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It is well known [2, 3, 16] that if T:R">R" is a Lipschitz continuous, strongly monotone
operator and X is a closed convex set, then a solution x* € X of the variational inequality
(x—x*YT(x*)=0, Vx€ X can be found iteratively by means of the projection method
xis1 = Px[xc — aT(x)], X0 € X, provided the stepsize « is sufficiently small. We show that the

same is true if T is of the form T = A'TA, where A:R">R" is a linear mapping, provided
T:R" > R"™ is Lipschitz continuous and strongly monotone, and the set X is polyhedral. This
fact is used to construct an effective algorithm for finding a network flow which satisfies given
demand constraints and is positive only on paths of minimum marginal delay or travel time.

Key words: Projection Methods, Variational Inequalities, Traffic Assignment, Network
Routing, Multicommodity Network Flows.

1. Introduction
We consider the problem of finding x* € X satisfying the variational in-
equality
x—x*AT(Ax*) =0, VxeX (1)

where X is a nonempty subset of R", A is a given m X n matrix and T:R™ - R™
is a nonlinear operator which is Lipschitz continuous and strongly monotone in
the sense that there exist positive scalars L. and A such that for all y,, y, in the
set Y={y|y=Ax,xEX} we have

IT(y)~ T(y2| = Lly;— yd, )
[T =TIV (yi—y) = Aly— y.. 3

In the relations above and throughout the paper all vectors are considered to be
column vectors, and a prime denotes transposition. The standard norm in R" is
denoted | - |, i.e., |x| =(x'x)" for all x € R".

We are interested in the projection algorithm

Xkr1 = PX[xi —aST'A'T(Ax)], x€ X 4
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140 D.P. Bertsekas and E.M. Gafni| Projection methods

where a >0 is a stepsize parameter, S is a fixed positive definite symmetric
matrix, and, for any z € R", P%(z) denotes the unique projection of z on the set
X with respect to the norm || - | corresponding to S

[w|=(w'Sw)", ¥ weR" 5)
The variational inequality (1) arises from the variational inequality
(y=yT(y*=0, Vyey (6)
through the transformation
y=Ax, Y=AX={y|y=AxxecX} (7)
It is possible to employ the projection algorithm

Vi1 = PRIy —aQ7'T(3)], weEY ®

for solving (6) where « is a positive stepsize parameter and Q is positive definite
symmetric. It has been shown by Sibony [16] that if T is Lipshitz continuous
and strongly monotone, and « is chosen sufficiently small, then the sequence
{»} generated by (8) converges to the unique solution y* of (6). The rate of
convergence is typically linear although a superlinear convergence rate is
possible in exceptional cases [9]. Strong monotonicity of the mapping T is an
essential assumption for these results to hold. Our motivation for considering
iteration (4) stems from the fact that in some cases projection on the set Y is
very difficult computationally while projection on the set X through the trans-
formation y = Ax [cf. (7)] may be very easy. Under these circumstances if all
other factors are equal, the projection method (4) is much more efficient than the
method (8). This situation occurs for example in the application discussed in
Section 3.

A potential difficulty with the transformation idea described above is that the
mapping A'TA is not strongly monotone unless the matrix A’A is invertible.
Thus convergence of iteration (4) is not guaranteed by the existing theory
[2, 3, 16]. One of the contributions of this paper is to show that the convergence
and rate of convergence properties of iteration (4) are satisfactory and compar-
able with those of iteration (8). These results hinge on the assumption that X is
polyhedral, and it is unclear whether and in what form they hold if X is a general
convex set.

In Section 3 we consider a classical traffic equilibrium problem arising in
several contexts including communication and transportation networks, which
can be modelled in terms of a variational inequality of the form (1). A projection
algorithm for solving this problem which is essentially of the form (8) has been
given by Dafermos [8]. Her algorithm however operates in the space of link
flows, and involves a projection iteration which is very costly for large networks.
We consider an alternative algorithm which is basically of the form (4) and
operates in the space of path flows. Because the projection iteration can be



D.P. Bertsekas and E.M. Gafni/ Projection methods 141

carried out easily in this space our algorithm is much more efficient. An
algorithm which has several similarities with ours has been proposed by Aashti-
ani [1] and has performed well in computational experiments. However, Aashti-
ani’s algorithm cannot be shown to converge in general. By contrast the results
of Section 2 guarantee convergence and linear rate of convergence for our
method. There are also other methods [4-7, 11-13] for solving the special case of
the traffic assignment problem where T is a gradient mapping and there is an
underlying convex programming problem. Some of these methods [4-6, 12, 13] are
of the projection type. The algorithm of the present paper, however, seems to be
the first that can solve the general problem, is suitable for large networks, and is
demonstrably convergent.
In Section 4 we consider the generalized version of iteration (4),

Xk = P¥[x — aSi'A'T(Ax)], %€ X

where {S} is a sequence of positive definite symmetric matrices with eigen-
values bounded above and bounded away for zero. Projection algorithms of this
type include Newton’s method for constrained minimization [10, 14], and several
network flow algorithms [1, 4, 5, 13]. Except for the case where T is the gradient
of a convex function, there are no convergence results in the literature for this
algorithm, even when A is the identity matrix. We show that if care is taken in
the way the matrices S, are allowed to change, then the resulting algorithm is
convergent at a rate which is at least linear. We also provide a computational
example involving a traffic assignment problem.

