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We introduce a broad class of algorithms for finding a minimum cost flow in a capacitated
network. The algorithms are of the primal-dual type. They maintain primat feasibility with respect
to capacity constraints, while trying to satisfy the conservation of flow equation at each node by
means of a wide variety of procedures based on flow augmentation, price adjustment, and ascent
of a dual functional. The manner in which these procedures are combined is flexible thereby
allowing the construction of algorithms that can be tailored to the problem at hand for maximum
effectiveness. Particular attention is given to methods that incorporate features from classical
relaxation procedures. Experimental codes based on these methods outperform by a substantial
margin the fastest available primal-dual and primal simplex codes on standard benchmark
problems.
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1. Introduction

Consider a directed graph with set of nodes j{ and set of arcs d. Each arc (i,j)
has associated with it an integer aij referred to as the cost of (i,j). We denote by
h the flow of the arc (i, j) and consider the problem

L aijfij
(i,j)Ed

(MCF)minimize

subject to

L fmi- L .t;m =0
(m,i)e.ol (i,m)e.ol

Vi E J{ (Conservation of flow), (1)

lij~h~Cij V(i,j)ed (Capacity constraint) (2)

where Ii]' and Cij are given integers. We assume throughout that there exists at least
one feasible solution of (MCF).

For simplicity in what follows we assume that there is at most one arc associated
with each ordered pair of nodes (i,j). However this is not an essential restriction
and the algorithms and results of the ()aper can be trivially modified to account for
the possibility of multiple arcs joining a pair of nodes.
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D.P. Bertsekas I Primal-dual methods126

There is a large variety of methods for solving (MCF) the most popular of which
are primal simplex methods, primal-dual methods, and the out-of-kilter method
(see [5,6, II, 13]). Our purpose in this paper is to propose a broad and flexible class
of algorithms embedded in a primal-dual framework. It does not appear possible
to relate these methods on a one-to-one basis with any of the existing methods,
although particular implementations for specific problems yield known algorithms-
for example the Hungarian method for the assignment problem [10], and versions
of other known primal-dual or out-of-kilter algorithms. However, even for assign-
ment and transportation problems, other implementations yield algorithms that
differ substantially from classical primal-dual methods in both their form and their
performance. For example a particular implementation of the class of algorithms
of this paper yields the assignment algorithm recently proposed by the author and
shown via computational experiment to be greatly superior to the Hungarian method
[3]. In fact this algorithm served as the starting point for the developments of this
paper. The single node procedures described in Section 3 are reminiscent of relaxa-
tion methods whereby the problem variables are adjusted with the aim of satisfying
a single unsatisfied constraint (the conservation of flow equation at a single node
in our case) at the expense of violating some others. Indeed if these procedures are
applied to a problem with convex piecewise linear costs with many break points,
the resulting algorithm asymptotically approaches a relaxation method due to Stem
[17] as the number of break points tends to infinity.

In the next section we introduce a class of algorithms as consisting of a sequence,
in any order, of three basic and flexible steps called flow augmentation, price
adjustment, and dual ascent. We show that any algorithm in the class terminates at
an optimal solution of (MCF) in a finite number of operations. Various alternatives
for implementating these steps are described in Section 3. Some specific algorithms
and relations with classical methods are discussed in Section 4. Computational
results with the new algorithms involving the single node procedures are described
in detail in a separate report [4] and are also summarized in Section 4. These results
indicate impressive advantages in terms of computation time over classical primal-
dual methods, and substantial advantages over the fastest primal simplex codes
available at present for most types of problems of interest.

2. 

A class of primal-dual algorithms

Let us associate a Lagrange multiplier Pi with the ith conservation of flow
constraint (I). By denoting by f and P the vectors with elements h, (i, j) E d, and
Pi, i E .N' respectively, we can write the corresponding Lagrangian function

L(j,p) = I (aij+pj-pi)fij'
(i,j)e..t

(3)
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Consider also the dual problem

maximize

(4)subject to no constraints on p,

where the dual functional q is given by

(5a)

(5b)

The function qij is shown in Fig. 1. This formulation of the dual problem is consistent
with classical duality frameworks [14-16] but can also be obtained via standard
linear programming duality [11, p. 144]. The scalar Pi will be referred to as the price
of node i.

Dual Function
for arc (i,j)

Fig. I.

For any price vector P we say that an arc (i,j) is:

Inactive if Pi < aij + Pi"

Balanced if P.= a.+ PI IJ J"

Active if Pi > aij + Pjo

For any flow vector f the scalar

(6)

(7)

(8)

(9)L
m

(i,m)ed

hm - L
m

(m. i)Ed

fmi 

ViEJ{d -j-
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will be referred to as the deficit of node i. It represents the difference of total flow
exported and total flow imported by the node.

The saddle point conditions for optimality in connection with (MCF) and its
dual given by (3)-(5) state that (f, p) is a primal and dual optimal solution pair if

and only if

fij = lij for all inactive arcs (i,j), (10)

lij ~h ~ cij for all balanced arcs (i,j), (11)

h = cij for all active arcs (i,j), (12)

d.=O. for all nodes i.

Relations (10)-(12) are the well known complementary slackness conditions.
In the general algorithm that we consider we have at the beginning of each iteration,

a pair U;p) satisfying complementary slackness «10)-(12)). If there are no node
deficits (i.e., dj = 0 for all i E J{) the algorithm stops-we are at an optimum.
Otherwise there must exist at least one node i with positive deficit (dj > 0) and at
least one node i' with negative defi<;it (dj, < 0) since, in view of (9), we always have
LjEJ{ dj = O. The general purpose of the iteration is to work towards eliminating those
deficits either directly or indirectly through improvement of the value of the dual
functional. The general procedures by means of which this can be done will now

be formalized.

