
SIAM J. CONTROL AND OPTIMIZATION
Vol. 22, No. 6, November 1984

(C) 1984 Society for Industrial and Applied Mathematics
010

TWO-METRIC PROJECTION METHODS FOR
CONSTRAINED OPTIMIZATION*

ELI M. GAFNI? AND DIMITRI P. BERTSEKAS$

Abstract. This paper is concerned with the problem min {f(x)lx X} where X is a convex subset of a

linear space H, and f is a smooth real-valued function on H. We propose the class of methods Xk+l
P(xk- akgk), where P denotes projection on X with respect to a Hilbert space norm II’ [I, gk denotes the
Frechet derivative of f at xk with respect to another Hilbert space norm I" on H, and ak is a positive
scalar stepsize. We thus remove an important restriction in the original proposal of Goldstein and Levitin
and Pofjak [2], where the norms arid II’ II must be the same. It is therefore possible to match the norm

II" with the structure of X so that the projection operation is simplified while at the same time reserving
the option to choose 1. Ik on the basis of approximations to the Hessian of f so as to attain a typically
superlinear rate of convergence. The resulting methods are particularly attractive for large-scale problems
with specially structured constraint sets such as optimal control and nonlinear multi-commodity network
flow problems. The latter class of problems is discussed in some detail.

Key words, constrained optimization, gradient projection, convergence analysis, multicommodity flow
problems, large-scale optimization

1. Introduction. Projection methods stemming from the original proposal of
Goldstein [1], and Levitin and Poljak [2] are often very useful for solving the problem

minimize f(x)
(1)

subject to x X

where f: H--> R and X is a convex subset of a linear space H. They take the form

(2) x+ P(x ag)

where Ok is a positive scalar stepsize, Pk(’) denotes projection on X with respect to
some Hilbert space norm I1" Ilk on H and gk denotes the Frechet derivative off with
respect to [1" Ilk, i.e., gk is the vector in H satisfying

(3) f(x) f(xk) +(gk, X Xg)k + O([IX-

where <.,. >k denotes the inner product corresponding to II" I1.
As an example let H R", and Bk be an n n positive definite symmetric matrix.

Consider the inner product and norm corresponding to Bk

(4) (x, y)k= X’Bky, lixll (<x, X)k) 1/2 VX, y H,

where all vectors above are considered to be column vectors and prime denotes
transposition. With respect to this norm we have (cf. (3))

(5) gk B{Vf(Xk),
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where Vf(Xk) is the vector of first partial derivatives of f

-Of(Xk)-]
Ox

(6) Vf(xk) i"

Of(x)
3X

_
When problem (1) is unconstrained (X H), iteration (2) takes the familiar form

Otherwise the vector

is the solution of the problem

Xk’+l Xk akB-lVf(Xk).

x+ P(x ag)

minimize x xk + akgk

subject to x c X.

A straightforward computation using (4) and (5) shows that the problem above is
equivalent to the problem

(7)
minimize Vf(Xk)’(X Xk) +-akZ
subject to x c X.

--(x-x)’B(x-x)

When X is a polyhedral set and Bk is a quasi-Newton approximation of the Hessian
off, the resulting method is closely related to recursive quadratic programming methods
which currently enjoy a great deal of popularity (e.g., Garcia-Palomares [3], Gill et al.
[4]).

It is generally recognized that in order for the methods above to be effective it is
essential that the computational overhead for solving the quadratic programming
problem (7) should not be excessive. For large-scale problems this overhead can be
greatly reduced if the matrix Bk is chosen in a way that matches the structure of the
constraint set. For example if X is the Cartesian product I]i=l Xi of m simpler sets
X, the matrix Bk can be chosen to be block diagonal with one block corresponding
to each set X, in which case the projection problem (7) decomposes naturally. Unfortu-
nately, such a choice of Bk precludes the possibility of superlinear convergence of the
algorithm, which typically cannot be achieved unless Bk is chosen to be a suitable
approximation of the Hessian matrix of f [3], [5].

The purpose of this paper is to propose projection methods of the form

(8) Xk+ P(Xk- akgk)

where the norms and II corresponding to the projection and the differentiation
operators respectively can be different. This allows the option to choose tl" to match
the structure of X, thereby making the projection operation computationally efficient,
while reserving the option to choose 11. on the basis of second derivatives off thereby
making the algorithm capable of superlinear convergence. When H Rn, the projection
norm II" is the standard Euclidean norm

(9) ]]x]l-- (XtX) 1/2 121,
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and the derivative norm [1" k is specified by an n n positive definite symmetric matrix
B,

(1 O) Ilxllk (x’B,x) ’/2,
the vector X+l of (8) is obtained by solving the quadratic programming subproblem

(11)
minimize g’(x x,) +2a Ix xkl2

subject to x c X

where

(12) g B-1Vf(x,).
The quadratic programming problem (11) may be very easy to solve if X has

special structure. As an example consider the case of an orthant constraint

(13) X={xlO<=xi, i=l,...,n}.

Then, the iteration takes the form

(14) x+1 [Xk oo,B-1Vf(xk)]+

where for any vector vc R" with coordinates v i, i= 1,..., n we denote by v + the
vector with coordinates

(v’) + max {0, vi}.

Iteration (14) was first proposed in Bertsekas [6], and served as the starting point for
the present paper. It was originally developed for use in a practical application reported
in [18]. The computational overhead involved in (14) is much smaller than the one
involved in solving the corresponding quadratic program (7) particularly for problems
of large dimension. Indeed large optimal control problems have been solved using
(14) (see [6]) that, in our view, would be impossible to solve by setting up the
corresponding quadratic programming (7) and using standard pivoting techniques.
Similarly (14) holds an important advantage over active set methods [4] where only
one constraint is allowed to enter the active set at each iteration. Such methods require
at least as many iterations as the number of active constraints at the optimal solution
which are not active at the starting vector, and are in our view a poor choice for
problems of very large dimension.

