
A NEW CLASS OF INCREMENTAL GRADIENT METHODS
FOR LEAST SQUARES PROBLEMS∗

DIMITRI P. BERTSEKAS†

SIAM J. OPTIM. c© 1997 Society for Industrial and Applied Mathematics
Vol. 7, No. 4, pp. 913–926, November 1997 002

Abstract. The least mean squares (LMS) method for linear least squares problems differs
from the steepest descent method in that it processes data blocks one-by-one, with intermediate
adjustment of the parameter vector under optimization. This mode of operation often leads to faster
convergence when far from the eventual limit and to slower (sublinear) convergence when close to the
optimal solution. We embed both LMS and steepest descent, as well as other intermediate methods,
within a one-parameter class of algorithms, and we propose a hybrid class of methods that combine
the faster early convergence rate of LMS with the faster ultimate linear convergence rate of steepest
descent. These methods are well suited for neural network training problems with large data sets.
Furthermore, these methods allow the effective use of scaling based, for example, on diagonal or
other approximations of the Hessian matrix.
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1. Introduction. We consider least squares problems of the form

minimize f(x) =

m∑
i=1

fi(x)(1)

subject to x ∈ <n,

where <n denotes the n-dimensional Euclidean space and fi : <n → < are continu-
ously differentiable scalar functions on <n. A special case of particular interest to us
is the least squares problem

minimize
1

2

m∑
i=1

‖gi(x)‖2

subject to x ∈ <n,

where gi : <n → <ri , i = 1, . . . ,m, are continuously differentiable functions. Here we
write ‖z‖ for the usual Euclidean norm of a vector z; that is, ‖z‖ =

√
z′z, where prime

denotes transposition. We also write ∇f and ∇fi for the gradients of the functions
f and fi, respectively. Least squares problems often arise in contexts where the
functions gi correspond to data that we are trying to fit with a model parameterized
by x. Motivated by this context, we refer to each component fi as a data block , and
we refer to the entire collection (f1, . . . , fm) as the data set .

In problems where there are many data blocks, and particularly in neural network
training problems, gradient-like incremental methods are frequently used. In such
methods, one does not wait to process the entire data set before updating x; instead,
one cycles through the data blocks in sequence and updates the estimate of x after
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each data block is processed. Such methods include the Widrow–Hoff LMS algorithm
[WiH60], [WiS85], for the case of a linear least squares problem, and its extension to
nonlinear least squares problems. A cycle through the data set of this method starts
with a vector xk and generates xk+1 according to

xk+1 = ψm,

where ψm is obtained at the last step of the recursion

(2) ψ0 = xk, ψi = ψi−1 − αk∇fi(ψi−1), i = 1, . . . ,m,

and αk is a positive stepsize. Thus the method has the form

(3) xk+1 = xk − αk
m∑
i=1

∇fi(ψi−1).

We refer to this method, which is just the nonlinear version of the LMS algorithm, as
the incremental gradient method .

The above method should be contrasted with the steepest descent method, where
the data blocks fi and their gradients are evaluated at the same vector xk, that is,

(4) ψ0 = xk, ψi = ψi−1 − αk∇fi(xk), i = 1, . . . ,m,

so that the iteration consisting of a cycle over the entire data set starting from xk has
the form

(5) xk+1 = xk − αk
m∑
i=1

∇fi(xk) = xk − αk∇f(xk).

Incremental methods are supported by stochastic convergence analyses [PoT73],
[Lju77], [KuC78], [TBA86], [Pol87], [BeT89], [Whi89], [Gai94], [BeT96] as well as de-
terministic convergence analyses [Luo91], [Gri94], [LuT94], [MaS94], [Man93], [Ber95a],
[BeT96]. It has been experimentally observed that the incremental gradient method
(2)–(3) often converges much faster than the steepest descent method (5) when far
from the eventual limit. However, near convergence, the incremental gradient method
typically converges slowly because it requires a diminishing stepsize αk = O(1/k) for
convergence. If αk is instead taken to be a small constant, an oscillation within each
data cycle arises, as shown by [Luo91]. By contrast, for convergence of the steepest
descent method, it is sufficient that the stepsize αk is a small constant (this requires
that ∇f be Lipschitz continuous; see, e.g., [Pol87]). The asymptotic convergence rate
of steepest descent with a constant stepsize is typically linear and much faster than
that of the incremental gradient method.