Definition I. Given a pair (/. p) satisfying complementary slackness, an adjustment
step determines a new pair (], p) satisfying complementary slackness and such that
the new deficit di and price Pi of each node i satisfy

di~di, Pi*'Pi ifdi<O, (14)

O~di, Pi~Pi ifdi*,O. (15)

We say that the adjustment step is a flow adjustment step (FAS for short) if

di < di for at least one node i with di < 0, (16)

and a price adjustment step (PAS for short) if

Pi < Pi for at least one node i with di ~ o. (17)

An important fact about an adjustment step is that it will not increase the total

absolute deficit, i.e.

L Idil~ L Idil. (18)
ieJ{ ieJ{

To see this note that from (14) and (15) and the fact LieK dj = 0 we have

! 

L Idil = L di ~ L di ~ L iii = -! L liiil-
ieJ{ ieJ{ ieJ{ ieJ{ ieJ{

4,<0 d,<O d,<O

(19)
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Equality holds throughout in (19) if and only if di = dj for all i with dj < O. It follows

from (16) and (19) that a PAS will strictly decrease the total absolute deficit, i.e.

L Idil < L Idjl. (20)
ieK jeK

It is not necessarily true that the value of the dual functional (5) will be improved
by a PAS or FAS. Steps that effect such an improvement are formalized as follows.

Definition 2. Given a pair (f, p) satisfying complementary slackness, an ascent step
determines a new pair (], p) satisfying complementary slackness and such that the
value of the dual functional is increased, i.e.

q(p)<q(p).

It is not necessarily true that an ascent step is also an adjustment step. Indeed
we will show in the next section that a certain type of ascent step, which has been
found very effective computationally may increase strictly the total absolute deficit.

We consider the following class of algorithms:

Prototype Primal-Dual Algorithm
Step 0: Choose a starting integer vector pair (f, p)' satisfying complementary
slackness.

Step 1: Test whether there is a node with positive deficit. If so go to step 2, else

terminate.
Step 2: Obtain a new integer vector pair by carrying out either a PAS or a FAS

or an ascent step and go to step I.

Various implementations of adjustment steps and ascent steps that are useful in
the context of specific algorithms will be described in the next section. By applying
a known primal-dual method we will show in the next proposition that it is always
possible to carry out an adjustment step in step 2 of the algorithm, and therefore
the algorithm is well defined. We then show in Proposition 2 that under certain
assumptions the algorithm always terminates at an optimal pair (f, p) after a finite
number of steps. We first recall the definition of an augmenting path:

Definition 3. Given a pair (/. p) satisfying complementary slackness, we say that a

sequence of nodes {nl' n2, ..., nk} is an augmenting path if dn, < 0, dnk > 0 and, for
m = 1,2, ..., k -I, either there exists a balanced arc (nm, nm+l) withfnmnm+' < cnmnm+I'

or there exists a balanced arc (nm+l, nm) with fnm+lnm > lnm+lnm. The scalar

5 = min{ -dn" dnk' 51, ..., 5k-l}

where

if (nm, nm+l) is the arc of the path,c - f,"m"m+1 "m"m+1

Sm=
lfn"+lnm-lnm+ln.. if(nm+l, nm) is the arc of the path

will be called the capacity of the path.
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Given an (}; p) satisfying complementary slackness and an augmenting path
{nl, n2".', nk} we can carry out a FAS by increasing (decreasing) the flow by the
path capacity 5 on each arc of the path of the form (nm, nm+l) [(nm+l, nm)]. If f is
an integer vector then 5 will be integer and the new flow vector will also be integer.

Proposition I. If an integer vector pair (}; p) satisfies complementary slackness and
there exists at least one node with nonzero deficit, then it is possible to obtain a new
integer vector pair by carrying out either a F AS or a PAS.

Proof. The proof is constructive and provides the basic step of an algorithm for
solving (MCF) which is in effect a variation of a known primal-dual algorithm
given in [6, p. 113]. In the procedure that follows each node is allowed to be in
three possible states: (a) Unlabeled, (b) Labeled but Unscanned, (c) Labeled and
Scanned. This terminology has been used extensively in Ford and Fulkerson [6] and
many other sources (e.g. [11]) and is used in the same manner here. Initially all
nodes are unlabeled.

Give the label '0' to a node i with positive deficit.
Until all labels are scanned or a labeled node with negative deficit is found scan

the label of a labeled node k as follows:
Give the label 'k' to all unlabeled nodes m such that (m, k) is a balanced arc

with f mk < Cmk, or (k, m) is a balanced arc with f km > lkm.
Since this algorithm will clearly terminate eventually, there are two possibilities.

The first is that a node m with negative deficit will be found in which case it can
be seen that by tracing labels an augmenting path can be constructed which starts
at m and terminates at i. Therefore a FAS can be carried out by flow augmentation
along this path so that the resulting flow vector will be integer.

