based on 7. Another possibility is to use a form of iterative regres-
sion, whereby we estimate r* by repeatedly using Eq. (7) with intermediate
correction of the matrix ¥ using Eq. (8), which is the iteration

reis = (G'S(ry) '@+ T HES(m) e+ T719). (9)

This iteration has been shown to converge locally [WPB09] to a fixed point
of Eq. (9), provided that the covariance of e is sufficiently small.

Under certain circumstances, we may have prior knowledge about the
high-dimensional solution z* of problem (2), which may suggest a natural
type of regression. For example, in some inverse problems arising in physical
science, it is desired that the regularization term be proportional to (z —
Z)' L' L(x — Z) for some [ x n matrix L and an arbitrary prior guess z. Thus,
we may take

1 = 50'L'L®,
for some 8 > 0. If the matrix ®'L’L® is not available in analytical form, we
may estimate ®'L'L® based on simulation and take I'"! to be

-1 _ Zk]k Zk]k
Tt _|_ 1 Z ¢]k Ik’

zk]k.]k

where we denote by I;; the (4, j)th component of L.

2.3 Extensions
2.3.1 Special Case 1: Underdetermined Problems

In dealing with severely underdetermined problems (see [KS04] for exam-
ples of inverse problems of this type), we can estimate the components of



the high-dimensional solution z* of problem (2) directly, without subspace
approximation. Assuming that m is reasonably small, we may take & = I
and adapt the preceding methodology as follows.

Let X! =1, T"' =3I, and Z = I in Eq. (7) for some 8 > 0, and let

A~ —

& =®r =7 and T = &7 = 7. Equation (7) can be rewritten as
b=+ (AA+BI)TA (b Az). (10)
We now note that
A(AA + BI) = A AA + BA' = (A'A + BI) A’

and that both matrices (AA’+ 3I) and (A’A+ SI) are positive definite and
thus invertible. Hence we have

(AA+BI)LA = A(AA' + pI)~!
Thus Eq. (10) is equivalent with
i=1x+ A(F+BI)d, (11)
where we define the m x m matrix F' and the m-dimensional vector d by
F=AA, d=0b— Az.

In analogy with the estimation of G and ¢ by using Eq. (5), we may gen-
erate one sample sequence {(ig, jo), - - -, (it,jt)} according to a distribution
¢, and estimate F' and d with

1 < 1 1
in a: a , d:b_i &a‘,
t+1 %5%% Ik b+l

where we denote by a;, the ixth column of A. Alternatively, in analogy with
Eq. (6), we may use one sample sequence per component of F' and d, and
estimate Fy, and dy respectively with

t _
Ly 5 1 iy, Tiy,
dp="5b-— E .
Fyq = t+ 1 irin t+1 Py i,

We now obtain the approximate solution & whose ith entry is computed as
& =7 +a} (F+ B

In this way, we are able to estimate components of x* directly, using only
low-dimensional vector operations.



2.3.2 Special Case 2: Equality Constrained Problems

As a variation of problem (2), consider the following equality constrained
least-squares problem

min || Az — ng
TER™ (12)
s.t. Lx =0,

where L is an [ X n matrix. Following a similar approximation approach,
we restrict problem (12) within the subspace S. Now the constraint Lz = 0
becomes L®r = 0 or equivalently r'® L'L®r = 0, which is also equivalent
with ®'L'L®r = 0. Thus, we may write the approximate problem as

min [[ADr — bH%,
reRs (13)
st. ®L'Lor =0.

We assume that there exists at least one feasible solution for this problem.
Introducing a Lagrange multiplier vector A € ®! and using standard duality
arguments, we obtain the following necessary and sufficient condition for
(r*, A*) to be an optimal solution-Lagrange multiplier pair for problem (13):

() =1, (1)

where we define the 2s x 2s matrix H and 2s-vector f as
7 QA ZAD D'L'LIY Fo DA Zb
\ YLLD 0 ’ - 0 '

We may now apply our simulation-based approximation approach of the
preceding section to the system (14) (which is always low-dimensional, even
if L has a large row dimension). In particular, similar to Eq. (5), we may
generate a sample sequence

{(i07j0750)7 DRI (it)jtajt)}
according to distribution &, and estimate H and f with H and f given by
t
I:I _ 1 1 C’ikaikjk ijk¢jk¢/ likjklikjk¢jk¢§k
t + 1 Zk]k ijk¢Jk¢, 0 ’

k=0 gikjkj_'k

and

Zt: alk]k i (¢]k> .