An important point is that it is not true in general that for an arbitrary positive
definite choice B, iteration (14) is a descent iteration (in the sense that if x is not a
critical point, then for a sufficiently small we have f(x,+l)<f(x,)). Indeed this is the
main difficulty in constructing two-metric extensions of the Goldstein-Levitin-Poljak
method. It was shown, however, in [6] (see also [19]) that if B is chosen to be partially
diagonal with respect to a suitable subset of coordinates, then (14) becomes a descent
iteration. We give a nontrivial extension of this result in the next section (Proposition 1).
The construction of the "scaled gradient" g satisfying the descent condition

(15) (g,, Vf(xt,)) > 0

is based on a decomposition of the negative gradient into two orthogonal components
by projection on an appropriate pair of cones that are dual to each other. One of the
two components is then "scaled" by multiplication with a positive definite self-adjoint
operator (which may incorporate second derivative information) and added to the first
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component to yield gk. The method of construction is such that gk, in addition to (15),
also satisfies

f[P(x, cg)] </(x)

for all c in an interval (0, 5], 5k > 0.
Section 3 describes the main algorithm and proves its convergence. While other

stepsize rules are possible, we restrict attention to an Armijo-like stepsize rule for
selecting c on the arc

P(x - > 0}

which is patterned after similar riales proposed in Bertsekas [6], [7]. Variations of the
basic algorithm are considered in 5, while in 4 we consider rate of convergence
aspects of algorithm (8), (11), (12) as applied to finite dimensional problems. We show
that the descent direction g can be constructed on the basis of second derivatives of
f so that the method has a typically superlinear rate of convergence. Here we restrict
attention to Newton-like versions of the algorithm. Quasi-Newton, and approximate
Newton implementations based on successive overrelaxation or conjugate gradient
methods are also possible. A superlinearly convergent conjugate gradient-based
implementation is applied to a large-scale multicommodity flow problem in the last
section of the paper.

While the algorithm is stated and analyzed in general terms, we pay special
attention to the case where X is a finite dimensional polyhedral set with a decomposable
structure since we believe that this is the case where the algorithm of this paper is
most likely to find application.

2. The algorithmic map and its descent properties. Consider the problem

minimize f(x)
(16)

subject to x X

where f is a real-valued function on a Hilbert space H, and X is a nonempty, closed,
convex subset of H. The inner product and norm on H will be denoted by (.,.) and
[1" respectively. We say that two vectors x, y H are orthogonal if (x, y)= 0. For any
z H we denote by P(z) the unique projection of z on X, i.e.,

(17) P(z) arg min {[Ix- z[[]x X}.

We assume that f is continuously Frechet differentiable on H. The Frechet derivative
at a vector x H will be denoted by 7f(x). It is the unique vector in H satisfying

f(z) :f(x) +(7f(x), z x) + o([[z xll
where o(llz- xll)/II z- xil- 0 as x. We say that a vector x* X is critical with respect
to problem (16) if

(18) (Vf(x*),x-x*)>-O VxX,

or equivalently, if x*= P[x*-Tf(x*)].
It will be convenient for our purposes to represent the set X as an intersection

of half spaces

(19) X {x[(ai, x) <-- bi, / I},

where I is a, possibly infinite, index set and, for each i I, ai is a nonzero vector in
H and b is a scalar. For each closed convex set X there exists at least one such
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representation. We will assume that the set I is nonempty--the case where I is empty
corresponds to an unconstrained problem which is not the subject of this paper. Our
algorithm will be defined in terms of a specific collection {(ai, bi)li I} satisfying (19)
which will be assumed given. This is not an important restriction for many problems of
interest including, of course, the case where X is a polyhedron in R n.

We now describe the algorithmic mapping on which our method is based. For a
given vector x X we will define an arc of points {x(a)la >-0} which depends on an
index set Ix c I and an operator Dx which will be described further shortly. The index
set Ix is required to satisfy

(20) Ix
where e is some positive scalar. Let Cx be the cone defined by

(21) Cx
and C+ be the dual cone of Cx
(22) C+ {z[(y, z) <- O, Vy Cx}.

For orientation purposes we mention that if X is a polyhedral subset of R" (or
more generally if the index set I is finite), and e is sufficiently small, then lx can consist
of the indexes of the active constraints at x, i.e., we may take Ix {i[(a, x)= b, I}.
In that case Cx is the cone of feasible directions at x, while C+x is the cone generated
by the vectors a corresponding to the active constraints at x. More generally Cx is a
(possibly empty) subset of the set of feasible directions at x, and for any Ax Cx with
[[Ax[[ _--< e the vector x +Ax belongs to X.

Let dx be the projection of [-Vf(x)] on Cx, i.e.,

(23) dx arg min {[[z +Vf(x)][Iz
Define

(24) d+ -[Vf(x) + dx].

It can be easily seen that the vectors dx and d +x are orthogonal and that d +x is the
projection of [-Vf(x)] on Cx+, i.e.,

(25) d= arg min {[]z +Vf(x)]llz C+}.

Note that if the norm [[. on H is such that projection on the set X is relatively simple,
then typically the same is true for the projection (23), required to compute dx and d.

Let F be the subspace spanned by the elements of Cx which are orthogonal to
d / i.e.

(26) Fx span { Cx fq {z[(z, d+) 0}}.

Note that

(27) dx Fx
since dx belongs to Cx and is orthogonal to d+. Let Dx’Fx Fx be a po.sitive definite
self-adjoint operator mapping Fx into itself. Consider the projection dx of Dxdx on
the closed cone Cx f’) {zl(z, d+) 0}, i.e.

(28) rx arg min (llz Ddxlllz Cx, (z, d+) 0}.

Consider also the direction vector

(29) g -(d / +
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-?f(x)

Cx
dx

FIG. 1. A case where both C, and C+x have nonempty interior in R and -Tf lies outside Cx.

Given x, Ix, and Dx, our algorithm chooses the next iterate along the arc

(30) x(a) P(x- ag), a >-_ O.

The stepsize a will be chosen by an Armijo-like stepsize rule that will be described in
the next section.

The process by means of which the direction g is obtained is illustrated in Figs.
1-4. The crucial fact that will be shown in Proposition below is that, if x is not
critical, then for sufficiently small a > 0 we have fix(a)] <f(x), i.e., by moving along
the arc x(a) of (30) we can decrease the value of the objective. Furthermore we have
(Vf(x), g) > 0 which means that g can be viewed as a "scaled" gradient, i.e., the product
of Vf(x) with a positive definite self-adjoint operator. We now demonstrate the process
of calculating the direction g for some interesting specially structured constraint sets.