The second possibility is that each labeled node has a nonnegative deficit. Let L
be the set of labeled nodes and L be its complement in j{ (i.e., L = j{ -L). Since
there must exist a node with negative deficit the set L is n~nempty. It is easily shown
that there must exist either an active arc (k, m) with k E L, m E L or an inactive arc
(m, k) with mE L, k E L. Therefore the scalar 8 given by

8=min{{pk-akm-PmlkEL, mEL, (k,m): active}, {Pk+amk-PmlkEL,
mE L, (m, k): inactive}}

is well defined as a positive integer.
Define the new price vector jj by

- { Pk -<5 if k E i,
Pk= .-

Pk IfkE L.

It is easily seen that (f, jj) is an integer vector pair that satisfies complementary
slackness. Therefore by changing (f, p) to (f, jj) we are carrying out a PAS. 0

Progress towards solving (MCF) by the prototype primal-dual algorithm can be
measured using two criteria:
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(a) The total absolute deficit Liex Idil. If this is reduced to zero the algorithm
terminates with an optimal pair (f, p).

(b) The value of the dual functional q( p). If this is increased to its maximum
value we will have an optimal p.

An adjustment step will not necessarily improve strictly either criterion-it will
not increase the value of criterion (a), while it may degrade criterion (b). An ascent
step will improve strictly criterion (b) but may degrade criterion (a). Since the
prototype primal-dual algorithm mixes adjustment and ascent steps in arbitrary
fashion the type of adjustment steps delineated in the following definition are of
interest.

Definition 4. An adjustment step is called harmless if the resulting price vector ji
satisfies

q(p)~q(p).

Termination of the algorithm at an optimal solution will be shown under the

following assumption:

Assumption 1. In the prototype primal-dual algorithm either (a) all steps are adjust-
ment steps, or else (b) all adjustment steps are harmless.

If (a) «b» holds in Assumption I we are guaranteed that the total absolute deficit
(respectively the value of the dual function) will not be degraded at each iteration.
However there is no guarantee of strict improvement of either criterion at any
iteration. Therefore the assertion of the following proposition is nontrivial.

Proposition 2. Under Assumption 1 the prototype primal-dual algorithm terminates
at an optimal pair (I. p) after a finite number of steps.

Proof. Each time an ascent step is carried out the dual value is improved by an
integer amount. Therefo.re, if (b) of Assumption 1 holds, it is not possible to carry
out an infinite number of ascent steps so after some iteration all steps will be
adjustment steps or else the algorithm will terminate finitely. It is therefore sufficient
to show the result under the assumption that all steps are adjustment steps.

Each time a FAS is carried out (or more generally when di < di for some i with
di < 0) the total absolute deficit LiE.I{ Idil is reduced (cf. (20)) by an integer amount
(since the algorithm generates integer vector pairs), while each time a PAS is carried
out LiE.I{ Idil is not increased. Therefore it is not possible to carry out an infinite
number of steps where di < di for some i with di < 0 during any single execution ofthe algorithm. .

Assume that the algorithm does not terminate in a finite number of steps and
generates an infinite sequence of integer vector pairs {r, pk}. Then it follows that
after a finite number of iterations the algorithm will be executing PAS exclusively
and, in view of (14)-( 17), the deficits of nodes with negative deficit will be constant,
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while the deficits of nodes with nonnegative deficit will remain nonnegative. Also
by (15) the price of each node with nonnegative deficit will not increase while, by
(17), it is impossible for the price of all nodes with positive deficit to remain
unchanged. Jt follows that the set

N°O={ilpZ-+-oo}

is nonempty and that for all k sufficiently large we have 0 ~ d~ for all i EN"',
0 < d~ for at least one i EN"'. Therefore for some index k we have

and

0< L d~
ieN~

Vk>k (21)

On the other hand since each (fk, pk) satisfies complementary slackness we must
have, for all k greater than some index k ~ k,

if (m, i) E d, mer, i E N°O,

if (i, m) E .st, i E N°O, meN'

(m, i) is active

(i, m) is inactive

if (m, i) E d, m.e N"', j EN"',

if (i, m) E d, j EN"', m.e N"',

Therefore we have

f:';,i = Cmi

f~=4m

and (21) can be written as

I ( I l;m -I Cmi),Nao m~Nao m~Nao

(i, m)E.ot (In, i)E.ot

0<

This contradicts the fact that there exists a feasible solution for (MCF) and therefore
also contradicts our earlier assumption that the algorithm does not terminate in a
finite number of steps. 0

3. 

Implementation of adjustment and ascent steps

There is a large variety of procedures for carrying out a FAS, a PAS, or an ascent
step and some of these can be combined in a computationally efficient manner to
form longer procedures consisting of sequences of steps. We first consider the
simplest possible procedures that involve a single node together with its immediate
neighbors. The idea here is. to select a node i with positive deficit and try to reduce
its deficit to zero by changing the flow of its incident arcs and possibly its price Pi.
The process is reminiscent of coordinate descent and relaxation methods as explained
more fully in [4].

Let (f, p) satisfy complementary slackness. For any node i consider the set of
neighbor nodes that can exchange flow with i in a way that di is reduced and
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(22)

(23)

complementary slackness is maintained. These are

Bi={kl(k, i) is balanced,!ki < Cki},

B7 = {kl (i, k) is balanced,.I;k > 4k}'

If dj > 0 and dk < 0 for any k E B-; u B7 then it is possible to carry out a F AS by
simply increasing (decreasing) the flow on the arc (k, i) « i, k» if k E B-; (k E B7).
This can be done for each node k E B-; u B7 with dk < 0 until either we exhaust

these nodes or we reduce the deficit dj to zero. We thus arrive at the following

procedure:

Single node FAS
Step 0: Choose a node i with dj > O.
Step 1: Choose a node k E Bi such that dk < 0 and go to step 2, or choose a node

k E B~ such that dk < 0 and go to step 3. If no such node can be found terminate.
Step 2: Let

8 = min{ -dk, di, Cki -fki}'

Let

dj +- dj -S, dk *- dk+ 8, fki~fki+8.