— 74/9



Alternatively, we may generate one sample sequence per component of H
and f, and estimate the components with formulas that are similar to Eq.

(6)-
2.3.3 Special Case 3: Inequality Constrained Problems

Another variation of problem (2) is the inequality constrained least-squares
problem
min ||Az — ng
TeER™ (1 5)
s.t. Lx <g,

where L is an [ x n matrix and the row dimension | is assumed to be small.
We consider a restriction of this problem within the subspace S, given by

min | APr — b||g

reRs

s.t. L®r <g,
or equivalently

min 7' Gr — 2c'r,

reRs

s.t. Mr <y,

where G and c are defined in Eq. (4), and M = L®. We may now apply
the simulation approach of Section 2.1. For example, we may generate one
single sample sequence, then estimate G and ¢ with G and ¢é using Eq. (5),
and estimate M with M given by

/
T tt+1 Z < &y O

where we denote by [; the ith column of L. Alternatively, we may generate
one sample sequence per component of M, and estimate My, with

Eq t + 1 Z §zk £1k¢qu

The resulting approximate problem takes the form of

min ' Gr — 2¢ T,
refRs

s.t. Mr <ug,



which is low-dimensional in both the cost function and the inequality con-
straints. Now we can apply standard quadratic programming techniques to
solve this problem. Note that it is essential to assume that L has a small
row dimension, so that M has low dimension.

3 Variance Reduction by Importance Sampling

3.1 Variance Analysis

The central idea of our simulation method is to evaluate G and c of Eq. (4)
with a weighted average of samples generated by some probabilistic mecha-
nism [cf. Eq. (5) and Eq. (6)]. A critical issue is the reduction of the variances
of the simulation errors G — G and ¢ — c. To this end, we consider the use of
importance sampling, which aims at variance reduction in estimating large
sums and integrals by choosing an “appropriate” probability distribution for
generating samples.

Let Q be the sample space, v : Q — R? be a function, and {wy,...,w:}
be samples generated from 2 according to some process with invariant dis-

tribution £&. We may estimate the large sum z = ) _q, 14, with

. 1 ! Vi,
Z2=— S
t+1 — o

and we would like to choose £ so that Z has a small variance. If d = 1 and
v is a nonnegative function,! this variance is

22 : Vi, /2)*
valr{é\'}zt_i_1 (Z(gw/k)1>,

k=0

and is minimized when the sampling distribution is £* = v/z. Calculat-
ing £* is impossible because it requires knowledge of z, but by designing
the distribution £ to be close to v/z, we can reduce the variance of % (see
the companion paper [WPBO09] for further analysis). In what follows in
this section, we discuss a few schemes for designing importance sampling
distributions, which are tailored to the data of the problem.

!The nonnegativity of v may be assumed without essential loss of generality. If v takes
negative values, we may decompose v as

1/:1/+—u7,

so that both v+ and v~ are positive functions, and then estimate separately z1 = Zweﬂ Vi

and z2 = )7 o Vo -

10



3.2 Designing Importance Sampling Distributions
3.2.1 An Importance Sampling Scheme for Estimating G/,

We focus on estimating the component Gy, by generating a sequence of index
triples and using Eq. (6). In this case the sample space 2 and the function
v are
Q={1,...,n}%, v(i, j,J) = Giaija;; 05005,

We want to design the sampling distribution & so that it is close to £* and
belongs to some family of relatively simple distribution functions.

We have used a scheme that generates the indices i, j, and j sequentially.
The optimal distribution satisfies

Giaijag;

lajll1llaz]l1’

&7 o (Bjellajlln) (¢74llazlln)

where we denote by a; the jth column of A, and denote by ||a;||1 the L;
norm of a; (i.e., ||a;j|li = > i |aij|). We approximate £* by approximating
the functions ¢
i 0
djellaslly Pjqllala T
SR AT laglallaglh

with distributions
respectively, so 521 is approximated with &z = & & £(i | 4, 7).