The behavior described above is most vividly illustrated in the case of a linear
least squares problem where the vector x is one dimensional, as shown in the following
example.

Example 1. Consider the least squares problem

minimize f(x) =
1

2

m∑
i=1

(aix− bi)
2(6)

subject to x ∈ <,
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where ai and bi are given scalars with ai 6= 0 for all i. The minimum of each of the
data blocks

(7) fi(x) =
1

2
(aix− bi)

2

is

x∗i =
bi
ai
,

while the minimum of the least squares cost function f is

x∗ =

∑m
i=1 aibi∑m
i=1 a

2
i

.

It can be seen that x∗ lies within the range of the data block minima

(8) R =
[
min
i
x∗i , max

i
x∗i
]

and that for all x outside the range R the gradient

∇fi(x) = ai(aix− bi)

has the same sign as ∇f(x). As a result, the incremental gradient method given by

(9) ψi = ψi−1 − αk∇fi(ψi−1)

(cf. (2)) approaches x∗ at each step provided the stepsize αk is small enough. In fact
it is sufficient that

(10) αk ≤ min
i

1

a2
i

.

However, for x inside the region R, the ith step of a cycle of the incremental gradient
method, given by (9), need not make progress because it aims to approach x∗i but
not necessarily x∗. It will approach x∗ (for small enough stepsize αk) only if the
current point ψi−1 does not lie in the interval connecting x∗i and x∗. This induces
an oscillatory behavior within the region R, and as a result the incremental gradient
method will typically not converge to x∗ unless αk → 0. By contrast, it can be shown
that the steepest descent method, which takes the form

xk+1 = xk − αk
m∑
i=1

ai(aix
k − bi),

converges to x∗ for any constant stepsize satisfying

(11) αk ≤ 2∑m
i=1 a

2
i

.

However, unless the stepsize choice is particularly favorable, for x outside the region R,
a full iteration of steepest descent need not make more progress toward the solution
than a single step of the incremental gradient method. In other words, far from
the solution (outside R), a single pass through the entire data set by the incremental
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gradient method is roughly as effective as m passes through the data set by the steepest
descent method .

The analysis of the preceding example relies on x being one dimensional, but in
many multidimensional problems the same qualitative behavior can be observed. In
particular, a pass through the ith data block fi by the incremental gradient method
can make progress toward the solution in the region where the data block gradi-
ent ∇fi(ψi−1) makes an angle less than 90 degrees with the cost function gradient
∇f(ψi−1). If the data blocks fi are not “too dissimilar,” this is likely to happen in
a region that is not too close to the optimal solution set. For example, consider the
case of a linear least squares problem

(12) fi(x) =
1

2
‖Aix− bi‖2,

where the vectors bi and the matrices Ai are given. Then, it can be shown that
sufficiently far from the optimal solution, the direction ∇fi(x) used at the ith step
of a data cycle of the incremental gradient method will be a descent direction for the
entire cost function f if the matrix A′iAi

∑m
j=1A

′
jAj is positive definite in the sense

that

(13) x′A′iAi


 m∑

j=1

A′jAj


x > 0 ∀ x 6= 0.

This will be true if the matrices Ai are sufficiently close to each other with respect
to some matrix norm. One may also similarly argue on a heuristic basis that the
incremental gradient method will be substantially more effective than the steepest
descent method far from the solution if the above relation holds for a substantial
majority of the indices i.

It is also worth mentioning that a similar argument can be made in favor of incre-
mental versions of the Gauss–Newton method for least squares problems. These meth-
ods are closely related to the extended Kalman filter algorithm that is used extensively
in control and estimation contexts; see, e.g., [Ber95b], [Bel94], [Dav76], [WaT90].
However, like the incremental gradient method, incremental Gauss–Newton methods
also suffer from slow ultimate convergence because for convergence they require a di-
minishing stepsize [Ber95b]. Furthermore, for difficult least squares problems, such as
many neural network training problems, it is unclear whether Gauss–Newton methods
hold any advantage over gradient methods.