If di = 0 terminate, else go to step

Step 3: Let

15 = min{-dk, dj,hk -lik}

Let
dj ~ dj -~, dk *'- dk + 8, hk +- hk -8.

If di = 0 terminate, eise go to step

Note that the single node FAS described above is harmless since it leaves the price
vector unchanged. We next consider the possibility of a PAS involving a price
reduction of a single node. For any node i with di ~ 0 the smallest value that the
price Pi can be changed to without violating complementary slackness is.

Pi = max{{pk -akil(k, i) E d,fki < Cki}, {Pk + aikl(i, k) E d,hk > lik}}. (24)

If dj > 0 and Pi > Pi then by simply reducing Pi to the level Pi we can carry out a
PAS. Even if Pi = Pi it is still possible to carry out a PAS provided

(25)L (Cki-!ki)+ L (};k-lik)~di.
keB, keBt

I Under unusual circumstances it is possible that fora node i with di ;.0 the sets {kl(k, i) E d,fki < Cki}
and {kl(i, k)E d, hk> 'ik} appearing in (24) are both empty in which case the current flows of arcs
incident to i are fki = Cki for all (k, i) Ed and hk = 'ik for all (i, k) E d. Then there are two possibilities.
Either di > 0 in which case the problem is infeasible or else di = 0 and the current flows incident to i are
the only ones that are feasible. The first case has been excluded by assumption. In the second case the
scalar Pi of (24) is defined to be -00.
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This can be done by first increasing fki to the level Cki for all k E Bi, and decreasing
};k to the level lik for all k E B7. Then in view of (25), we will still have di;;" 0 and
the new deficits will satisfy (14) and (15) in the PAS definition. Furthermore Pi as

given by (24) will now be reduced to a lower level. By setting Pi to the new value
of Pi we can carry out a PAS. This process can be repeated as many times as desired

as long as (25) holds. Formally we have the following procedure:

Single node PAS

Step 0: Choose a node with :di > O.
Step 1: Compute Pi, as given by (24). Set

Pi~Pi'

If

I (cki-fki)+ I
keBi keB-:-

go to step 2, else terminate.
Step 2: Let

};k -l;k) ~ di (26)

hk 

-4k),di~di- L (Cki-fki)- L
ke Bi ke B~

fki=ckiVkeBi.
and go to step I.

hk = 4k 'v' kE Bi

It can be easily shown [compare with (5) and Fig.
ofthedualfunctionq(p) along the direction {vi Vi =-

to decreasing Pi is given by

L Cik+ L 4k- L Cki-
k k k

(i,k):active (i,k):inactive (k,i):active (k,i'
or balanced or balanced

I] 

that the directional derivative
, vm = 0 if m ~ i} corresponding

L
k
inactive

lkio

This directional derivative can also be written as

dj- L (cki-fkj)- L (};k-ljk).
keBi keB;

It follows that a single node PAS will improve the dual value if and only if strict
inequality holds in (25). If (25) holds as an equation the dual value will be left
unchanged while the deficit of i will be reduced to zero. Also a single node PAS will
decrease the total absolute deficit if and only if some node in B7 u B-; has negative
deficit. Otherwise the total absolute deficit will remain unchanged. It is therefore
possible that an algorithm employing the single node PAS may perform a large
number of iterations without changing neither the dual value nor the total absolute
deficit. It can be shown by example (compare also with the proof of Proposition 2)
that the number of successive such iterations can exceed the number of nodes in
the network and indeed can only be bounded by numbers that depend on other
problem data such as arc costs and capacities. It is important to note however that
extensive computational experimentation has shown that allowing a single node
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PAS even if (25) holds as an equation is (at least on the average) computationally
beneficial, particularly for certain types of problems such as assignment.

It appears that the only known algorithm for solving (MCF) or a special case
thereof that uses the single node PAS procedure is the assignment algorithm proposed
by the author in [3]. As shown there experimentally this procedure can b~ a very
powerful device for solving (MCF). Computational results some of which are given
in the next section, show also that by simply combining the single node PAS with
the multiple node adjustment ~tep of the primal-dual method given in the proof of
Proposition lone can tremendously improve the performance of the primal-dual

algorithm.
If we attempt to carry out a single node PAS at a node i with dj > 0 there are

three possibilities:
(a) The PAS is carried out and as a result the new deficit of i is zero in which

case we can make no further progress with node i.
(b) The PAS is carried out and as a result the new deficit di of i is positive and

the new pair (f, p) satisfies (cf. (26))

I (Cki-!ki)+ I (};k-lik»djo (27)
-+kED, kED,

(C) The PAS cannot be carried out because (27) holds.
If either (b) or (c) occurs we may attempt to follow the single node PAS attempt

with a single--node FAS. Whether this can be carried out or not we will end up with

two possibilities:
(I) di = 0 in which case no further progress with node j can be made.

(II) di >.0 and dk;;" 0 for all k E B"i uBi.
If (II) occurs we can make no further progress on the node j with either a single

node FAS or a single node PAS. We thus need a way to perform a FAS or a PAS

in the case of a node j such that

(28)

(29)

di>O,

dk ~ 0 V k E Hi u Hi,

L (Cki-!ki)+ L (hk-i;:,;>djo
keD, keB...