2. Projection methods for variational inequalities

Let X* be the set of all solutions of the variational inequality (1). We have
that X* is polyhedral and is given by

X*={x€ X | Ax = y*} 9)

where y* is the unique solution of the variational inequality (6). For any x €R"
we denote by p(x) its unique projection on X * with respect to the norm (5), i.e.,

p(x) = arg min{||x — z|| | z € X *}. (10)

We recall that projection on a convex set is a nonexpansive mapping (see e.g.
[9]), so we have

lpx) = pGll=|xi—xdfl, ¥ xi, x,ER", (11)
We denote the mapping A'TA by T, i.e.,
T(x)= A'T(Ax), VxER" (12)
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With this notation we have

(x —x*YT(x*)=0, Vx€X,x*€E X* (13)
We also denote forall x€ X, a >0

£(x,a0)=P3X[x —aS"'T(x)]. : (14)
With this notation the projection iteration (4) is written as

Xke1= X(x, @), X0€ X. (15)
It can be seen that we can also obtain x,,, as the unique solution to the problem

minimize  (x — x)' T(x) + —2% (x — x)'S(x — xp),

(16)
subjectto x € X.

In view of (13) it is easy to see that for all solutions x* € X* and a >0 we have
F(x* a)=x*=p(x*). )

Thus if xx € X* for some k the algorithm (15) essentially terminates.
Our main result is given in the following proposition.

Proposition 1. Assume that T is Lipschitz continuous and strongly monotone,
and X is polyhedral.

(a) There exist positive scalars q(S) and r(S) depending continuously on S,
such that for all x € X and a >0

I%(x, @) = pLR(x, DN = [1-2aq(S) + a*r(S)]|x — p (D). (18)

(b) There exists @ >0 such that for all a €(0, a] the sequence {x.} generated
by iteration (15) converges to a solution x* of the variational inequality (1). The
rate of convergence is at least linear in the sense that for each a € (0, &] and
Xo € X there exist scalars B (depending on «) and g (depending on o and x,) such
that ¢ >0, B €(0, 1), and

[x —x*|=gB% k=0,1,..
The proof of Proposition 1 relies on the following lemma, the proof of which

is relegated to the appendix. The lemma is easy to conjecture in terms of
geometrical arguments (see Fig. 1).

Lemma 1. Assume the conditions of Proposition 1 hold. Let
X*={x €R"| Ax = y*}, (19)
p(x)=argmin{|x — z|| | z € X*}. (20)
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Fig. 1. Geometric interpretation of L.emma 1.

Then p(x)=p{p(x)] and then there exists a positive scalar 1(S) depending
continuously on S such that for all x € X

[x = PO = n(s)lp(x)— I (1)

Proof of Proposition 1. (a) From (10) we obtain

|£(x, @) — p(x)|. (22)

[%(x, @) = p[(x, )] =
Also, using (17) and (11) we have

[£(x, &) = pO) = [|%(x, a) — £[p(x), ]I}
=[x~ p)]—aST[T(x) - Tp)
=|lx = p(IF = 2a[T(x) = T[p()]]'[x - p(x)]
+a?|ST[T(x)— T{p)IP. (23)

In view of (22) and (23) it will be sufficient to show that there exist positive
scalars g(S) and r(S) depending continuously on S such that

[TG) = TlpONx - p)] = q(Sfx—p)|F, Vx€EX, (24a)
ISTTC) = TlpONE = r(Slx —p)f, VxeX (24b)
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To prove (24a) we first use (3) and (12) to obtain for all x € X and y = Ax

[T(x)— TIp)I[x — p(x)] = [T(Ax) — T[Ap()]I'[Ax — Ap(x)]
=[T(y)- TNy —yH=Aly —y*[. (25)
We now consider next the range R(A) and the nullspace N(A) of A, and the
orthogonal complement

NAY ={zeR"|zx=0, YxEN(A)}

When viewed as a mapping from N(A)" to R(A), A is one-to-one and onto, and
since we are dealing with finite dimensional spaces we have that there exists a
positive scalar 8(S) depending continuously on S such that

|wl*=B(S)||z|’, VweR(A),z€ N(A)', w= Az (26)
Since for all x € X, y = Ax, and j(x) defined by (20), we have

y—y¥*=Alx—p(x)] and x-p(x)EN(A)
we obtain from (26)
|y = y*F = B(S)x — Ol 27
Using the Pythagorean theorem and (21) we have
Ix = pOIF =llx = pCOP + [Ip(x) = p ()
- [1 + n—(‘s—)]nx — P (28)

By combining (25), (27) and (28) we obtain

T T Tx — > _._1_71 .
(T~ TN x = p = ABS) 1+ 55| x—p (ol
so (24a) holds with
1 -1
a® =81+ s -

To show (24b) we first use (2) and (12) to write
ISTIT(x)— TIp N = [T(y)— T(y*VAS'A'[T(y) — T(y*)]
=AS)|T(y) - THH = ALYy —y* (29

where A(S) is the largest eigenvalue of AS™'A’.
By the same argument used to derive (26) we can assert that there exists a
positive scalar y(S) depending continuously on S such that

wl*=y(S)|zI’, ¥ weR(A),zEN(A)', w=Az (30)
Therefore

y = y*P=y(S)|lx — p)|P < y(S)llx — px)|~ (31)
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Combination of (29) and (31) yields (24b) for r(S) = A(S)L?*y(S). This completes
the proof of part (a).