Let us denote by T the approximation operator that maps a set of trial
values of v to an approximation of the entire function v. For instance, we
can take T to be a piecewise constant approrimation: for any y € R" and

I={i,....ig} C{1,...,n},

K
T ([Wilier) = > i 1 ([(ir—1 + i5)/2, (i + ik11)/2])
k=1

where 1 denotes the function that is equal to 1 within the corresponding
interval, and 0 otherwise, and we define ¢g = —¢; and ix4+1 = 2n — ix. For
another example, we may take T to be the piecewise linear approximation,
K-1
T ([yl]zel) = L ((Zkv yik)? (ik+1> yik+1)) 1 ([Zk? ik-H]) s
k=1

where we denote by L the linear function that takes value y;, at i, and
value y;,, at ixy1, and assume without loss of generality that i1 = 0 and

11



An Importance Sampling Scheme for Estimating G,:

1. Select a small set [a;;]; jer of components of A, and a corresponding

small set of rows [¢]jer of ®.

2. Generate the sample triple (ix, ji, jx) by
(a) sampling jj according to &j, o T, <[¢jg Y ier aij]je[)’

(b) sampling j; according to &, o< T, ([qﬁm Yicr aij]jel)’

(c) sampling i) conditioned on j; and ji according to
ik | gk, i) ox T, ([Ciaijkaijk]iel>

where we denote by Tj(-) the jth component of T'(-).

ixg = n. The resulting importance sampling algorithm is summarized in
what follows.

Figure 1 illustrates the last step of this importance sampling scheme,
where A is an 1000 x 1000 matrix, Z = I and T is taken to be the operator of
piecewise constant/linear approximation. We start with a low-dimensional
representation of A, namely [a;j]; jer, which can be implemented using a
uniformly spaced discretization as illustrated in Fig. 1(a). The resulting
distributions £(ix, | jk,jx) are plotted in Fig. 1(b)-(c), and compared with
the exact optimal conditional distribution.

3.2.2 Variations of the Importance Sampling Scheme

The importance sampling scheme given in the preceding section is only one
possibility for generating samples to estimate Gy,. An alternative is to
replace the distributions in steps 2(a) and 2(b) with

g]k X ¢jk€a §3k X ¢ij7

or with approximations of the above functions. This simplified version is
easier to implement, and may reduce the computational complexity greatly
if ® is known to have a simple analytical form.

We may also change the order of generating iy, ji, and j;. For instance,
we can generate iy, first, and then jj and j, conditioned on iy, according to

12
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Figure 1: Tllustration of step 2(c) of the proposed importance sampling
scheme. In (a), the color field represents the 1000 x 1000 matrix A; the
two vertical lines represent the columns a;, and aj,; and the grid represents
[aijli jer, which is an 8 x 8 discretization of A. In (b)/(c) the conditional dis-
tribution &(iy, | jx, jx) (obtained by piecewise constant/linear approximation
using [aij]i jer) is plotted against the optimal distribution £*(ix | jk, ji). In
(d)-(f) the same process is repeated with a finer 20 x 20 discretization of A.

the distributions

i X a1, EGk | ix) o< @jy @iy E(k | k) X Pjrgip -

If A and ¢ have complicated forms, we may first replace them with coarse
approximations, and then introduce a step of function approximation when
computing the distributions. When A has relatively sparse rows, by sam-
pling the row index first, we may greatly improve the efficiency of sampling.

The most straightforward scheme is to approximate the three-dimensional
function v = (a;5a;5¢0;0¢;, directly: first take trial samples from the sample
space Q = {1,...,n}? and approximate v by fitting some function (e.g., a

13



piecewise constant/linear function) based on the trial samples. More specif-
ically, we may take I C {1,...,n} and obtain [v(i, j,j)] Then we can
compute the approximate function by

i,j,J€l”

v=T ([V(iv.jv.})]i,j,jel> )

where we maintain the notation T for the operator of function approxima-
tion, and finally normalize ¥ to obtain a distribution function. However,
this scheme may be computationally expensive, because it involves selecting
trial samples from a three-dimensional space and then sampling according
to a three-dimensional distribution. A critical choice in all the schemes men-
tioned above is the function approximation operator T, and a good choice
may depend on the characteristics of the problem at hand, i.e., A and .

Also, as an alternative to the piecewise constant/linear approximation
used in Figure 1, we may consider an approximation approach based on a
least-squares fit from some family of parameterized functions. In particular,
we may approximate the function v : Q — R by introducing a parametric
family, which we denote by

S:{fn ‘nG?Rd},

where f, : Q +— R is a function parameterized by n; or we may consider the
family of a finite sum of parameterized functions, in which case

M
Sz{ank (nke%d,kzl,...,M},

k=1

where M is a positive integer. Given the trial samples and corresponding
function values {v(i, 7, )}, j jer, We can approximate v with by minimizing
the total squared error corresponding to the trial samples, i.e.,

T ([V(i7jvj)]i,j,jef> = argminﬁe@ Z HV(Zaja.}) - IQ(%]:;)HZ
i, j €l

This method may be preferable in circumstances where v is known to have
some special structure, in which case we may choose § accordingly and
improve the approximation accuracy.