This requires a PAS or FAS involving multiple nodes (i.e., more nodes than just i
and its immediate neighbors). One possibility is to use the procedure described in
the proof of Proposition 1. However this procedure can be generalized in a direction
which is consistent with the philosophy of striving for large price reductions that
underlies the idea of a single node PAS. '

For a node i satisfying (28)-(30) let T be either the empty set or a subset of

Bi uBi such that

L (Cki-!ki)+ L (};k-lik)~di'
keBinT keBinT
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Let f be the complement of T in Bj u B7, i.e.,

f={kEBjuB7IkeT}. (32)

In view of (30) and (31), the set f is nonempty. The procedure we describe involves
labeling which is similar to the one given in the proof of Proposition I. However
the initial label 'j' will be given only to the subset f rather than the entire set Bj u B7.

Multiple node PAS or F AS .
Step 0: Choose a node i satisfying (28)-(30) and a subset T c Bi u B7 satisfying

(31). Give the label '0' to i, and the label 'i' to each node in the set f of (32).
Step 1: Choose anode k;: i with an unscanned label and go to step 2. If no such

node can be found go to step 4.
Step 2 (Labeling): Scan the label on the node k by giving the label 'k' to all

nodes m that are unlabeled and belong to the set Bk u B; where

Bk={m/(m, k) is balanced,fmk<cmk}'

B;={ml{k,m) is balanced, fkm> lkm}'

If for anyone of these nodes m we have dm < 0 go to step 3, else go to step I.
Step 3 (Flow augmentation): An augmenting path has been found which starts

at the node m with dm < 0 identified in step 2 and ends at the node i. The path can
be constructed by tracing labels starting from m. Let S > 0 be the capacity of the
path. Increase by {j the flow of all arcs on the path that are oriented in the direction
from k to ~ reduce by {j the flow of all other arcs on the path and terminate.

Step 4 (Price adjustment): Let L be the set of all labeled nodes and [ be its
complement, i.e., [=.N' -L. (Because all nodes in L have nonnegative deficit and
di > 0, there must exist a node with negative deficit and as a result the set [ is
nonempty.) Let

c5 = min{{pk -akm -Pm I kE L, mE L, (k, m): active},

{Pk + amk -Pm I k E L, mE L, (m, k): inactive}}. (33)

(It can be shown easily that the scalar c5 is well defined as a positive integer.) Set

Pk ~ Pk V' k E j{

where

-- {Pk -15 if k E L,
Pk- Pk ifkE L.

Set

fki+-Cki VkeBinT,

hk +- 4k V k e B7 n T

and terminate.
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Note that in the above procedure termination will occur either through step 3 in
which case a FAS will have been carried out, or through step 4 in which case we claim
that a PAS will have been carried out. Indeed the integer 15 of (33) is positive so the
new price vector as given by (34) is such that the prices of all nodes with ne~ative
deficit will be unchanged while the prices of all nodes in L will have been reduced
by a positive amount. Furthermore the deficit of each node k E T will be increased
[in view of (35), (36)], the deficit of dj will still be nonnegative in view of (31),
while the deficit of every other node will remain unchanged. All of this is in agreement
with the requirements for a PAS (cf. (14)-(17». In either case the multiple node
procedure described above is harmless.

Note also that if T is empty then the procedure above coincides with the procedure
described in the proof of Proposition I. It seems however that it is advantageous in
some cases to take T nonempty when possible since then there is a tendency for
larger price reductions to occur. In the assignment algorithm of [3] T is taken as
large as possible.

When strict inequality holds in (25) we showed earlier that the corresponding
single node PAS will also be an ascent step. The same is true for a mu1tinode PAS
if strict inequality holds in (31) (a fortiori if the set T is taken empty). However it
is possible to construct ascent steps of computational interest that are not PAS and
may in fact increase the total absolute deficit. In what follows in this section we
describe such an ascent step procedure.

Constructing ascent steps

Given a price vector p and a subset of nodes 9' c j{ with 9';c j{ denote

C(9', p) = L eij(9', P:
(i.j)e.ot

where, for all (i,j),

eij(9',p) =

lij if i E .:I,j.e.:l, and (i,j) is inactive or balanced,

-lij if i.e .:I, j E 9', and (i, j) is inactive,

cij if i E .:I, j.e .:I and (i, j) is active,

-cij if i.e .:I, j E.:I, and (i, j) is active or balanced,

0 otherwise.

In words C (9', p) is the difference of outflow and inflow across 9' when the flows
of inactive and active arcs are set at their lower and upper bounds respectively,
while the flow of each balanced arc incident to 9' is set to its lower or upper bound
depending on whether the arc is going out of 9' or coming into 9' respectively. For
a subset 9' consider the vector v = {Vi liE j{} defined by

1 if i E 9',
0 if i e 9'.V;=1
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It is easily verified using (5) and Fig. I that C(9', p) is the directional derivative of
the dual functional q at p along the direction v. So if

C(9',p»O

an ascent of the dual functional can be effected by moving from palong the direction
v, i.e. by reducing the prices of the nodes in 9' by equal amounts while keeping all
other prices constant. The following ascent step procedure is based on this fact.
The starting point for the procedure is an integer vector pair (f, p) satisfying
complementary slackness. ..

Ascent step procedure
Step 0: Choose a node i with dj > O. Give to i the label '0'. Set 9' = 0.
Step 1: Choose a labeled but unscanned node k. Set

9' ~.9'u {k}.