(b) Let @ be any positive scalar such that @ <(2q(S))/r(S). Then using (18)
we have for all « € (0, a].

[%es1 = P eI = t(@)]| xk = p x| (32)

where t(a)=1-2aq(S)+ a’r(S). In view of the fact a <@ <(2q(S))/r(S) it is
easily seen that 0 < t(a) < 1. We have from (32)

Ixi = p (I = t(@)*[lx0— p (xo)|f (33)
and using (23) and (24) we obtain

i1 — p il = t(a)xi — p (el (34)
By the triangle inequality

1 = el < flxicss = p Gel| + e — p o). (35)
Combining (35) with (33) and (34) we obtain

[Xe1 = x| = [1(e)"* + 1|3 — p(x0))]
= [t(a)"*+ 11t (a)**|xo — p(x0)|. (36)

Let B8 = t(a)" and g = [t(a)"+ 1]||xo— p (xo)|. Then (36) can be written as
Ixics1 = x| = @B~
For all k=0, m =1 we have

[ xkem = Xil| < 1 Xksm = Xewmorl| + = + 1%k — |

~nki1 __ nom
= q(Bk+m~l+ e Bk) — qB 1(1_ ﬁB ) (37)
Since in view of t(a) <1 we have B <1, it follows that {x,} is a Cauchy sequence
and hence converges to a vector x*. Since by (33) {x; — p(xx)} converges to zero we
must have x* = p(x*) which implies x* € X*. By taking limit in (37) as m - » we
obtain for all k =0, 1, ...

[l = x*| = gB*
where q = G(1— B8)™". This completes the proof.

It is quite remarkable that as shown in Proposition 1(b), the sequence {x;}
converges to a single limit point even though the set of solutions X * may contain
an infinite number of points.
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3. An algorithm for the traffic assignment problem

In this section we consider the following network flow problem. A network
consisting of a set of nodes N and a set of directed links £ is given, together
with a set W of node pairs referred to as origin-destination (OD) pairs. For OD
pair w € W there is a known demand d, >0 representing traffic entering the
network at the origin and exiting at the destination. For each OD pair w, the
demand d, is to be distributed among a given collection P, of simple directed
paths joining w. We denote by x, the flow carried by path p. Thus the set of
feasible path flow vectors x = {x, | p € P,,we& W}is given by

X={x D x,,=dw,xp20,Vp€Pw,wEW}. (38)
PEP,

Each collection of path flows x € X defines a collection of link flows y;, (i, j)) € £

by means of the equation

yi= 2 2 SliD)x, Y, )EZL (39)
wEW peEP,
where 8,(i,j)=1 if path p contains link (i,j) and 8,(i, j) =0 otherwise. The
vector of link flows y = {y; | (i, ) € ¥} corresponding to x € X can be written as
y = Ax where A is the arc-chain matrix defined by (39). The set of feasible link
flows is thus

Y=AX={y|y=Ax,x€X}. (40)

We assume that for each link (i, j) € & there is given a function T;: Y—R such
that T;(y) >0 for all y € Y. The value of T;(y) represents a measure of delay in
traversing link (i, j) when the set of link flows is y (travel time in transportation
networks [1, 8], marginal delay in communication networks [4, 13]. The vector
with components T;(y) is denoted T(y). We assume that T(y) is Lipschitz
continuous and strongly monotone. This is a reasonable assumption for trans-
portation networks, as well as for communication networks.

For each x € X and corresponding y = Ax the vector T(y) defines for each
w & W and p € P, a length

T,x)= X &G DTyy) @1)

i.peL

which may be viewed as the total travel time of path p. The problem is to find
x*€ X such that forallpEP, and weE W

T;(x*) = min T,(x*), if x¥>0. (42)
pEP,

This problem is based on the user-optimization principle which asserts that a
traffic network equilibrium is established when no user may decrease his travel
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time by making a uniliiteral decision to change his route. If we denote by T(x)
the vector of lengths T,(x), p € P,, w € W then it is easy to see [], 8] using (39)
and (41) that

T(x)= A'T(Ax) (43)

and that the problem defined earlier via (42) is equivalent to finding a solution
x* €& X of the variational inequality

(x=x¥Tx*=0, Vx€eEX, (44)

which is of the form (1).
Let W ={w,, wa, ..., wy} and consider the algorithm of the previous section
with a matrix S which is block diagonal of the form