Example 1. Let H R", (x, y)= x’y, and X be the positive orthant

X ={zlxi>=O, i= 1,. ., n}.

Then X consists of the intersection of the n halfspaces {x[xi>-_ 0} 1,. ., n and is
of the form (19). The set Ix must contain all indices such that 0 =< x_-< e (cf. (20)).
The cones Cx and C +x are given by

Cx-{lzi>-_O, Vi6Ix}, C+-{zlzi<=o, ViIx, z=0,
The vector dx, and d+ (cf. (23), (24)) have coordinates given by

Of(x)
if i ix, 0 if i x,

d
Ox di+=x

0 if i L, Of(x) L,
Ox

if
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g

-?f(x)//// /
// /

+

FIG. 2. Obtaining g for a case where C+ lies on a two-dimensional manifold in R3.

where

,={i iIxand
Of(x) }OX

> 0

If , is empty then F R and we have d, =-Vf(x), d+=, O. In this case g
-D.d DVf(x) where D is any n x n positive definite symmetric matrix. If/ is
not empty, by rearranging indices if necessary assume that for some integer p with
0_-< p _-< n we have / {p + 1,. , n}. Partition Vf(x) as

where v? Rp and w R"-p. The vector g is given by

where D is a p xp positive definite symmetric matrix, (Dr?)* denotes projection of
Dff on C, i.e., (Dff)* is obtained from D,ff by setting to zero those coordinates of
D,ff which are negative and whose indices belong to/.

Example 2. Let H R ", and X be the unit simplex

(31) X={xixi=l’xi>-o’i=l"’"n}"i=1
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-Vf(x) |/fix

FIG. 3. Obtaining g for a case where Cx lies on a two-dimensional manifold in R3.

Suppose the inner product on R" is taken to be

(32) (x, y)= sixiy
i=1

where s, 1,..., n are some positive scalars. Let x be a set of indices including
those indices such that O<-xi<_-e//7 Then the cone Cx can be taken tobe

(33) Cx={ z i=1 zi=O’zi>--O’Cix}"
The vector d is obtained as the solution of the projection problem

minimize z +
i=l S OX

(34)
subjectto z’=O, ziO, i.

i=1

The solution of this problem is very simple. By introducing a Lagrange multiplier
for the equality constraint= z= O, we obtain that , is the solution of the piecewise
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/
\/

\\dx

I
I

I

Cx

FIG. 4. Obtaining g for a case where both C+x and Cx have nonempty interior in R3.

linear equation

(35) ’[ + ’,[A- + A- =0.
x s’ ax’.! s ax’ j

This equation fan be solved by the well-known method of sorting the breakpoints
Of(x)/Ox i, e L, in decreasing order, and testing the values of the left side at the
breakpoints until two successive values bracket zero. Once A is obtained, the coordinates
of dx are given by

-5 h-ax, j
(36) d

The vector d2 is then obtained from the equation

Let

(37)

a;= -[Vf(x)+a].

ie/ andA<
ax’ j"
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It is easily verified that the subspace Fx is given by

(38) Fx={z i=lZi=O’zi=O’Vi}"
The vector tJ is obtained as the solution of the simple projection problem.

minimize ,21= si[zi -(Dxdx)i]2
(39)

subject to z O, z >- O ViL, z O Vj L
i=1

where (Dd) is the ith coordinate of the vector Dxdx obtained by multiplying dx with
an n x n symmetric matrix D which maps F into Fx and is positive definite on F.
We will comment further on the choice of D in the last section of the paper. The
vector g is given now by g =-(tJx +d+). Note that the solution of both projection
problems (34) and (39), as well as the problem of projection on the simplex X of (31)
is greatly simplified by the choice of the "diagonal" metric specified by (32).

Proposition below is the main result regarding the algorithmic map specified by
(20)-(24), (28)-(30). For its proof we will need the following lemma, the proof of which
is given in Appendix A.

LEMMA 1. Let Ft be a closed convex subset of a Hilbert space H, and let Pa(’)
denote projection on Ft. For every x 12 and z H:

a) The function h:(O, o)-> R defined by

h(c) Va>O

is monotonically nonincreasing.
b) Ify is any direction of recession of Ft (i.e., (x + ay) Ft for all a >-_ 0), then

(40) (y, x + z)<= (y, Pa(x + z)).

PROPOSrrION 1. For x X let e > 0 and Ix satisfy (20), and let D:F F be a
positive definite self-adjoint operator on the subspace F defined by (21)-(26). Consider
the arc {x(a)la >-0} defined by (23), (24), (28)-(30).

a) If x is critical, then

b) If x is not critical, then

x(a)= x Va >-O.

(41) (Vf(x), g) > 0,

and

(42) (Vf(x), x x(a)) >= a(dx, D,d) +--IIx()-(x + = > o

Furthermore there exists ff > 0 such that

(43)

(44)

f(x) >f[x()] v (o, ].

Proof a)It is easily seen that for every z Cx we have

x+ z X



946 ELI M. GAFNI AND DIMITRI P. BERTSEKAS

in view of the definitions (19)-(21). Since x is critical, we have (Vf(x), y- x)>_-0 for
all y X. Therefore using (44) we have

(45) (Vf(x), z) >= 0 Vz Cx.
From the definitions of C+, dx and d+ (cf. (21)-(24)) and (45) it follows that

Vf(x) 6 C+
and

d+ -Vf(x), dx 0.

Using (28)-(30), we obtain x(a)= P[x-aVf(x)]. Since x is critical, we have that
x P[x- aVf(x)] for all a->_ 0 and the conclusion follows.

b) We have by using the facts Vf(x)=-(d +d+) and (aJ, d+) 0

(46) (a, Vf(x)) -(a, dx + d+) -(, d).

Now is the projection of Ddx on the cone C, (3 {zl(z d+) 0}, d belongs to this
cone and therefore is a direction of recession. Using Lemma b), it follows that

(47) dx, x) >-- dx, Ddx).