Scan the label of the node k by giving the label' k' to all nodes m that are unlabeled
and belong to the set Bi; u Bt where

Bi;={ml(m, k) is balanced, fmk < Cmk},

Bt = {m I (k, m) is balanced, fkm > lkm}.

If dm < 0 for anyone of these nodes m and C(.9', p) ~ 0 go to step 3, else go to step 2.

Step 2: If

C(9',p»O

go to step 4, else go to step I.
Step 3 (Flow augmentation): An augmenting path has been found which starts

at a node m with dm < 0 identified in step I and ends at the node i. The path can
be constructed by tracing labels starting from m. Let 15 > 0 be the capacity of the

path. Increase by 15 the flow of all arcs on the path that are oriented in the direction
from m to i, reduce by 15 the flow of all other arcs on the path and terminate.

Step 4 (Ascent step): Let g be the complement of 9', i.e. g=J{-9'. (Because
dj > 0 and all nodes in 9' have nonnegative deficit, there must exist a node with

negative deficit in g and as a result the set fj is nonempty.) Let

15 = min{{pk -akm -Pm I h E 9', mE g, (k, m): active},

{Pk + amk -Pm I k E 9', mE g, (m, k): inactive}}.

Set

fmk +- Cmk if k E 9', mE g, m is labeled and (m, k) is balanced,

fkm +- lkm if k E 9', mE g, m is labeled and (k, m) is balanced.

Set

Pk +- Pk V k E .If
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where
- { Pk -8 if k E 9',

Pk= -
Pk if k E 9',

and tenninate.
The procedure above terminates either via step 3 in which case it generates a

harmless FAS, or via step 4 in which case it generates an ascent step. In order for
the procedure to be well defined, however, we must show that whenever we return
to step I from step 2 there is still left a labeled node with an unscanned label.
Indeed when all node labels are scanned (i.e. the set 9' coincides with the labeled
set L) there is no balanced arc (m, k) such that me 9', kE 9' and fmk < Cmk or a
balanced arc (k, m) such that k E 9', me 9' andfkm > lkm. It follows from the definition
(37), (38) that

C(9',p)= L dk>O.
kefi'

Therefore in this case the procedure identifies an ascent direction and switches from
step 2 to step 4 rather than switch back to step I.

It can be seen that the ascent step procedure involves a comparable amount of
computation per node labeled as the multinode PAS-FAS once it is realized that
the quantity C(9', p) in step 2 can be computed recursively rather than recomputed
each time the set 9' is enlarged in step I. However this procedure tends to terminate
earlier since the final set of labeled nodes may be considerably smaller than the
corresponding set L of the multi node PAS-FAS procedure. According to our
experience this fact typically results in substantial computational savings.

We note that a similar ascent step procedure can be constructed starting from a
node with negative deficit. The straightforward details are left to the reader. Compu-
tational experience has shown that it is beneficial to initiate the ascent procedure
from nodes with both positive and negative deficit.

An important difference from the adjustment steps described earlier as well as
operations of the p~imal-dual and out-of-kilter methods (see the next section) is
that when the ascent procedure terminates via step 4 the total absolute deficit may
increase strictly as we now show by example:

Example. Consider the four node, four arc network shown in Fig. 2. All arc co~ts
are zero and the upper and lower bound constraints are

O~fI2~2, -2~h3~O, O~h4~ I, O~f4t~3.
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Consider the pair (/. p)

P.=P3=P4=0, P2=-I, 112=2, h3=-2, 134=/41=0

satisfying complementary slackness, and the corresponding node deficits

d.=2, d2=-4, d3=2, d4=0.

Apply the ascent step procedure starting from node I. The initial set 9' is {I} but
C({I},p)=-l (cf. (37» so an ascent step is not possible by Teducing PI' Node 4
will be the only one labeled:from node I, the set 9' will be enlarged in Step 2 and
become 9' = {I, 4}. We have C({l, 4}, p) = I> 0 so an ascent step will be performed
in Step 4 by reducing the prices of nodes 1 and 4 from 0 to -I. The resulting flows
will be

112=2,/23=-2, h4=1, 141=0

as shown in Fig. 3. The corresponding node deficits are

d)=2, d2 = -4, dJ =3, d4=-1

so the total absolute deficit has degraded from 8 to 10, while a straight-forward

calculation shows that the dual value has improved from -4 to -3.

Fig. 3.

4. Algorithms and computational experience

Several procedures for carrying out adjustment steps and ascent steps were
described in the previous section and they can be combined in different ways to
give a variety of algorithms some of which are known and some of which are new
and apparently cannot be embedded within the framework of the most general
known primal-dual method-the out-of-kilter method. The purpose of this section
is to consider these new algorithms and compare them experimentally with classical
primal-dual, variants of out-of-kilter and primal simplex methods. We refer to [4]
for a detailed description of the codes involved and our experimental conditions.
The test problems used are the standard 40 benchmarks generated by the publicly
available NETGEN program [9]. In addition to our own FORTRAN codes (written
in collaboration with Paul Tseng [4] and briefly described below) we have made
comparisons under identical test conditions with the primal-dual code KILTER
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(Aashtiani and Magnanti [1]) and the primal simplex code RNET (Grigoriadis and
Hsu [7]). Among presently available network codes written in FORTRAN, it appears
that RNET has produced the fastest computation times for the NETGEN bench-
marks. This is based on the computation times given by Grigoriadis [7] and on
detailed comparisons with other network codes given in our own report [4]. As
additional evidence we note that Kennington and Helgason in their 1980 book [8]
compare RNET with their own primal simplex code NETFLO on the first 35
NETGEN benchmarks and cpnclude that 'RNET. ..produced the shortest times
that we have seen on these 35 test problems" ([8, p. 255]). Our computational results
are given in Tables 1 and 2.