St 0
S= 'S :|
0 " S

Here each matrix S; corresponds to the OD pair w;. We assume that each matrix
S; is positive definite symmetric. The projection iteration (4) can be implemented
by finding x,.; solving the quadratic program (16). In view of the block diagonal
form of S and the decomposable nature of the constraint set X (cf. (38)) the
quadratic program can be decomposed into a collection of smaller quadratic
programs—one per OD pair w € W. The form of these programs for the case
where each matrix S; is diagonal with elements s,, p € P, along the diagonal is

minimize 2 {(xp - X'E)Tp(xk) +oL (xp — x:;)z}’
= 2a

subject to > x, =d,, (45)

pEP,

x=0, VYpeEP,

where x’;,, pE€P,, i=1,..,M are the components of the vector x,. Problem (45)
involves a single equality constraint and can be solved very easily—essentially in
closed form [4, 12]. The convergence and linear rate of convergence results of
Proposition 1 apply to this algorithm.

The preceding algorithm is satisfactory if each set P, contains relatively few
paths. In some problems however the number of paths in P,, can be very large
(for example P,, may contain all simple paths joining w;). In this case it is
preferable to start with a subset of each P,, and augment this subset as
necessary as suggested by Aashtiani [1]. The corresponding algorithm is as
follows:

We begin with a subset P?vi C P, for each w; € W and a vector of initial path
flows x; such that for all w; € W

x5=0, if pg P,
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At the kth iteration we have for each OD pair w; € W a subset of paths P’,‘v,, C P,
and a corresponding vector of path flows x, satisfying

xy=0, if pg Py,

We compute, for each w; € W, a shortest path p’fv‘. € P,, using T;(Ax,) as length
for each link (i, j). We set

P51 = P5 U {pk).

(Note here that p’fv‘. may already belong to P’fv,.). We then solve the quadratic
programming problem

. = s
minimize > {(xp ~xp)Tp(x) + QL (x, — x‘;)z}
pEP&f'I a

subject to 2 Xp = dy, (46)

k+1
pEPw:’

x, =0, YpePk!

If x}, p € P is the solution of this problem we set

x5, if pe P!
xk+1:{xl7 np i 7

" lo, if pgPY"

Note that the quadratic programming problem (46) is the same as (45) except
for the fact that it involves only paths in the subset P}'". The subset is ‘possibly
augmented at each iteration k to include the current shortest path p%. The
expectation here is that, while P,, may contain a very large number of paths, the
actual number of paths generated and included in the set P’fﬂ. remains small as k
increases. This expectation has been supported by computational experiments
[1]. The convergence and rate of convergence properties of the algorithm (46),
(47) are identical with those of the earlier algorithm based on (45) as the reader
can easily verify. The key idea is based on the fact that for each i, P,, contains a
finite number of paths and P}, grows monotonically so that the sequence {P’fvi}
converges to some subset of paths Fwi C P, By applying Proposition 1 it follows
that the algorithm converges to a solution of the problem obtained when P,, is
replaced by ﬁw,.. Because P 'fv‘. is augmented at each iteration with the current
shortest path it is a simple matter to conclude that the solution x* obtained
satisfies the required minimum travel time condition (42).

The results and algorithms of this section can be strengthened considerably in
the case where T is in addition the gradient of convex function F in which case
the problem is equivalent to the convex programming problem of minimizing
F(y) subject to y&€ Y or minimizing F(Ax) subject to x € X. Under these
circumstances there are convergence results [4, 5, 12] relating to projection type
algorithms which allow for a variable matrix S and for coordinate descent type
iterations whereby each iteration is performed with respect to a single OD pair
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(or a small group of OD pairs) and all OD pairs are taken up in sequence. In fact
for such algorithms it seems that it is easier to select an appropriate value for the
stepsize «. Aashtiani’s computational experience [1] suggests that such al-
gorithms also work well in many cases where T is not a gradient mapping. We
have been unable however to obtain a general convergence result for coordinate
descent versions of the projection algorithm. The possibility of changing the
matrix S from one iteration to the next is considered in the next section.

4. An algorithm with variable projection metric

A drawback of the algorithms of Section 2 and 3 is that the matrix S is
restricted to be the same at each iteration. Computational experience with
optimization problems as well as network flow problems [1, 6] suggests that, if T
is differentiable, better results can be obtained if the matrix S is varied from one
iteration to the next and is made suitably dependent on first derivatives of the
mapping T in a manner which approximates Newton’s method. We have not
been able to show the result of Proposition 1(b) for algorithms in which the
matrix S may change arbitrarily. On the other hand it is possible to construct an
algorithmic scheme that allows for a variable matrix S but at the same time
incorporates a mechanism that safeguards against divergence. The main idea in
this scheme is to allow a change in the matrix S only when the algorithm makes
satisfactory progress towards convergence. The algorithm is as follows:

A set ¥ of positive definite symmetric matrices is given. It is assumed that all
eigenvalues of all matrices S € ¥ lie in some compact interval of positive real
numbers, i.e., there exist m;, my;>0 such that mi|z|*=<z'Sz <mj|z|*, for all
z ER", S € ¥ We consider the algorithm