In this paper we introduce a class of gradient-like methods parameterized by a sin-
gle nonnegative constant µ. For the two extreme values µ = 0 and µ = ∞, we obtain
as special cases the incremental gradient and steepest descent methods, respectively.
Positive values of µ yield hybrid methods with varying degrees of incrementalism in
processing the data blocks. We also propose a time-varying hybrid method, where µ
is gradually increased from µ = 0 toward µ = ∞. This method aims to combine the
typically faster initial convergence rate of incremental gradient with the faster ulti-
mate convergence rate of steepest descent. It starts out as the incremental gradient
method (2)–(3), but gradually (based on algorithmic progress) it becomes less and
less incremental, and asymptotically it approaches the steepest descent method (5).
In contrast to the incremental gradient method, it uses a constant stepsize without
resulting in an asymptotic oscillation. We prove convergence and a linear rate of con-
vergence for this method in the case where the data blocks are positive semidefinite
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quadratic functions. Similar results can be shown for the case of nonquadratic data
blocks and a parallel asynchronous computing environment.

In addition to a linear convergence rate, the use of a constant stepsize offers
another important practical advantage: it allows a more effective use of scaling based,
for example, on approximations of the Hessian matrix. Our experience shows that our
method performs better than both the incremental gradient and the steepest descent
method, particularly when scaling is used.

2. The new incremental gradient method. We embed the incremental gra-
dient method (2)–(3) and the steepest descent method (5) within a one-parameter
family of methods for the least squares problem. Let us fix a scalar µ ≥ 0. Consider
the method which given xk generates xk+1 according to

(14) xk+1 = ψm,

where ψm is generated at the last step of the algorithm

(15) ψi = xk − αkhi, i = 1, . . . ,m,

and the vectors hi are defined as follows:

(16) hi =
i∑

j=1

wij(µ)∇fj(ψj−1), i = 1, . . . ,m,

where

(17) ψ0 = xk,

and

(18) wij(µ) =
1 + µ+ · · ·+ µi−j

1 + µ+ · · ·+ µm−j
, i = 1, . . . ,m, 1 ≤ j ≤ i.

It can be verified using induction that the vectors hi can be generated recursively
using the formulas

(19) hi = µhi−1 +

i∑
j=1

ξj(µ)∇fj(ψj−1), i = 1, . . . ,m,

where h0 = 0 and

(20) ξi(µ) =
1

1 + µ+ · · ·+ µm−i
, i = 1, . . . ,m.

Thus the computation of hi using (19) requires (essentially) no more storage or over-
head per iteration than either the steepest descent method (5) or the incremental
gradient method (2)–(3).

Note that since

wmj(µ) = 1, j = 1, . . . ,m,

it follows using (15)–(16) that the vector ψm obtained at the end of a pass through
all the data blocks is

(21) ψm = xk+1 = xk − αkhm = xk − αk
m∑
j=1

∇fj(ψj−1).
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In the special case where µ = 0, we have wij(µ) = 1 for all i and j, and by comparing
(15), (18), (2), and (3) we see that the method coincides with the incremental gradient
method (2)–(3). In the case where µ→∞, we have from (15), (18), and (19) wij(µ) →
0, hi → 0, and ψi → xk for i = 0, 1, . . . ,m− 1, so by comparing (21) and (5) we see
that the method approaches the steepest descent method (5). Generally, it can be
seen that as µ increases the method becomes “less incremental.”

We first prove a convergence result for the method (13)–(17) for the case where µ
is fixed and each data block fi is positive semidefinite quadratic. This covers the case
of a linear least squares problem. In particular, we show that if the stepsize αk is a
sufficiently small constant, the algorithm asymptotically oscillates around the optimal
solution. However, the “size” of the oscillation diminishes as either α → 0 and µ is
constant or as α is constant and µ → ∞. If the stepsize is diminishing of the form
αk = O(1/k), the method converges to the minimum for all values of µ.

Proposition 2.1. Suppose that the functions fi have the form

fi(x) =
1

2
x′Qix− c′ix, i = 1, . . . ,m,

where Qi are given positive semidefinite symmetric matrices and ci are given vectors.
Consider the algorithm (cf. (13)–(17))

(22) xk+1 = ψm,

where

(23) ψ0 = xk, ψi = xk − αkhi, i = 1, . . . ,m,

(24) h0 = 0, hi = µhi−1 +
i∑

j=1

ξj(µ)(Qjψj−1 − cj), i = 1, . . . ,m.