(a) Relaxation method (code RELAX). This method and corresponding code is
described in detail in [4], where its conceptual similarity with classical coordinate
descent and relaxation methods is discussed in detail. At each iteration a node with
nonzero deficit is selected. A single node PAS or FAS as described in Section 3 is
attempted. If one of the two can be carried out the iteration terminates. Otherwise
an ascent step procedure as described in Section 3 is carried out. This method (which
is new and apparently cannot be embedded in any way within the framework of
the out-of-kilter method) seems to be the fastest general purpose method for network
problems according to the results of Table 1. (Note added in proof: While the paper
was under review an enhanced version of RELAX was developed which solves the
problems of Table 1 in time that is roughly 20% faster than the one reported in
Table 1. Also the times reported in Table 1 refer to the FORTRAN compiler of the
VMS operating system version 3.7. The compiler of version 4.0 (released while the
paper was under review) produces code that runs substantially faster than the one
corresponding to version 3.7.)

(b) Assignment-Relaxation Method (code ASSIGN). This method solves the
assignment problem and is basically the one given in [3]. At each iteration an
unassigned source is selected and a single node PAS or FAS as described in Section 3
(see also [3]) is attempted. If one of the two can be carried out the iteration terminates.
Otherwise the multiple node PAS or FAS described in Section 3 is carried out with
the set T consisting of a single node. As evidenced by Table 2, the solution time of
the, ASSIGN code is faster by a factor of over 10 than the fastest times reported to
our knowledge so far on the five NETGEN assignment benchmark problems (Prob-
lems 11 to 15 in Table 1).

(c) Primal-Dual Method (code PDUAL). This method is the classical primal-
dual method described in the proof of Proposition 1 except that at each iteration
the label '0' is given to all nodes with positive deficit rather than a single node.
Furthermore if a PAS results the iteration is continued labeling further nodes until
(perhaps after several PAS) a node with negative deficit is found and a FAS is
carried out. The code PDUAL implements this method using very similar data
structures and coding techniques as the RELAX code. The results of Table 1 show
that this code is substantially inferior to both RELAX and KILTER. (Actually
KILTER implements a very similar method but uses a sophisticated labeling scheme
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Table I

Standard benchmark problems 1-40 of[9] obtained using NETGEN. All times are in secs on a VAX 11/750
obtained under identical test conditions. All codes are in standard FORTRAN compiled under VMS
version 3.7 in the OPTIMIZE mode.

Problem
type

Problem No of No. of RELAX
No. nodes Arcs

RNET KILTER PDUAL VKIL TER

Transportation I
2

200
200
200
200
200
300
300
300

300
300

16.05
15.98
20.35
19.39
22.88
43.99
55.01
53.77
62.32
57.97

367.71
11.20
14.49
15.77
13.92
16.22
71.60

16.71
23.02
16.50
21.97

22.68
33.65
19.42
30.32
14.68

25.06
10.78
15.39
47.66
50.36
49.89
48.94
81.65
91.91
94.49

104.42
819.50

1300
1500
2000
2200
2900
3150
4500
5155

6075
6300

2.29
2.52
2.45
3.21
3.21
5.13
7.35
5.04

7.87
6.14

45.22
1.75
1.90
2.60
3.04
4.73

14.02

4.36
3.53
3.95
3.66
5.06
5.17
5.09
5.95
2.27

3.24
2.14
2.85
6.00
6.97

13.39
11.57
11.47
17.71

12.74
11.38

138.50
397.57
294.68
170.48
180.48
81.75

1,124.96

3.11
3.68
4.27
4.95
7.12
9.16

12.61
14.73
18.57
16.10
94.30
4.79
6.54
8.50
9.56
9.82

39.21
2.72
3.38
2.59
3.55
2.97
4.38
2.84
4.50
2.66
5.76
2.39
3.47
8.39

11.87
11.08
10.33
18.22
17.12

20.29
18.15

156.66
270.77
280.79
269.85
149.51
171.02

1,141.94

8.81

9.04

9.22

10.45

16.48

25.08

35.55

46.30

43.12

47.80

251.85

8.09

10.76

8.99

14.52

14.53

56.89

13.57

16.89

13.05

17.21

11.88

19.06

12.14

19.65

13.07

26.17

11.31

18.88

29.77

32.36

42.21

39.11

69.28

63.59

72.51

67.49

609.20

1074.76

681.94

607.89

558.60

369.40

3,292.59

2.77

3.18

4.98

5.07

5.25

8.54

10.17

13.04

11.30

10.89

75.19

5.27

7.03

5.82

8.28

8.30

34.70

6.05

5.18

6.01

4.38

6.10

13.61

3.87

10.57

2.08

4.72

3.38

5.35

8.27

11.85

13.23

11.55

20.79

15.30

22.53

23.78

209.08

8
9

10
Total (Problems 1-10)
Assignment II 400

400
400
400
400

1500
2250
3000
3750
4500

14
15

Total (Problems 11-15)
Uncapacitated 16
and lightly 17
capacitated 18
problems 19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