Xin1 = P3¥x—aSy'T(x)], x € X (48)

where S, € ¥ forall k=0, 1,.... The stepsize « is such that

h 2 max(1 - 2aq(S) + ()] < 1. (49)

where q(S) and r(S) are as in Proposition 1(a) [c.f. (18)]. The maximum in (49) is
attained by continuity of q(-) and r(-). It is clear that there exists & > 0 such
that (49) is satisfied for all a« € (0, &]. Given x.; the matrix S,,; is either chosen
arbitrarily from & or else S, = S, depending on whether the quantity

Wi = (Xpe1 — Xk) Sic (Xt — Xi) (50)

has decreased or not by a certain factor over the last time the matrix S was
changed. More specifically a scalar 8 € (0, 1) (typically close to unity) is chosen,



150 D.P. Bertsekas and E.M. Gafni| Projection methods

and at each iteration k a scalar w.; is computed according to

Wi, 1 = Wy,
o= o o
where wy is given by (50) and initially wy,= . We select
Sie1= Sk i W1 = Wy, (52a)
Sin€ S if Wi < Wi (52b)

Thus for each k, the scalar wy represents a target value below which w, must
drop in order for a change in S to be allowed in the next iteration.

We first show that if {x} is a sequence generated by the algorithm just
described, then

lir? inf w, = 0. (53)

Indeed if lim inf,o. w, >0, then Sy must have been allowed to change only a
finite number of times in which case it follows from Propostion 1 that {x}
converges to a solution x*. As a result we have w,—0 contradicting the earlier
assertion.

Let us denote by |-|x the norm corresponding to Sy and by pi(z) the
projection of a vector z € R" on X* with respect to | - .. We have by using the
triangle inequality, (49), (50) and Proposition 1(a)

Wll</2 = ||Xk+1 - xk”k
= |lxk — pr(Xiea )l — X1 — Pr (X )|k
= |l — pixdll — \/E"Xk = pr(x )l
= (1= Vh)lx = peCxoll.

Hence (53) implies lim inf,.lx. — pi(x)|lx = 0 or equivalently (in view of the fact
lzlli = mi|z]*, m;>0)

(54

IIT inf |xk - pk(xk)| =0. (55)

This means that at least a subsequence of {x;} converges to the solution set X*.
We will show that in fact for some vector x* € X*, and some scalars g >0 and
B € (0, 1) we have

Ixe —x*=gqB% Vk=0,1,..
i.e., {x.} converges to a solution x* at a rate which is at least linear.

We have
wi =[x — pr(x) + pi(xi) — xpailfi
= i = prCeflE + llpe (i) — xR (56)
+ 2lxi = il (%) — Xl
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Using (23), (24) and (49) we obtain

Ipi(xi) — Xk+1||i =h|x— pk(xk)”£~ 57
Combination of (56) and (57) yields
we = (1+ VY x — puxlfi. (58)

Also in view of (49) and Proposition 1 we have that there exists a scalar d =1
such that for all k

”xk+1 - pk+1(xk+l)”52<+l = “xk+l - pk(xkﬂ)"iﬂ
= d1|xk+l - Pk(xk+1)||%<
=< dh|x — pe(x)lk

and finally using (54)

[ %1 = Prarpe)llier = # Wy. (59

Let
U ={k | we = wi. (60)
By (51) and (52) we have
Ske1= Sk, VEEIH. 61)

Also from (51) and (53) and the fact that if wg=0, then w, =0 for all k =k, it
follows that % contains an infinite number of indices. Let k; and k, be two
successive indices in X with k; <k, Then

Wi, = Wi, = Bwy, (62)
while, if k;—k,;> 1, we have
Wi +m >wk2= Ewk], Vm= 1, ,(kz—kl—l). (63)

We also have Si+1 == S, In the case where k,— k> 1, Proposition 1(a)
together with (49) and (59) yields for all m =1, ..., (ko—k;— 1)

ka1+"l - pk,+m(xkl+m)”i|+l = hm_l”-xklﬂ - Pk,+1(xk,)”%<l+1

dh™! 4
= — Wy..
1-Vhy?
Using (58) and (64) we have
m—1 RV
W= AT NVRY Ly e ki D). (65)

(1-Vh)?
Inequalities (63) and (65) yield

dh' (1 + Vh)
(1- Vh) “

Bwi, <wi =
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It follows that if ko—k;=1, then

In ————B(l — \/E)i

kz—kls2+—illn+h—\/@—, (66)

so if m is any positive integer such that
n

2+ T mh =m 67)
we have

ky—ki=m (68)
for any two successive indices k, k; in 9. It follows using (62) that

wie < wo(B'™E, VkEX. (69)
Using (65), (68) and (69) we also obtain

e = ﬂ(lli_\j'_% (BU™F ",V ket . (70)
Combining (69) and (70) we have for some scalar ¢ >0

we=g(B"™Y, Vk=0,1,.. | (71)

Since
M| xeer — Xe” = [Xeer — X[k = W

relation (71) yields
’xkﬂ—xk}zﬁi(ﬁ—”’ﬁ)k, Vk =0,1,...
m;

Since B < 1, it follows in exactly the same manner as in the proof of Proposition
1(b) that {x} is a Cauchy sequence which converges to a vector x* € X*.
Furthermore for some q >0 and B € (0, 1) we have

o —x*¥=qB*, k=0,1,.. (72)

We have thus proved the following proposition.