We have focused so far on estimating the components Gy,. It is straight-
forward to extend the preceding methodology to estimating components of
¢, and also components of F' and d for underdetermined problems, cf. the
special cases of Section 2.3.

14



4 Inverse Problem Applications

In this section we apply the proposed algorithmic methodology on a num-
ber of practical inverse problems, involving both underdetermined systems
(see Sections 4.1 and 4.2) and square systems (see Sections 4.3-4.6). These
problems take the form of Fredholm integral equations of the first kind, and
are discretized into linear systems Ax = b, where A is m X n or n X n, and
n, the dimension of the solution space, is taken to be n = 10°. The matrix
A is typically ill-conditioned and dense. The components of A and b are
accessible, and can be computed analytically.

We aim for the solution z* of the discretized system Az = b. For square
systems, we consider its approximate solution within a subspace spanned
by s = 50 or s = 100 multi-resolution basis functions, which are piecewise
constant functions with disjoint local support [KS04]. For underdetermined
systems, we use the approach introduced in Section 2.3.1 and estimate spe-
cific components of z* directly. Note that the computational complexity
is completely determined by s (or m for underdetermined systems). Our
experiments are run on a dual processor personal computer with 4GB RAM
running Matlab. The estimates G and ¢ (or F and d for underdetermined
systems) are obtained component-by-component based on separate sample
sequences using Eq. (6). Each sequence is generated by using the importance
sampling scheme given in Section 3.2, where we discretize the n-vectors in-
volved (i.e., a; and ¢;) into vectors of dimension 100, and use piecewise
linear approximation to compute the sampling distributions. We have esti-
mated each component of G and ¢ (or F and d) with 10* samples and each
sample takes 50us on average.

The computational results are presented by comparing the high-dimen-
sional approximate solution & = ®7 with the exact solution z*, and Ilz*, the
projection of x* on the subspace S. The performances of our importance
sampling schemes are assessed with the total sample covariances of estimated
components of G and & (or F and d for underdetermined systems).

4.1 The inverse contamination release history problem

This is an underdetermined problem, whereby we seek to recover the release
history of an underground contamination source based on measurements of
plume concentration. Let u(w, 7) be the contaminant concentration at time
7 and distance w away from the source, and let z(7) be the source release
at time 7. The transport of contaminant in the ground is governed by the

15



advection-diffusion model [WU96]

ou_ o
or w2 ow’

subject to Cauchy initial and boundary conditions

w >0, 7€|0,7],

w(0,7) = x(7), w(w,0)=0, lim u(w,7)=0,
wW—r00

where D and V are coeflicients for the diffusion and velocity respectively.
At a time T > 7 the plume concentration is distributed as

T
u(w,T):/O dr A(w, T — 1) z(71),

where A is the transport kernel

B w (w - V(T - 7'))2
Alw, T =) = 4nD(T — 7)3 exp{_ AD(T — ) }

In our experiment we take D = 0.8, V =1, T' = 300, and 7y = 250, and we
assume the unknown release history to be

x(1) = 25:&- ex —7(7— — pi)”

N — ' p{ 2072 }’

where

k ={0.5,0.4,0.3,0.5,0.5}, pu = {60,75,150,190,225}, o = {35,12,10,7, 3},

and we discretize it into a vector of length 109, which is used as the vector
z*. Then we compute m borehole concentration measurements at locations
{w;}*,, as a discretization of u(w,T) and form the vector b.

In accordance with Section 2.3.1, we formulate the problem into Eq. (11)
and estimate F' and d using simulation. Then we compute 1000 entries of
I using the estimates F and cZ, the regularization matrix '™t = 10~ ] and
the initial guess ¥ = 0. In Fig. 2, we compare the resulted entries &; against
those of the exact solution x*.