Combining (46) and (47), we obtain

(48) (ax, Vf(x)) <-_ -(dx, Dxd,) <= 0
where the second inequality is strict if and only if dx 0. Also d + is the projection of
-Vf(x) on C +

SO

(49) (d + Vf(x)) <= 0

with strict inequality if and only if d+ O. Combining (48) and (49) and using the fact
g -(d + + ), we obtain

(50) (g, Vf(x)) _-> 0

with equality if and only if dx 0 and d+ 0, or, equivalently Vf(x)= 0. Since x is not
critical, we must have Vf(x)# 0, so strict inequality holds in (50) and (41) is proved.

Take any a (0, e/II g [[). Since projection on a closed convex set is a nonexpansive
operator (see e.g. [8] or use the Cauchy-Schwarz inequality to strengthen (B.16) in
Appendix B), we have

]Ix(a) xl] <-[Ix-ag-x[[ c Ilg[[ < e.(51)

Therefore we have

and as a result

(a,x)<b-ellaill<b,-(a,,x(o)-x) Vi_I

(ai, X(O)) < b Vi : I.
It follows that x(a) is also the projection of the vector x- ag on the set Ox X given
by

(52)

lx {zl(a,, z) <= b,, I},

x(a) arg min {llz-(x- cg)lllz ax}.
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Now the vector dx is easily seen to be a direction of recession of the set fx, so by
Lemma b) we have

(dx, x(o,)) >= (dx, x o,g) (d,,, x + od+x + O,dx).

Since (dx, d)= 0, the relation above is written by using also (47)

(53) -(dx, x x(o)) >-_ ,(dx, Dxd).

In view of the fact x Cx we have (x + ax) Ox, and since x(a) is the projection
on of (x + ad[ +a) (cf. (52)), we have

<x +d +x x(3, x +x x()> 0.

Equivalently, using the fact (d, )= 0,

(54) -(d;, x x()> e IIx()- (x + x)ll =.

(55)

By combining (53) and (54) and using the fact Vf(x)=-(dx + dx+), we obtain

(Vf(x), x-x(a))>- ,(ax, Dxd)
IIx()-(x + x)ll

which is the left inequality in (42). To show that the right side of (55) cannot be zero,
note that if it were, then we would have both dx=0 (implying ax =0, x(a)=
P(x- oVf(x)) and x(a) x + arx (implying P(x aVf(x)) x). Since x is not critical,
we arrive at a contradiction. Therefore the right inequality in (42) is also proved.

By using the mean value theorem, we have

(56) f(x)-f[x(a)] (Vf(x), x x(a)) + (Vf(sr,) Vf(x), x- x(a))

where ’ lies on the line segment joining x and x(a). Using (55) and (56), we obtain
for all c (0, e/II g II)

(57)

x(,)- (x + )11
{f(x)-fix(a)]} >-- (d, Dxdx) - 2

Using (51) and the Cauchy-Schwarz inequality, we see that

(58) (Vf()-Vf(x), )>--]]Vf()-Vf(x)]l.,,g]].
Since IIVf(,)-Vf(x)][-0 as a->0, we see from (57) and (58) that if dx # 0 then for
all positive but sufficiently small a we have f(x)>f[x(a)]. If dx =0 then ax=O and
using Lemma la)

(59)
IIx(a)-(x +ax)ll 2 Ilx(a)-xll > [Ix(1)-xi[ 2 Vc (o, 1].2 2

From (57), (58) and (59) we see again that when dx =0, then for all positive but
sufficiently small a we have f(x)>f[x(a)]. Therefore, there exists c7 > 0 such that (43)
holds in both cases where dx 0 and dx # O. Q.E.D.
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3. Convergence analysis. The previous section has shown how a vector x X, a
scalar e > 0, an index set Ix satisfying

I {i I[(a,, x)>= b,- e Ila, l[},

and a positive definite self-adjoint operator Dx:Fx->Fx where Fx is the subspace
defined by (21)-(26), uniquely define an arc of points x(a) X, a >-0 where

x(a) P(x ag), a >= 0

and g is defined via (23), (24), (28)-(30). Furthermore for each x X which is not
critical, Proposition b) shows-that by choosing a sufficiently small, we can obtain a
point of lower cost on this arc. Therefore any procedure that, for any given x X,
chooses Ix, e, and Dx satisfying the above requirements, coupled with a rule for selecting
a point of lower cost on the corresponding arc x(a) leads to a descent algorithm. There
is a large variety of possibilities along these lines but we will focus attention on the
following broad class of methods:

We assume that we are given a continuous function e" X R such that

(60) e(x) >-_ 0 Vx X,

(61) e(x) 0 := x is critical

(for example e(x)= min {e, ]Ix-P[x-Vf(x)][[} where e > 0 is a given constant). We
are also given scalars/3 (0, 1), r (0, / 2), A > 0 and A2 > 0 with A =< A2.

At the beginning of the kth iteration of the algorithm we have a vector Xk X. If
Xk is critical, we set Xk+l Xk. Else we obtain the next vector Xk+ as follows"

Step 1. Choose an index set Ik c I satisfying

(62)

and compute

(63)

(64)

where

(65)

Ik ={i I[(ai, Xk) bi- e(x)llaill},

dk arg min {ll z + Vf(Xk)[llz L
+dk --[Vf(Xk)+dk]

C {zl<a,, z) < 0, Ik}.

Step 2. Choose a positive definite self-adjoint operator Dk’Fk--> Fk, where

(66) Fk =span {Ck fq{zl(z, d) 0}},

and Dk satisfies

(67) IIDll-<_x= and XlllZII2<-_(z,Oz)
Compute k given by

(68)

Define

(69)

and

(7o)

tk arg min {llz- Ddlllz C, <z, d;) 0}.

gk --(d - +kXk(a) P(Xk agk) Va >-- O.
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Step 3. Set

(71) Xk+l=Xk(ak)

where

(72) ak=/3 "k

and mk is the first nonnegative integer m satisfying

tim
Proposition lb) shows that x+l is well defined via the stepsize rule (71)-(73) in

the sense that mk is a (finite) integer and furthermore

f(Xk) >f(Xk+l)

for all k for which x is not critical. The following proposition is our main convergence
result.

PROPOSITION 2. Every limit point of a sequence {xg} generated by the algorithm
above is a critical point.