Proposition 2. There exists @ >0 such that if « €(0, a], a sequence {x.} generated
by iteration (48) with {S\} selected according to (50)—(52) converges to a solution x*
of the variational inequality (1). Furthermore there exist scalars q >0 and 8 € (0, 1)
such that

X, —x*=qB% Vk=0,1,..
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5. A computational example

In this section we report computational results for a traffic assignment
problem. The corresponding network is shown in Fig. 2, and may be viewed as a
model of a circular highway. There are five origins and destinations numbered
1,2,3,4,5 and connected through the highway via entrance and exit ramps. We
consider the five OD pairs (1,4}, (2,95), (3, 1), (4,2), (5, 3). Each OD pair has two
paths associated with it—the clockwise and counterclockwise paths on the
corresponding circle. The expressions for the travel time on each link are shown
in Fig. 2 where the function g is given by g(x)= 1+ x + x% Different values of
the nonnegative scalar y represent different degrees of dependence of the travel
times of some links on the flows of other links. The problem is equivalent to an
optimization problem if and only if there is no such dependence (y = 0).

Fig. 2.

Types of links:
(1) Highway links: 17,27,37,47, 57, 18, 28, 38, 48, 58.
(2) Exit ramps: 14,24,34,44,54,12,22,32,42, 52.
(3) Entrance ramps: 11,21, 31,41, 51,13, 23, 33,43, 53.
(4) Bypass links: 15,25, 35, 45, 55, 16, 26, 36, 46, 56.
Delay on links {where g is defined by g(x) =1+ x +x%]:
(1) Delay on highway link k: 10 - g[Flow on k]+2 - v - g[Flow on exit ramp from k}.
(2) Delay on exit ramp k: g[Flow on k].
(3) Delay on entrance ramp k: g[Flow on k]+ vy - g[Flow on bypass link merging with k].
(4) Delay on bypass link k: g[Flow on k].
Remark: Flow is not allowed to use exit ramp not leading to its destination.
OD Pairs: (1,4),(2,5), 3, 1), 4,2), (5,3).
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Tables 1 and 2 list representative computational results for two demand
patterns, three values of v, and fifteen iterations of two different algorithms
labeled ‘all-at-once’ and ‘one-at-a-time’ and described below. The number shown
in the tables for each iteration k is the following normalized measure of
convergence

D Axwi AT, (73)

all OD pairs w dw Tmin, w, k

where d,, is the demand of the OD pair w, Ax, « is the portion of the demand that
does not lie on the shortest path of the OD pair w at the end of iteration k, AT,
is the difference of the travel times of the longest and shortest paths and Tin. w.
is the travel time of the shortest path. Clearly the expression (73) is zero if and
only if the corresponding traffic assignment is optimal. The starting flow pattern
in all runs was the worst possible whereby all the demand of each OD pair is
routed on the counter-clockwise path. The results suggest that the algorithms
yield near optimal flow patterns after very few iterations and subsequently
continue their progress at a fairly satisfactory rate. This type of convergence
behavior is consistent with the one observed for related algofithms tested in [6].

The ‘all-at-once’ algorithm is the one of the previous section [c.f. (48),
(50)-(52)] with the projection matrix S; being diagonal [c.f. (45)]. For each

Table 1
Demands d(1,4)=0.1; d(2,5=0.2; d(3,1)=0.3; d(4,2) = 0.4; d(5,3)= 0.5

All-at-once, a = 0.8, E =0.99 One-at-a-time, a = 1, E = 0.99

K y=0 vy=0.5 y=4 vy=0 y=05 y=4

0 0.14417x 10 0.14793x 107 0.17426 X 10> 0.14417 x 10°  0.14793 x 10°  0.17426 % 10°
1 0.14897 x 10" 0.15079x 10"  0.16436x 10'  0.43831x 10° 0.46175x 10°  0.36140 x 10°
2 0.39463 % 10°  0.36291 x 10°  0.23633x 10°  0.73026 x 10 " 0.80765x 10" 0.13319x 10°

3 0.35901 x 10°  0.29642 < 10°  0.12340 %< 10° 0.28867 x 10™' 0.37109x 107" 0.39248 x 10"
4 0.55230 % 107" 0.41860x 107" 0.11996 x 107" 0.11671x 107" 0.17501 x 107" 0.15697 x 10"
5 0.80434 < 107" 0.52264 % 107" 0.55236x 1072 0.50979x 10> 0.86871x 107> 0.10786x 10~