To analyze the effect of importance sampling, we evaluate the simulation
error in terms of the total sample variances for components of Fand d. In
Fig. 3 we compare the reduction of simulation error for alternative impor-
tance sampling schemes and alternative ways of function approximation. It
can be seen that the proposed importance sampling scheme substantially
reduces the simulation error and improves the simulation efficiency. Similar
results have been observed in the subsequent problems.
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Figure 2: The simulation-based approximate solution & for the contam-
ination release history reconstruction problem, compared with the exact
solution z*, with m = 50 (left) and m = 100 (right).
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Figure 3: The reduction of simulation error for alternative importance sam-
pling schemes. The simulation error is measured in terms of the sum of
sample covariances for components of F and d. The solid lines represent
the case where no approximation is implemented and a uniform sampling
distribution is used; the dotted lines represent the cases where importance
sampling is used, with distributions obtained by piecewise constant/linear
approximations. The left-side figure illustrates the reduction of simulation
error as the number of samples ¢ varies, while the number of trial points (i.e.,
the cardinality of I, which is introduced for the purpose of function approx-
imation; see Section 3.2.1) is fixed at ¢ = 500; the right-side figure plots the
results when ¢ varies, with the number of samples fixed at ¢ = 1000.
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Figure 4: The simulation-based approximate solution & = ®7 for the grav-
itational prospecting problem, compared with the exact solution z*, with
m = 50 (left) and m = 100 (right).

4.2 Gravitational prospecting

This is an inverse problem encountered in searching for oil and natural gas
resources. We want to estimate the earth density distribution based on
measurements of gravitational force at some distance away from the surface.

Here we consider a simplified version of this problem as posed in [Gro07],
where the spatial variation of the density is confined within the interior of a
ring-shaped domain, and the measurements b are take on a circular trajec-
tory positioned at the same plane but outside the ring. When the unknown
density function x and the data are defined on concentric trajectories, we
express the problem in polar coordinates as

2w
b(p) = /0 dOA(p,0)x(0), 0<p <2m.

where
2 — cos(p —0)

(5 —4cos(p — 0))3/2

In the experiment, we take the unknown density function to be

A(@? 9) =

xz(0) = |sinf| + |sin20], 0<6 <2,

so the measurement function b can be computed accordingly. We discretize
the problem into a system of m = 50 and m = 100 equations, corresponding
to m measurements, with n = 10° unknowns. For regularization we use
I'"! = 107137 and 7 = 0. The approximate solution # is illustrated in Fig.
4, compared with x* the exact solution.
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4.3 The second derivative problem

This problem refers to differentiating noisy signals that are usually obtained
from experimental measurements. This problem has been extensively stud-
ied and the solution has been shown to exhibit instability with increasing
level of noise [Cul71]. We denote by b the noisy function to be differentiated
and denote by z its second derivative. It is given by

1
b(w) = /0 dr A(w, 7)x(7) 0<7,w<1,

where A (w,7) is the Green’s function of the second derivative operator

A(w, 1) = {

T(w—1) w>r7
In our experiment, we have used
x(1) = cos(2n7) — sin(677).

Following the approach of [Han94| we discretize the integral using the Galerkin
method, and obtain a system of n linear equations with n unknowns where
n =107

We consider the approximate solution of the system using the preceding
methodology, with the initial guess 7 = 0 and the regularization matrix I' =
1075L4 Ly, where Ls is the (s — 3) x s third-order difference operator. The
obtained approximate solution ®7 is presented in Fig. 5, and is compared
with the exact solution x* and the projected solution Ilx*.

4.4 The Fox & Goodwin problem

This problem, introduced by Fox and Goodwin in [FG53], considers the
solution of the integral equation

1
b(w) = / drvw?+ 72 2(r), 0<w<1.
0

As shown in [FG53], this is a severely ill-posed problem and the condition
number of its discretized integral operator increases exponentially with n.
In our experiment, we assume the unknown solution to be

x(r)=7, 0<7<1,
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Figure 5: The simulation-based approximate solution & = ®7 for the second
derivative problem, compared with the exact solution z* and the projected
solution Ilx*. The subspace S has dimension s = 50 for the left-hand plot
and dimension s = 100 for the right-hand plot.

compute b accordingly, and discretize the system into a square linear system
of dimension n = 10°.

We consider its approximate solution in the subspace spanned by s = 50
or s = 100 multi-resolution basis functions, and introduce the regularization
matrix I'~! = 10731 and the initial guess ¥ = 0. The obtained approximate
solution ®7 is presented in Fig. 6, plotted against the exact solution z* and
the projected solution ITx*.