Assume that
∑m

j=1Qj is a positive definite matrix, and let x∗ be the optimal solution
of (1). Then the following hold:

(a) For each µ ≥ 0, there exists α(µ) > 0 such that if αk is equal to some constant
α ∈ (0, α(µ)] for all k, {xk} converges to some vector x(α, µ), and we have
limα→0+ x(α, µ) = x∗. Furthermore, there exists α > 0 such that α ≤ α(µ)
for all µ ≥ 0, and for all α ∈ (0, α] we have limµ→∞ x(α, µ) = x∗.

(b) For each µ ≥ 0, if αk > 0 for all k and

(25) αk → 0,
∞∑
k=0

αk = ∞,

then {xk} converges to x∗.
Proof. (a) We first note that from (21) we have

xk+1 = xk − α
m∑
j=1

(Qjψj−1 − cj),

so by using the definition ψj−1 = xk − αhj−1 we obtain

(26) xk+1 = xk − α
m∑
j=1

(Qjx
k − cj) + α2

m∑
j=1

Qjhj−1.
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We next observe that from (18) and the definition ψj−1 = xk − αhj−1 we have
for all i

hi =
i∑

j=1

wij(µ)(Qjψj−1 − cj)(27)

=
i∑

j=1

wij(µ)Qjx
k − α

i∑
j=1

wij(µ)Qjhj−1 −
i∑

j=1

wij(µ)cj .

From this relation it can be seen inductively that for all i, hi can be written as

(28) hi =
i∑

j=1

wij(µ)Qjx
k −

i∑
j=1

wij(µ)cj + αRi(α, µ)xk + αri(α, µ),

where Ri(α, µ) and ri(α, µ) are some matrices and vectors, respectively, depending
on α and µ. Furthermore, using (27) and the fact that wij(µ) ∈ (0, 1] for all i, j, and
µ ≥ 0, we have that for any bounded interval T of stepsizes α there exist positive
uniform bounds R and r for ‖Ri(α, µ)‖ and ‖ri(α, µ)‖; that is,

(29) ‖Ri(α, µ)‖ ≤ R, ‖ri(α, µ)‖ ≤ r ∀ i, µ ≥ 0, α ∈ T.

From (26), (28), and (29) we obtain

(30) xk+1 = A(α, µ)xk + b(α, µ),

where

(31) A(α, µ) = I − α

m∑
j=1

Qj + α2S(α, µ),

(32) b(α, µ) = α

m∑
j=1

cj + α2s(α, µ),

I is the identity matrix, and the matrix S(α, µ) and the vector s(α, µ) are uniformly
bounded over µ ≥ 0 and any bounded interval T of stepsizes α; that is, for some
scalars S and s,

(33) ‖S(α, µ)‖ ≤ S, ‖s(α, µ)‖ ≤ s ∀ µ ≥ 0, α ∈ T.

Let us choose the interval T to contain small enough stepsizes so that for all µ ≥ 0
and α ∈ T , the eigenvalues of A(α, µ) are all strictly within the unit circle; this is
possible since

∑m
j=1Qj is assumed positive definite and (31) and (33) hold. Define

(34) x(α, µ) =
(
I −A(α, µ)

)−1
b(α, µ).

Then b(α, µ) =
(
I − A(α, µ)

)
x(α, µ), and by substituting this expression in (30) it

can be seen that

xk+1 − x(α, µ) = A(α, µ)
(
xk − x(α, µ)

)
,
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from which

xk+1 − x(α, µ) = A(α, µ)k
(
x0 − x(α, µ)

) ∀ k.

Since all the eigenvalues ofA(α, µ) are strictly within the unit circle, we haveA(α, µ)k →
0, so xk → x(α, µ).

To prove that limα→0 x(α, µ) = x∗, we first calculate x∗. We set the gradient of
f to 0 to obtain

m∑
j=1

(Qjx
∗ − cj) = 0,

so that

(35) x∗ =


 m∑
j=1

Qj



−1

m∑
i=1

cj .

Then we use (34) to write x(α, µ) =
(
I/α−A(α, µ)/α

)−1(
b(α, µ)/α

)
, and we see from

(31) and (32) that

lim
α→0

x(α, µ) =


 m∑

j=1

Qj



−1

m∑
i=1

cj = x∗.