Total (Problems 16-35)
Large 36
uncapacitated 37
problems 38

30
40

Total (Problems 36-40)

400
400
400
400
400
400
400
400
400

400
400
400

1000
1000
1000
1000
1500
1500

1500
1500

1306
2443
1306
2443
1416
2836
1416
2836
1382

2676
1382
2676
2900
3400
4400
4800
4342
4385

5107
5730

8000 15,000
5000 23,000
3000 35,000
5000 15,000
3000 23,000
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Table 2

Benchmark assignment problems generated by NETGEN. Same as prob-
lems 11-15 of Table I. All times in secs as follows:

ASSIGN: Our times on IBM 370/ 168, FORTRAN, OPT= 2.
RNET; Times on IBM 370/168, FORTRAN, OPT=2 from [7].
AP-AB: Specialized primal simplex assignment code of [2]. Times on
CDC 6600, RUN from [2].

PDAC; Specialized primal-dual assignment code of [12]. Times on
CYBER 70/74, FTN from [12]

ProblemNo. ASSIGN RNET AP-AB PDAC

0.05
0.07
0.06
0.08
0.13

0.39

0.38
0.69
0.96
1.02
0.93

3.98

0.97
\.\4
\.48
\.6\
1.68

6.88

1.37
1.42
2.60
2.79
3.98

12.16Total

whereby labels are preserved from one iteration to the next. This accounts for the
superiority of KILTER over PDUAL). We note also that another implementation
of the primal-dual method described in [4] (it is called there PDUAL2) gave
comparable computational results. It is evident from the results of Table I and those
of [4] that the relaxation method is far superior to classical primal-dual methods
such as the one described in the proof of Propositio.n I.

(d) A Variant oj the Out-oj-Kilter Method (code VKILTER). In the standard
implementation of the out-of-kilter method (see Lawler [II, p. 142]) the deficits of
all nodes are kept at zero and price and flow adjustments are effected s() as to reduce
deviations of arcs from complementary slackness. In our prototype primal-dual
algorithm complementary slackness is maintained so the adjustment steps described
in the previous section cannot be embedded within the framework of the out-of-kilter
method mentioned above. However it is possible to apply the out-of-kilter method
on a modified but equivalent problem whereby the single node PAS and FAS, and
the multiple node PAS or FAS can be almost (but not quite) embedded within the
framework of operations of the out-of-kilter method. This possibility, which was
suggested by an anonymous referee, will now be described.

Suppose that the network is enlarged by addition of a dummy node '0' and a set
of dummy arcs (0, i) one for every node i E.N'. The cost and upper and lower bounds
of each dummy arc are zero. If complementary slackness is maintained on the
nondummy arcs, the only arcs that can be out-of-kilter are dummy arcs and the
deficit dj of a node i is equal to the flow of the dummy arc (0, i). The kilter number
of dummy arc (0, i) is the absolute deficit Idil while the total kilter number is LiEJ( Idil.
A single node F AS reduces the total kilte.r number and can be viewed as a standard
flow adjustment operation of the out-of-kilter method applied to the enlarged
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network. A single node PAS at a node i can be interpreted as a flow adjustment
operation followed by a price adjustment operation of the out-of-kilter algorithm
in the case where after the flow adjustment takes place the deficit of node i is
nonzero and no further nodes can be labeled from i. This will happen if and only
if (25) holds with strict inequality. However if equality holds in (25) the single node
PAS will reduce the deficit of the starting node to zero while possibly leaving Lie./¥' Idil
unchanged, so it cannot be viewed as a standard operation of the out-of-kilter
method applied to the enlarged network. A similar situation occurs if equality holds
in (31); a multiple node P AS'may leave the total absolute deficit Lie./¥' Idil unchanged
and set the deficit of the starting node to zero. Note also that as shown in the
previous section the ascent step procedure can actually increase the total absolute
deficit so it is totally incompatible with the out-oj-kilter method operations.

The question arises whether the seemingly minor differences in the adjustment
steps described above are computationally significant. To answer this we imple-
mented a modification of the single node PAS and multiple node PAS-FAS pro-
cedures so that a single node PAS is carried out as long as (26) holds with strict
inequality while the set Tin (31) is taken empty (this guarantees that strict inequality
holds in (31». We implemented an algorithm which is operated as follows: At each
iteration a node i with nonzero deficit is chosen. If a single node FAS or PAS
(modified as described above) is carried out the iteration terminates. Otherwise a
multiple node PAS or F AS (with the set T in (31) taken empty) is carried out
starting from i. If as a result we obtain a PAS the labeling process is continued until
(after perhaps several additional PAS) an FAS is obtained similarly as in the classical
primal-dual and out-of-kilter methods.

The corresponding code, called VKIL TER, differs by only a few FORTRAN lines
from the RELAX code. It may be viewed as an (apparently unreported thus far)
implementation of the out-of-kilter method applied to the enlarged network
described earlie~. The results of Table I show that VKIL TER is substantially
outperformed by RELAX. However VKILTER is much faster than both KILTER
and PDUAL, and indeed outperforms RNET on transportation and assignment
problems. This is surprising in view of the widely held opinion that the best primal
simplex codes outperform the best primal-dual and out-of-kilter codes on network
flow problems. Apparently the full potential of the out-of-kilter method has not
been realized as yet. The only explanation that we can give for the superior
performance ofVKILTER over KILTER and PDUAL is the use of the single node
adjustment steps which are apparently very effective while requiring very low
computational. overhead.
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