Proof Let {xg}K be a subsequence of {xk} converging to a point which is not
critical. We will arrive at a contradiction. Since {a} is bounded, we assume without
loss of generality that

lim Olk
kc
kK

where 8 [0, 1]. Since {f(x)} decreases monotonically to f(ff), it follows from the
form of the stepsize rule that

(74) lim ak(dk, D,d,) O,
k-
kK

lim
[[xk(a)-(x + a)[[2

0.(75)
k--, tk
kK

We consider two cases"

Case (c >0). It follows from (74) and the fact (dk, Dkdk)>A,I]dk[[ 2 (cf. (67)) that
limk_oo,: d--O, and therefore also

lim d O, lim d-=-Vf().
kK kK

By taking the limit as k oz, k K, in the equation Xk(Olk) P(Xk A- akd- -4- Olkak) using
the continuity of the P operator, we obtain

lim Xk(ak)= P[X- cVf(X)].
k-cx
kK

Therefore (75) yields

X P[2- cVf(X)].

Since c > 0 this implies that is critical, thereby contradicting our earlier assumption.



950 ELI M. GAFNI AND DIMITRI P. BERTSEKAS

Case 2 (6 0). It follows that for all k K which are sufficiently large

(76) f(Xk)--f [Xk ()] <O’{(dk, Dkdk) q-IlXk(Ol’k/fl)-(Xk-b(Ol’k/fl)k)ll2}
i.e., the test (73) of the stepsize rule will be failed at least once for all k K sufficiently
large.

Since gk -(d +k), (d +k, k)= 0, we have

(77) IIgll= IIdll = + =.
Since d is the projection of Dk on C {zl(z, d> 0}, we must have Dd
and, using (67), IIIIA=IIdI. Therefore from (77) and the fact IIdllllf(x)ll,
IIdll IIf(x)ll we obtain

IIgll= (1 + A)llf(x)ll =,
It follows that

(78) lim sup IIgll
kK

We also have

(79) lim e(Xk) e(2) > O.
ko
kK

It follows from (78), (79) and the fact 6 =0 that for all k e K sufficiently large
/ (o, (x)/llgll) and therefore using Proposition lb) (cf. (42)), we obtain

(80) 7f(Xk), Xk Xk <dk, Dkdk> + ak/

Using the mean value theorem, we have

(81, f(x)-f[x ()] :(Vf(x,,X-X ())+(Vf()-Vf(x,,x-x
where lies on the line segment connecting x and x(a/). From (76), (80), and
(81) we obtain for all k e K suciently large

(1-) {(dk, Okdk) d
IIXk(ak/fl)--(Xk W(ak/)k)l]2}(/)

(82)

<- [Vf(xg) Vf(’),
Xk Xk(ak/)

\ / /"

Since (cf. (51), (78)) we have

lim sup
IIx-x(,,/)ll

_-<lim sup IIgll < o
+ .//3 -kK kK

and

lim [IVf(x)- vf(’)ll 0,
k-oo
keK
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it follows that the right side of (82) tends to zero as k-, k K. Therefore so does
the left side which implies that

(83) lim d 0, lim 0
kK kK

and

(84) lim
IIx(,/)-(x +(/)d’)ll=

0,

Since it follows from (79) and (83) that there exists kS such that

+Jx
we obtain using Lemma la)

(85)
’lXk(Olk/[)--(Xk’q-(Olk/[)k)[[2(akIn)2 [] p [(Xk +--ak +dk+] (-- Xk +ak

From (84) and (85) it follows that

i P [(x+)-(Tf(x)+d)]-(xg+kK

Using (83), we obtain

liP[X- VT(:)] ll- 0,

which contradicts the assumption that is not critical. Q.E.D.
We mention that some of the requirements on the sequences {S(Xk)} and {Dk} can

be relaxed without affecting the result of Proposition 2. In place of continuity of e(.)
and assumption (67) it is sufficient to require that if {Xk}K is a subsequence converging
to a noncritical point , then

lim inf e(xk) > 0,
ko
kK

lim infinf ((z, Dz)lllzll , z r} > o
kK

lim sup Dk <.
kc
kK

This can be verified by inspection of the proof of Proposition 2.
A practically important generalization of the algorithm results if we allow the

norm on the Hilbert space H to change from one iteration to the next. By this we
mean that at each iteration k a new inner product (.,.)k and corresponding norm I1" k

on H are considered. The statement of the algorithm and corresponding assumptions
must be modified as follows:

a) The gradient 7f(Xk) will be with respect to the current inner product (.,.)k
(cf. (3)).

b) The projection defining dk, d, k and the arc Xk(’) should be with respect to
the current norm I1" Ilk.
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c) The assumptions on Ik, and Dk, and the stepsize rule should be restated in
terms of the current inner product and norm.

There is no difficulty in reworking the proof of Proposition 2 for this generalized
version of the algorithm provided we assume that all the norms II" Ilk, k 0, 1,’’" are
"equivalent" to the original norm I1" on H in the sense that for some m > 0 and
M > 0 we have

mllzll <--Ilzll =< Mllzll H, k=0, 1,....

Naturally the norms II" Ilk should be such that projection on X with respect to any
one of them is relatively easy, for otherwise the purpose of the methodology of this
paper is defeated. The motivation for considering a different inner product at each
iteration stems from the fact that it is often desirable in nonlinear programming
algorithms to introduce iteration-dependent scaling on the optimization variables. This
is sometimes referred to as "preconditioning." The use of the operator Dk fulfills that
need to a great extent but while this operator scales the component d of the negative
gradient, it does not affect at all the second component d +. The role of an iteration-
dependent norm can be understood by considering situations where the index set Ik
is SO large that the cone Ck is empty. In this case d =--Vf(Xk), k =0 and the kth
iteration reduces to an iteration of the original Goldstein-Levitin-Poljak method, for
which practical experience shows that simple, for example diagonal, scaling at each
iteration can sometimes result in spectacular computational savings.

4. Rate of convergence. In this section we will analyze the rate of convergence of
algorithm (62)-(73) for the case where X is polyhedral and H is finite dimensional.
An important property of the Goldstein-Levitin-Poljak method (cf. [7]) is that if it
generates a sequence {Xk} converging to a strict local minimum ff satisfying certain
sufficiency conditions (compare with [7]), then after some index k the vectors Xk lie
on the manifold of active constraints at , i.e., Xk +N where

(86) Nz {zl(a,, z)= 0, Vi6 a}

and where

(87) a { il 6 I, (a, )= b}.