To prove that limµ→∞ x(α, µ) = x∗, we note that since limµ→∞ wij(µ) = 0 for
i = 1, . . . ,m−1, it follows from (16) that hj−1 tends to 0 as µ→∞ for j = 1, . . . ,m−1.
Using this fact in conjunction with (26) and (30)–(32) it follows that

lim
µ→∞S(α, µ) = 0, lim

µ→∞ s(α, µ) = 0.

From (31), (32), and (34) we then obtain

lim
µ→∞x(α, µ) =


α

m∑
j=1

Qj



−1
α

m∑
j=1

cj


 = x∗.

(b) We need the following well-known lemma (for a proof, see [Luo91], [Ber95a],
[BeT96]).

Lemma 2.1. Suppose that {ek} and {γk} are nonnegative sequences and c is a
positive constant such that

ek+1 ≤ (1− γk)ek + c(γk)2, γk ≤ 1, k = 0, 1 . . . ,

and

γk → 0,

∞∑
k=0

γk = ∞.

Then ek → 0.
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Returning to the proof of Proposition 2.1, from (21) and (30)–(32) we have

(36) xk+1 = xk − αk
m∑
j=1

(Qjx
k − cj) + (αk)2S(αk, µ)(xk − x∗) + (αk)2ek,

where

(37) ek = S(αk, µ)x∗ + s(αk, µ).

Using also the expression (35) for x∗, we can write (36) as

(38) xk+1 − x∗ =


I − αk

m∑
j=1

Qj + (αk)2S(αk, µ)


 (xk − x∗) + (αk)2ek.

For large enough k, the eigenvalues of αk
∑m

j=1Qj are bounded from above by 1, and

hence the matrix I − αk
∑m

j=1Qj is positive definite. Without loss of generality, we
assume that this is so for all k. Then we have

(39)

∥∥∥∥∥∥

I − αk

m∑
j=1

Qj


 (xk − x∗)

∥∥∥∥∥∥ ≤ (1− αkA)‖xk − x∗‖,

where A is the smallest eigenvalue of
∑m

j=1Qj . Let also B and δ be positive scalars
such that for all k we have

(40)
∥∥S(αk, µ)(xk − x∗)

∥∥ ≤ B‖xk − x∗‖, ‖ek‖ ≤ δ.

Combining (38)–(40), we have

(41)

‖xk+1 − x∗‖ ≤
∥∥∥∥∥∥

I − αk

m∑
j=1

Qj


 (xk − x∗)

∥∥∥∥∥∥+ (αk)2
∥∥S(αk, µ)(xk − x∗)

∥∥+ (αk)2‖ek‖

≤ (1− αkA+ (αk)2B)‖xk − x∗‖+ (αk)2δ.

Let k be such that αkB ≤ A/2 for all k ≥ k. Then from (41) we obtain

‖xk+1 − x∗‖ ≤ (1− αkA/2)‖xk − x∗‖+ (αk)2δ ∀ k ≥ k,

and Lemma 2.1 can be used to show that ‖xk − x∗‖ → 0.
The following proposition shows that if µ is increased toward ∞ at a sufficiently

fast rate, the sequence {xk} generated by the method with a constant stepsize con-
verges at a linear rate.

Proposition 2.2. Suppose that in the kth iteration of the method (14)–(18), a
k-dependent value of µ, say µ(k), and a constant stepsize αk = α are used. Under
the assumptions of Proposition 2.1, if for some q > 1 and all k greater than some
index k, we have µ(k) ≥ qk, then there exists α > 0 such that for all α ∈ (0, α] and k
we have ‖xk − x∗‖ ≤ p(α)β(α)k, where p(α) > 0 and β(α) ∈ (0, 1) are some scalars
depending on α.

Proof. We first note that the proof of Proposition 2.1(a) can be modified to show
that there exists α > 0 such that for all α ∈ (0, α] we have xk → x∗. We also note
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that if for some q > 1, we have µ(k) ≥ qk for k after some index k, then for all i < m
and j ≤ i we have

(42) wij
(
µ(k)

)
= O(γk),

where γ is some scalar with γ ∈ (0, 1).
We next observe that similar to the derivation of (38) we have

(43) xk+1 − x∗ =


I − α

m∑
j=1

Qj + α2S
(
α, µ(k)

) (xk − x∗) + α2ek,

where

(44) ek = S
(
α, µ(k)

)
x∗ + s

(
α, µ(k)

)
.