6 0.11485x 107" 0.70972x 107> 0.14528 x 107% 0.23552x 107> 0.45007 X 107> 0.76687 x 10>
7 0.19034 x 107" 0.93712x 107 0.71098 x 10™* 0.11224x 107% 0.23972x 107> 0.55389 x 107*
8 0.26034 < 107 0.13097 X 1077 0.34892x 10™* 0.54303x 10™* 0.12962 x 1072 0.40331x 10°*

9 0.43683 x 1072 0.21587x 107 0.18026x 10™* 0.26555x 107 0.70754 x 10> 0.29498 x 10 *
10 0.55167x 107 0.11845x 1072 0.99838 x 10™* 0.12989 x 107> 0.38809 x 10> 0.21641 x 107*
11 0.10228 x 1072 0.11548 X 1072 0.80656 X 10™* 0.64334x 10™* 0.21363x 107* 0.15911x 107

12 0.44825%x 107 0.80420 x 10 0.68090 x 107* 0.31281x 10™* 0.11782x 107" 0.11698 x 1072
13 0.51164% 107 0.67664 x 107> 0.59269 % 107 0.15289 x 10 0.64249x 10" 0.86171 x 107°
14 030760 x 107> 0.51037x 107 0.51284x 107* 0.77946 % 10° 0.35938 x 10™* 0.63501 x 107*

15 0.27834x 107 0.41039x 1077 0.44031x 10 0.41734% 107 0.19540% 10°* 0.46808 x 10
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Table 2
Demands d(1,4)=1, d(2,5)=8, d3,1)=1, d(4,2) =8, d(5,3) =1
All-at-once, a = 0.8, 3 =0.99 One-at-a-time, a = 1, B =0.99
K y=0.0 y=0.5 vy=4 y=0 vy=0.5 y=4
0 0.10203x 10° 0.10478 x 10°  0.12404 x 10*  0.10203 x 10*  0.10478 x 10*  0.12405 x 10*
1 0.19446 x 10" 0.15853x 10"  0.33203x 10° 0.28891x 10!  0.24262x 10"  0.86532% 10°
2 0.83731x10° 0.57695x 10°  0.27719x 107" 0.65950 x 10°  0.49153 x 10°  0.59564 x 10™*
3 0.32902x 10" 0.90467x 10°  0.37155x 107" 0.78641x 107" 0.56482x 107" 0.13636 x 10™
4 0.45269%10° 0.24701x 10°  0.24096 % 10™" 0.63059 % 1072 0.70762x 107> 0.56463 X 107>
5 0.83315x10° 0.42439x10° 0.17847x 10" 0.70066 x 107> 0.27832x 1072 0.29389 x 1072
6 0.23621x10° 0.79849% 107" 0.12985x 107" 0.10199x 107> 0.12097x 1072 0.16215 % 107*
7 0.50649%x 10°  0.11570%x 10°  0.95892x 1072 0.79205% 10™* 0.45572x 107> 0.90603 x 10~
8  0.11333x 10° 0.10000x 107" 0.71098 x 107> 0.14878 x 10 0.16733x 107> 0.50823 x 107
9 026874x10° 0.78683% 1072 0.52748x 1072 0.94583x 10™* 0.61370 x 10™* 0.28569 x 107
10 0.43230x 107 0.10397x 107 0.39184x 107 0.65018 x 10™* 0.22825x 10™* 0.16119x 10~
11 0.11434x10° 0.13673% 1072 0.29147x 1072 0.39872x 107 0.90891 x 10~° 0.90105 % 10™*
12 0.12722x107" 0.68513x 107> 0.21694% 1072 0.24651x 10* 0.33388x 10~ 0.51215% 107
13 043756x 107" 0.50364% 107 0.16170x 1072 0.15648 x 10* 0.10026 x 10 0.27883x 10™*
14 0.45550% 1072 0.32649% 107 0.12047x 1072 0.92416 X 10~ 0.40281 X 107 0.15870 % 10~
15 0.20089% 107" 0.22516x 107> 0.89921x 10~ 0.68895x 10~ 0.47333x 10™° 0.89927 x 10”°

iteration k for which S, was allowed to change [c.f. (50)—(52)] the diagonal
element of S, corresponding to any one path was taken equal to the sum of the
first derivatives of the travel times of links on that path evaluated at the kth flow
xi. This corresponds to a diagonal approximation of Newton’s method (c.f.
[4,5]). As a result stepsizes near unity typically give satisfactory convergence
behavior. In all runs we used a stepsize a = 0.8 which is probably a bit on the
high side. The scalar B used in the test for allowing the matrix Sy to change [c.f.
(51)] was taken to be 0.99 in all runs. One of the most interesting observations
from our experimentation was that this test was passed at every iteration and so
the matrix Sy was changed at every iteration.