Our algorithm preserves this important characteristic. Indeed, we will see that, under
mild assumptions, our algorithm "identifies" the set of active constraints at the limit
point in a finite number of iterations, and subsequently reduces to an unconstrained
optimization method on this subspace. This brings to bear the rate of convergence
results available from unconstrained optimization.

The rate of convergence analysis will be carried out under the following assump-
tions:

(A) H is finite dimensional, X is polyhedral, f is continuously Frechet differenti-
able, and Vf is Lipschitz continuous on bounded sets, i.e., for every bounded set there
exists L > 0 such that for every x and y in X we have

(88) IlVf(x) V/(y)II--< LIIx yll.

(B) 2 is a strict local minimum and there exists > 0 such that

(89) P(y)e +N Yy such that l]2-Vf()-yll <_- 6.

(C) The function e(x) in the algorithm has the form

(90) e(x) min { e, IIx P[x Vf(x)]ll},
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where e > 0 is a given scalar. Furthermore the set Ik in the algorithm is chosen to be
(cf. (62))

(91) Ik {i II(a, Xk) b,- e(x)[I a, 1[}.
The Lipschitz condition (88) is satisfied in particular if f is twice continuously

differentiable. Condition (89) is a weakened version of an often employed regularity
and strict complementarity assumption which requires that the set of vectors {aili A}
is linearly independent and all Lagrange multipliers corresponding to the active
constraints are strictly positive. The form (90) for e(x) is required for technical purposes
in our subsequent proof. The reader can verify that there are other forms of e(x) that
are equally suitable. Finally the choice (91) for the set I is natural and is ordinarily
the one that is best for algorithmic purposes.

The following proposition allows us to transfer rate of convergence results from
unconstrained minimization to algorithm (62)-(73).

PROPOSITION 3. Let be a limit point of the sequence {Xk} generated by iteration

(62)-(73), and let Assumptions (A)-(C) hold. Then

(92) lim Xk

and there exists k such that for all k >= k we have

(93) Xk + N,

(94) F span {Cfq{zl(z, d) 0}} N,

(95) dk arg min {llVf(Xk) + zlllz N},

(96) x+1 Xk d- OtkOkdk,

where ak-- fl mk and mk is the first nonnegative integer m for which

(97) f(Xk) f[x(fl’)] >- trflm(dg, Dkdk).

The proof of Proposition 3 is given in Appendix B. From (96) and (97) we see
that eventually the method reduces to an unconstrained minimization method on the
manifold + N. The proposition shows that if the matrix Ok is chosen so that for all
k sufficiently large it is equal to the inverse Hessian of f restricted on the manifold
+ N, then the method essentially reduces to the unconstrained Newton method and

attains a superlinear rate of convergence.

5. Algorithmic variations. Many variations on iteration (62)-(73) are possible. One
of them, changing the metric on the Hilbert space H from iteration to iteration, was
discussed at the end of 3. In this section we discuss other variations. These will
include the use, in various cases, of a pseudometric on H instead of a metric, variations
on the step size rules and finally variations on the various projections in (62)-(73). We
will state the variations without a convergence proof. In each case, the reworking of
the proofs of 2-3 to show that the variation is valid, poses no difficulty.

Singular transformation of variables through a pseudometric. Here we address the
case where X is not a solid body in H, i.e., for some linear manifold M we have
X M H. In this case we observe that (42) is the only place where a metric as
opposed to a pseudometric is needed. Noticing that if X M, then all quantities in
(42) belong to M, one can conclude that all that is necessary is to have a metric on
M. This leads us to consider the use of pseudometric on H provided it induces a
metric on M. Furthermore, we can change the pseudometric on H from iteration to
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iteration, as we can change the metric, provided that the metrics induced on M are
equivalent in the sense described in 3. In some cases the introduction ofa pseudometric
serves to facilitate the projection further (see [17, Chap. 4]).

Stepsize rules. The Armijo-like rule (73) can be viewed as a combination of the
Armijo rule used in unconstrained minimization [9], and an Armijo-like rule for
constrained optimization proposed by Bertsekas in [7, cf. eq. (12)]. Corresponding to
an alternate suggestion made there [7, cf. eq. (22)], we can replace (73) by

(98) f(Xk)--f(Xk(flm))>= Cr{flm(dk, Dkdk) +(Vf(Xk), (Xk "+’[3rnk)--Xk(f3m))}.
Also, a variation of the Gold.stein stepsize rule [9] can be employed, in which o- < 0.5
and a is chosen such that

(99)

(1 cr){a(d, Ddk) + (Vf(Xk), (X + a)-- Xk(a))}

>--f(Xk)--f(Xk(a))

=> o’{a(dk, Dkdk) +(Vf(Xk), (Xk + adk)-- Xk(t))}.

The rule (99) is the counterpart of (98). The reader can easily construct the
counterpart to (73).

Variations on the projections. There is one central observation in the paper, namely,
+the projections of Dkdk and dk on any closed convex set for which dk is a direction

of recession, result in descent directions. By employing different sets with this property,
variations on the algorithm result since different directions may be obtained and
different arcs may be searched.

The first variation is to replace Ck in (68) by (l)k- xk), i.e.

k arg min {[[z- Dkdk[[[Z -k Xk, (Z, d-)= 0}(100)

where

Evidently

k { zl(ai, z) <-- bi, V Ik}.-k Xk Ck
and as a result dk is a direction of recession of lk- Xk, which implies that dk defined
by (lO0) is a descent direction.

Interestingly, this variation gives rise to a variation in the stepsize search. Since
the set {zlz Ck, (z, d -)= 0} is a cone, the vector dk of (68) satisfies

ak --arg min {[[ aDkdk- z[[[zG Ck, (Z, d-) 0}.

Thus, (70) can be interpreted as

xk(a) P[xk +adk +qk(a)]

where

qk(a) arg min {l[aDkdk- Zll[Z Ck, (Z, d-) 0}.