4.5 The inverse heat conduction problem

This problem seeks to reconstruct the time profile of a heat source by
monitoring the temperature at a fixed distance away [Car82]. The one-
dimensional heat transfer in a homogeneous quarter plane medium, with
known heat conductivity «, is expressed by the elliptic partial differential
(heat) equation

ou 0%u

— =a—7, w >0, 7>0,

or Ow? - -

u(w,0) =0, u(0,7)=2x(r),
where u(w, 7) denotes the temperature at location w and time 7. Let b be
the temperature at a fixed location w away from the source, and it satisfies

T
b(T):/O dvA (v, 7)z(v),
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Figure 6: The simulation-based approximate solution & = ®7 for the Fox-
Goodwin problem, compared with the exact solution z* and the projected
solution Ilx*. The subspace S has dimension s = 50 for the left-hand plot
and dimension s = 100 for the right-hand plot.

where A is a lower-triangular kernel given by

w/a (w/a) 0 < < < T
Afv,7) = { _exp{—3 } T<v
0,

4dr(v—T)3
0<v<r<T.

In the experiment we take T' = 1 and take the unknown target temperature
function to be

Zmzexp{ T_'uz) }, 0<v <,

with k = {4,3,6} x 1074, ;. = {0.3,0.6,0.8} and ¢ = {0.1,0.1,0.05}, so b
can be obtained accordingly.

We discretize the integral equation into a linear square system of di-
mension n = 10° and consider its approximate solution within the subspace
spanned by s = 50 or s = 100 multi-resolution basis functions. Also we
assume an initial guess ¥ = 0 and the regularization matrix I'™t = BL) L4,
where L; is the (s — 1) x s discrete first-order difference operator and § =
10~°. The computational results are illustrated in Fig. 7.

4.6 A problem in optical imaging

Consider light passing through a thin slit, where the intensity of the diffracted
light is a function of the outgoing angle and can be measured by some in-
strument. We wish to reconstruct the light intensity at the incoming side of
the slit based on these measurements. Let x be the incoming light intensity
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Figure 7: The simulation-based approximate solution & = @7 for the inverse
heat conduction problem, compared with the exact solution «* and the pro-
jected solution IIz*. The subspace S has dimension s = 50 for the left-hand
plot and dimension s = 100 for the right-hand plot.

as a function of the incoming angle, and let b be the outgoing light intensity
as a function of the outgoing angle, so that

/2
b(o) = / LA 0)20), o0& (/272

where

sin(7(sin ¢ 4 sin 9)) ) ’

2
Alp,0) = (COS(P +eos 9) ( m(sin ¢ + sin 0)

(we refer to [Jr.72] for further explanation of the physical aspects of this
application). We discretize this integral equation into a square system of
dimension n = 10?, and consider its approximation within the subspace
spanned by s = 50 and s = 100 multi-resolution functions. The regular-
ization matrix is taken to be I'"! = BL5L3 and 7 = 0, where L3 is the
third-order difference operator and 5 = 107°. The corresponding computa-
tional results are plotted in Fig. 8.

5 Conclusions

In this paper, we have considered the approximate solution of linear inverse
problems within a low-dimensional subspace spanned by an arbitrary given
set of basis functions. We have proposed a simulation-based regularized re-
gression approach, which can also be applied to large-scale problems with
equality or inequality constraints. The algorithm uses importance sampling
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Figure 8: The simulation-based approximate solution & = ®# for the optics
problem, compared with the exact solution z* and the projected solution
[Iz*. The subspace S has dimension s = 50 for the left-hand plot and
dimension s = 100 for the right-hand plot.

and low-dimensional computations, and relies on designing sampling distri-
butions involving the model matrices and basis functions spanning the sub-
space. We have elaborated on a few approaches for designing near-optimal
distributions, which exploit the continuity of the underlying models. The
performance of our method has been numerically evaluated on a number of
classical problems. The computation experiments demonstrate an adequate
reduction in simulation noise after a relatively small number of samples and
an attendant improvement in quality of the resulted approximate solution.

A central characteristic of our methodology is the use of low-dimensional
calculations in solving high-dimensional problems. Two important approx-
imation issues arise within this context: first the solution of the problem
should admit a reasonably accurate representation in terms of a relatively
small number of basis functions, and second, the problem should possess a
reasonably continuous/smooth structure so that effective importance sam-
pling distributions can be designed with relatively small effort. In our com-
putational experiments, simple piecewise polynomial approximations have
proved adequate, but other more efficient alternatives may be possible. We
finally note that the use of regularized regression based on a sample covari-
ance obtained as a byproduct of the simulation was another critical element
for the success of our methodology with nearly singular problems.
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