From (27), we see that hi can be written as a finite number of terms of bounded norm,
which are multiplied by some term wij(µ(k)). Thus, in view of (42), for i < m we
have ‖hi‖ = O(γk), which by comparing (27) and (28) implies that for all i

‖Ri

(
α, µ(k)

)‖ = O(γk), ‖ri
(
α, µ(k)

)‖ = O(γk).

It follows that

(45) ‖S(α, µ(k)
)‖ = O(γk), ‖s(α, µ(k)

)‖ = O(γk).

From (44) we then obtain

(46) ‖ek‖ = O(γk).

From (43), (45), and (46), we obtain

‖xk+1 − x∗‖ ≤ (|1− αδ|+O(γk)
)‖xk − x∗‖+ α2O(γk),

where δ is the minimum eigenvalue of
∑m

j=1Qj . This relation implies the desired rate
of convergence result.

There are a number of fairly straightforward extensions of the methods and the
results just presented.

(1) When the data blocks are nonquadratic, stationarity of the limit points of se-
quences {xk} generated by the method (13)–(17) can be shown under certain
assumptions (including Lipschitz continuity of the data block gradients) for
the case of a fixed µ and the stepsize αk = γ/(k+ δ), where γ and δ are posi-
tive scalars. Contrary to the case of quadratic data blocks, γ may have to be
chosen sufficiently small to guarantee boundedness of {xk}. The convergence
proof is similar to the one of the preceding proposition, but it is technically
more involved. In the case where the stepsize is constant, µ → ∞, and the
data blocks are nonquadratic, it is also possible to show a result analogous
to Proposition 2.2, but again the proof is technically complex and will not be
given.

(2) Convergence results for parallel asynchronous versions of our method can be
given, in the spirit of those in [TBA86], [BeT89, Chap. 7], and [MaS94]. These
results follow well-established methods of analysis that rely on the stepsize
being sufficiently small.
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(3) Variations of our method involving a quadratic momentum term are possible.
The use of such terms dates to the heavy ball method of Poljak (see [Pol64],
[Pol87], [Ber95a]) in connection with the steepest descent method and has be-
come popular in the context of the incremental gradient method, particularly
for neural network training problems (see [MaS94] for an analysis).

(4) Diagonal scaling of the iterations generating ψi is possible by replacing the
equation ψi = xk − αkhi (cf. (15)) with the equation

ψi = xk − αkDhi, i = 1, . . . ,m,

where D is a positive-definite symmetric matrix. A common approach is
to use a diagonal matrix D whose diagonal elements are the inverses of the
corresponding diagonal elements of the Hessian of the cost function

m∑
j=1

∇2fj(ψj−1).

An important advantage of this type of diagonal scaling is that it simplifies
the choice of a constant stepsize; a value of stepsize equal to 1 or a little
smaller typically works well. Diagonal scaling is often beneficial for steepest
descent-like methods that use a constant stepsize but is not as helpful for the
incremental gradient method because the latter uses a variable (diminishing)
stepsize. For this reason diagonal scaling should be typically more effective
for the constant stepsize methods proposed here than for the incremental
gradient method. This was confirmed in our computational experiments;
see also the discussion of the next section. For this reason, we believe that
for problems where diagonal scaling is important for good performance our
constant stepsize methods have a significant advantage over the LMS and the
incremental gradient methods.

3. Implementation and experimentation. Let us consider algorithms where
µ is iteration dependent and is increased with k toward ∞. While Proposition 2.2
suggests that a linear convergence rate can be obtained by keeping α constant, we have
found in our experimentation that it may be important to change α simultaneously
with µ when µ is still relatively small. In particular, as the problem of Example 1
suggests, when µ is near 0 and the method is similar to the incremental gradient
method, the stepsize should be larger, while when µ is large, the stepsize should be
of comparable magnitude to the corresponding stepsize of steepest descent.

The formula for ξi(µ) suggests that for µ ≤ 1 the incremental character of the
method is strong, so we have experimented with a µ-dependent stepsize formula of
the form

(47) α(µ) =

{
γ if µ > 1,(
1 + φ(µ)

)
γ if µ ∈ [0, 1].