When Ck is replaced by fk- x, a new algorithm results by searching along the arc

x() P[x +d +()]

where

(a) arg rain {llaDkdk ZlllZ fk Xk, (Z, d) 0}.
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Indeed, the particular algorithm suggested in [6] can be considered to be an implementa-
tion of the last variation for an orthant constraint.

6. Multicommodity network flow lroblems. In this last section we apply algorithm
(62)-(73) to a classical nonlinear multicommodity network flow problem and present
some computational results. In vew of the typically very large number of variables and
constraints of this problem, active set methods of the type presented in [4] are in our
view entirely unsuitable.

We consider a network consisting of N nodes, 1, 2,. ., N, and a set of directed
links denoted by . We assume that the network is connected in the sense that for
any two nodes rn, n, there is a.directed path from rn to n. We are given a set W of
ordered node pairs referred to as origin-destination (or OD) pairs. For each OD pair
w W, we are given a set of directed paths Pw that begin at the origin node and
terminate at the destination node. For each w W we are also given a positive scalar
rw referred to as the input of OD pair w. This input must be optimally divided among
the paths in Pw so as to minimize a certain objective function.

For every path p Pw corresponding to an OD pair w W we denote by X
p the

flow travelling on p. These flows must satisfy

(10) Y x rw Vw W,
Pa Pw

(102) xP>-O Vp Pw, we W.

Equations (101), (102) define the constraint set of the optimization problem--a Car-
tesian product of simplices.

In Example 2 we discussed the application of our method to the case of a simplex
constraint. It is not difficult to see that if we take a "diagonal" metric on the space,
the multicommodity flow problem decomposes in the sense explained below.

Let x denote the vector of variables Xp, p Pw, w W, and let x denote the vector
of variables xp, p Pw. Let C,(xw) and F(xw) denote the cone and subspace, respec-
tively, in RIl, generated at x, when all variables aside from those in x are considered
fixed and e e(x). Then

C, 1-I C,(xW), Vf(x)=(...,V,wf(x),...), Fx H Fx(xW)
I,V

Thus all projections decompose and therefore in many respects the multicommodity
flow problem is not different from the problem with a single simplex constraint. The
only points where the "interaction" among the simplices appears is in computing ek,
and in computing Dkdk.

To every set of path flows {xPlp Pw, w W} satisfying (101), (102) there corre-
sponds a flow f for every link a . It is defined by the relation

(103) f= Y E lp(a)xp Va
WpPw

where lp(a) if the path p contains the link a and lp(a)--- 0 otherwise. If we denote
by f the vector of link flows, we can write relation (103) as

(104) f= Ex

where E is the arc-chain matrix of the network.
For each link a we are given a convex, twice continuously differentiable scalar

function Da(f") with strictly positive second derivative for all fa_-> 0. The objective
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function is given by

(105) D(f) E D,(fa)

By using (104), we can write the problem in terms of the path flow variables xp as

minimize J(x)= D(Ex)

subject to:

xt’=rw lw6W,
pPw

x >= O lp Pw, we W.

In communication network applications the function D may express, for example,
average delay per message 10], 11 or a flow control objective 12], while in transporta-
tion networks it may arise via a user or system optimization principle formulation [13],
[14], [15]. We concentrate on the separable form of D given by (105), although what
follows admits an extension to the nonseparable case.

A Newton-like method will be obtained if we chose Dkdk so that xk +Dd is the
minimum of the quadratic approximation to f on x +F. For this we must find
where solves

(106) minimize (VJ(x,), Av) +1/2(Av, V2j(xt,)Av)

and where A is a matrix such that its columns are linearly independent and span Fk-

The particular structure of the objective function (105) gives rise to a Hessian
matrix which makes the solution of (106) relatively easy to obtain. Indeed, using (105)
we can rewrite (106) as

(107) minimize (E’V D(fk), Av) +1/2(Av, E’V2D(fk)EAv),

where fk EXk and prime denotes transposition. A key fact (described in detail in
Bertsekas and Gafni [16]) is that problem (107), in light of V2D(fk) being diagonal,
can be solved by the Conjugate Gradient (C-G) method using graph type operations
without explicitly storing the matrix

A’E’V2D(f)EA.
Note that a solution to (107) exists since E’VD(fk) is in the range of the nonnegative
definite matrix E’V2D(fk)E.

Computational results. A version of the algorithm was run on an example of the
multicommodity flow problem: The network is shown in Fig. 5. Each OD pair was
restricted to use only two prespecified paths. This reduced the programming load
significantly, yet captured the essence of the algorithm. It is conjectured-that the results
we obtained are representative of the behavior of the algorithm when applied to more
complex multicommodity flow problems.

The algorithm was operated in three modes distinguished by the other rules
according towhich the C-G method was stopped. In the first mode (denoted by Newton)
the C-G iteration was run to the exact solution of problem (107). In the second mode,
(denoted by approximate Newton) the C-G iteration was run until its residual was
reduced by a factor of over the starting residual (this factor was chosen on a heuristic
basis). Finally, in the third mode the C-G method was allowed to perform only one
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12
19

6 7 8 9 tO

FIG. 5. The network; initially all flows traverse link 21.

step (denoted by 1-stepmthis results in a diagonally scaled version of the original
Goldstein-Levitin-Poljak method). In all these modes, in addition to their particular
stopping rule, the C-G method was stopped whenever for any OD pair w the flow on
the path with the smallest partial derivative of cost became negative. Each time this
happened, the last point in the sequence of points generated by the C-G method
subiteration was connected by a line to the point preceding it. The point on the line
at which the particular path flow became zero was taken as the result of the C-G
iteration. We used different values ek for different OD pairs, according to a variation
of (60) (with e 0.2).

We used two types of objective functions. The first is

Da(fa) Va
C,, -f"

where Ca is a given positive scalar expressing the "capacity" of link a. This function
is typically used to express queueing delay in communication networks. The second
type was taken to be quadratic. We used two sets of inputs, one to simulate heavy
loading and one to simulate light loading. For each combination of cost function and
input we present the results corresponding to the three versions in Table 1.

Our main observation from the results ofTable 3 as well as additional experimenta-
tion with multicommodity flow problems is that in the early iterations the 1-step method
makes almost as much progress as the other two more sophisticated methods but tends
to slow down considerably after reaching the vicinity of the optimum. Also the
approximate Newton method does almost as well as Newton’s method in terms of
number of iterations. However the computational overhead per iteration for Newton’s
method is considerably larger. This is reflected in the results of Table 3 which show
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TABLE
Capacities.