The ‘one-at-a-time’ algorithm is similar to the ‘all-at-once’ algorithm described
above. The only difference is that the projection is carried out with respect to a
single OD pair with flows corresponding to the other OD pairs being kept fixed, and
all OD pairs are taken up in sequence. An iteration consists of a cycle of five
projection subiterations (one per OD pair). Each subiteration is, of course, followed
by reevaluation of the travel time of each link. Algorithms of this type resemble
coordinate descent methods for unconstrained optimization and have been
suggested in the context of network flowsin[1, 4, 5, 12]. The stepsize a was taken to
be unity in all runs. Also 8 was chosen to be 0.99 and again it turned out that the
matrix S, was allowed to change in every iteration. It is interesting to note that for
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this stepsize and this particular example the algorithm tested is equivalent to an
algorithm in the class proposed by Aashtiani {1]. Tables 1 and 2 indicate a better
performance for the ‘one-at-a-time’ algorithm. However, there is no convergence
proof available for this algorithm at present except in the case where the
corresponding variational inequality is equivalent to a convex optimization
problem.

Appendix. Proof of Lemma 1

We have by the Pythagorean theorem

lx = B QNP +11p () — PO = [Ix = p(¥) = |lx — p[B (]|
=[x = pOF +Ip ) — plp P
Hence
15C) = pNIF =B x) ~ p[F . (A.1)
Since p[p(x)] by definition is the unique solution of the problem of minimizing

[P(x)—z|? over x € X*, and p(x) € X*, it follows that equality holds in (A.1)
and p(x) = p[p(x)]. i

Let p((x) and p,(x) be the projections of x on X* and X * respectively relative
to the standard norm |-|, i.e., pi(x)=p(x), pi(x)=p(x) for S equal to the
identity. In order to show the existence of a continuous n(S) such that (21) holds
it will suffice to show the existence of a scalar n; >0 such that for all x € X

|x = (X[ = m|pa(x) — pi(x)* (A.2)

In order to see this let A(S) and A(S) be the largest and smallest eigenvalue of S.
We have for all x, z€R"

AS)x —zf=lx -z = A(S)]x - zf.

It follows that

@ Ix = B = Jx — i (A3)

1
A(S) ”x - p(x)nzs Ix - pl(x)|2- (A.4)

By the Pythagorean theorem we have
[P1(x) = 100 = |x = p1(0)f — |x — p(x)]?

so (A.2) can be rewritten as

N _ 2
H_m|x PO, (A.9)

I — py(x)]* =
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From (A.3), (A.4) and (A.5) we obtain
Ix = P = ¥(S)x — px)|P (A.6)
where

A
YO = Ay

By the Pythagorean theorem we have
I = p)If = x = pCOIF + [Ip(x) = pCO

and by using this equation in (A.6) we obtain the desired relation
Ix = F O = n(S)lpx) — B[

with

v(S)

=TSy

We now show existence of an n, > 0 such that (A.2) holds for all x € X. By the
preceding analysis this is sufficient to prove the lemma.
For each x € X consider the tangent cone C, of X at p(x), i.e., the set

C,={z | there exists a >0 such that [p(x) + az] € X}. (A7)
Let € be the collection
€=1{C, |xE X} (A.8)

It is easily seen that € is a finite collection, i.e., for some finite set J C X we
have

€={C|ieJ). (A.9)

Indeed since X is polyhedral it can be represented by definition [15, Section 19],
in terms of a finite number of vectors d,, ..., d,, € R" and scalars by, ..., b, as

X={x|d§xsbi,i= 1,..,m}
It is easily seen that
C,={z|diz=0,Yi=1,..., m such that d'p(x) = b;}.

Clearly there is only a finite number of sets of the above form. In what follows
Pq(z) denotes the projection of a vector z €R" on a closed convex set 2 CR"
with respect to the standard norm |- | The essence of the proof of Lemma 1 is
contained in the following lemma.
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Lemma A.1. Forj&J let
M* =GN N(A), (A.10)
Zj={z|z € C Puyz) =0} (A.11)

where N (A) is the nullspace of A. Then for each j € I there exists a scalar m; >0
such that
|z = Pnak2)F = mjlzl’. VzEZ (A.12)

Proof. Assume the contrary, i.e.. that there exist j €J and sequences {z} C Z;
{n*} C R such that
iZk*PN(A)(Zk)‘Z<T]HZk!7 ni—0. (A.13)

We then have z;# 0. Vk, and since both M* and Z; are clearly cones with vertex
at the origin we can assume that |z =1, Vk. Let Z be a limit point of {z}. We
have |zZ] = 1 and by taking limit in (A.13) we obtain Z = Pya(2) Le.. Z € N(A).
Since C; is closed we also have Z € Cj and hence Z € M¥. It follows that

Puy(2) = Z. (A.14)
On the other hand since zx € Z; we have PM7(zk):(), Vk which implies that
Py+(2) = 0. Since |zl = 1, this contradicts (A.14).
We now show that the desired relation (A.2) holds with
n1=min{n; | j€ I} >0. (A.15)
Choose any x € X and let j € J be such that C, = C}. Let
z=XxX—pix). (A.16)

By a simple translation argument, the fact that p,(x) is the projection of x on
X Nix | Ax = y*} implies that the projection of z on M* is the origin so that
z € Z;. A similar argument shows that

P1(x) = pi(x) = Prnaf2). (A.17)
Using (A.16) and (A.17) in (A.12) we obtain

lx = P = mylx = py0)]?
and (A.2) follows from the definition (A.15) of 7.
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