Here γ is the stepsize that works well with the steepest descent method and should be
determined to some extent by trial and error (if diagonal scaling is used, then a choice
of γ close to 1 often works well). The function φ(µ) is a monotonically decreasing
function with

(48) φ(0) = ζ, φ(1) = 0,
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where ζ is a scalar in the range [0,m− 1]. Examples are

(49) φ(µ) = ζ(1− µ), φ(µ) = ζ(1− µ2), φ(µ) = ζ(1−√µ).

In some of the variations of the method that we experimented with, the scalar ζ
was decreased by a certain factor each time µ was increased. Generally, with µ-
dependent stepsize selection of the form (49) and diagonal scaling, we have found
the constant stepsize methods proposed here far more effective than the incremental
gradient method that uses the same diagonal scaling and a diminishing stepsize.

Regarding the rule for increasing µ, we have experimented with schemes that
start with µ = 0 and update µ according to a formula of the form

µ := βµ+ δ,

where β and δ are fixed positive scalars with β > 1. The update of µ takes place at
the start of a data cycle following the computation of xk+1 if either

(50) ‖xk+1 − xk‖ ≤ ε,

where ε is a fixed tolerance, or n̂ data cycles have been performed since the last update
of µ, where n̂ is an integer chosen by trial and error. This criterion tries to update µ
when the method appears to be making little further progress at the current level of
µ but also updates µ after a maximum specified number n̂ of data cycles have been
performed with the current µ.

We noted one difficulty with the method. When the number of data blocks m
is large, the calculation of ξi(µ) using (20) involves high powers of µ. This tends
to introduce substantial numerical error when µ is substantially larger than 1. To
get around this difficulty, we modified the method by lumping together an increasing
number of data blocks (the minimum number of terms in a data block was incre-
mented by 1) each time µ was increased to a value above 1. This device effectively
reduces the number of data blocks m and keeps the power µm bounded. In our com-
putational experiments, it has eliminated the difficulty with numerical errors without
substantially affecting the performance of the method.

Finally, let us try to compare the diagonally scaled version of our method with
the diagonally scaled incremental gradient method given by

(51) xk+1 = xk − αkD

m∑
j=1

∇fj(ψj−1),

where ψi is generated by

(52) ψi = xk − αkD
i∑

j=1

∇fj(ψj−1).

We assume that D is a diagonal approximation of the inverse Hessian of f . It is
difficult to draw definitive conclusions regarding the two methods because their per-
formance depends a lot on various tuning parameters. In particular, it is very difficult
to compare the methods using computational results with only a few test problems,
and this will not be attempted. On the other hand, it is helpful to consider some
extreme problem cases.
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(1) Problems where diagonal scaling is effective because the Hessian matrix of f
is nearly diagonal. For such problems, both methods can be very fast with
proper tuning of the stepsize parameters. On the other hand the incremental
gradient method after a few iterations slows down because of the diminishing
stepsize. By contrast, our method maintains its rate of convergence, and,
indeed, once µ reaches high values and when αk ≈ 1, it may become even
faster than in the early iterations where µ is small, because for large µ it
effectively approximates Newton’s method.

(2) Problems where diagonal scaling is ineffective because the Hessian matrix of
f is not nearly diagonal and is ill conditioned. Then both methods will likely
be slow regardless of how they are tuned. On the other hand the convergence
rate of the incremental gradient method will continually deteriorate because
of the diminishing stepsize, while our method will at least maintain a (slow)
linear convergence rate.

(3) Problems that do not fall in the preceding categories but which have “ho-
mogeneous” data blocks, that is, problems where the Hessian matrices ∇2fi
of the data blocks are not too dissimilar. Then incrementalism is likely to
be very beneficial (think of the extreme case where all the data blocks are
identical). For such problems the incremental gradient method may have an
edge in the early iterations because of its greater degree of incrementalism,
although asymptotically our method maintains the advantage of the linear
convergence rate.

(4) Problems that do not fall in the preceding categories, but which have “inho-
mogeneous” data blocks, where the Hessian matrices ∇2fi of the data blocks
are quite dissimilar. Then our method is likely to have an advantage over the
incremental gradient method, because it gradually becomes nonincremental,
while maintaining a nondiminishing stepsize and the attendant linear conver-
gence rate.

The preceding arguments, while speculative, are consistent with the results of
the author’s experimentation. However, a far more comprehensive experimentation
as well as experience with real-world problems is needed to support the preceding
conclusions and to assess more reliably the merits of the method proposed.
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