20 7.5

5 9

15 6

6 10

35 x
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7.5
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C,=mi.i, i=+l.j=a-5(i-l)

TABLE 2
Low input. High input low input 1.75.

7 8 96
ongn

0.5 1.5 2

2

3 0.5 0.5 1.5

4 0.25 0.25 2

5 0.75 0.75 0.75 0

1.5

0.25

TABLE 3

10

2.5

3.5

0.25

0

Low load

Nonquadratic objective
Newton
Approximate Newton
-step

Quadratic objective
Newton
Approximate Newton
1-step

High load

Nonquadratic objective
Newton
Approximate Newton
1-step

Quadratic objective
Newton
Approximate Newton
-step

Initial value

1.600616" 10

1.866326’ 10

9.759996" 106

9.759996" 10

Final value

8.743550
8.758665
8.758665

7.255231
7.255231
7.255231

3.737092" 10
3.737745" 10
3.747400" 101

1.521299" 10
1.521299" 10
1.521301" 101

No. of
iterations

16
16
16

14
15
15

5
13
16

Total no.
of C-G

subiterations

29
16
16

17
13
12

117
30
15

24
27
16
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in three cases out of four a larger number of conjugate gradient subiterations for
Newton’s method. Throughout our computational experiments (see also [17]) the
approximate Newton method based on conjugate gradient subiterations has performed
very well and, together with its variations, is in our view the most powerful class of
methods available at present for nonlinear multicommodity network flow problems.

Appendix A.
Proof of Lemma 1. a) Fix x X, z H and y > 1. Denote

(A.1) a=x+z, b=x+yz.

Let a and b be the projections on X of a and b respectively. It will suffice to show that

(A.2) II-xll lla-xll.
If a x then clearly b x, so (A.2) holds. Also if a e X then i a x + z so (A.2)
becomes IIb-xll<-llzll-IIb-xll which again holds by the contraction property of
the projection. Finally if b then (A.2) also holds. Therefore it will suffice to show
(A.2) in the case where a b, a x, b x, i X, b X shown in Fig. (A. 1).

Let Ha and Hb be the two hyperplanes that are orthogonal to (b- i) and pass
through a and b respectively. Since (b-i, b-b}>= 0 and (b-i, a- i)=0, we have
that neither a nor b lie strictly between the two hyperplanes Ha and Hb. Furthermore
x lies on the same side of Ha as a, and x Ha. Denote the intersections of the line
{x + a(b- x)la R} with Ha and Hb by Sa and Sb respectively. Denote the intersection
of the line {x +a(d-x)la R} with Hb by w. We have

(A.3)

r;
a x Sa X a X a X- a + a x

> -x
a x a x

Ha Hb

FIG. A.I
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where the third equality is by similarity of triangles, the next to last inequality follows
from the orthogonality relation (w-b, b- 4)= 0, and the last inequality is obtained
from the triangle inequality. From (A.3) we obtain (A.2) which was to be proved.

b) Since y is a direction of recession of , we have

(A.4) Pa(x + z) +y a.
Thus by definition of projection on a closed convex set

(A.5)

or equivalently

((x + z) Pa(x + z), (Pa(x + z) + y) Pa(x + z)) <- 0

((x + z)- Va(x + z), y) _-< 0,

and (40) follows. Q.E.D.

Appendix B. We develop the main arguments for the proof of Proposition 3
through a sequence of lemmas. I what follows we use the word "eventually" to mean
"there exists k such that for all k >_-k," where k may be different for each case.

LEMMA B.1. Under the conditions of Proposition 3, limk_o Xk "-- and eventually

(B.1) Ik 32.

Proof. By relation (73), since is a limit point and the algorithm decreases the
value of the objective function at each iteration, we have

lim x/, x 0,
k->oo

which implies, again by the descent property and the fact that is a strict local minimum

lim Xk .(B.2)

Therefore from (90)

(B.3) lim e(xk) e(X) O.
k--->

Since the set I is finite, it follows from (87), (91) and (B.3) that eventually

(B.4) Ik c A.
To show the reverse inclusion we must show that eventually

(B.5) (a,, Xk) >- b,- (x)lla, ’i 32.

By the Cauchy-Schwarz inequality, (B.3) and (90) we have eventually

e(x,,)lla, IIx,, P[xk Vf(x)]ll. Ila,[[ >--(PEXk- Vf(xk)]- xk, a,>.
Therefore in order to show (B.5) it suffices to show that eventually

(a,, P[Xk Vf(xk)]) b, V A
or equivalently

P[x Vf(x)]s + S.
Since Xk this follows from Assumption (B). Q.E.D.

LEMMA B.2. Under the conditions ofProposition 3 for each (0, ], eventually we
have

(B.6) Xk(a)e +N Va e [6, 1].
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Proof. From LemmaB.1 we have xk- ) and eventually Ck C where

(B.7) C { zl(z, a,) _-< 0, /i A}.

Since the projection of-Vf() on C is the zero vector and dk is eventually the projection
of--Vf(Xk) on C it follows that

(B.8) lim dk O.
koo

Since ak is the projection of Ddk on a subset of Ck, and {IIDII} is bounded above
(cf. (67), (68)), it follows that

(B.9) lim k 0.
k

Since --Vf(Xk) d + dk and gk =-(d + k)
(B. 10) lim gk Vf().

k

A simple argument shows that Assumption (B) implies that for all a [0, 1]

(B.11) P(y)6X+N y such that

For any 6 (0, 1], equation (B.10) shows that we have eventually

Therefore from (B.11) we have eventually

x(a)=P(x-ag)Eg+N Va[6,1]. Q.E.D.

LEMMA B.3. Under the conditions of Proposition 3

lim inf a > 0.

Proo From Lemma B.1 we have eventually I A and x #, while-from (B.8)
we have [[g[- ]]Vf(#)l]. Therefore from Proposition lb) [cf. (42)] it follows that there
exists > 0 such that eventually

(Vf(xg), xk- Xk(a)) a(dg, Ddk)+L IIx()-(x + dk)[[ 2 V (0, a].

Using this relation, we get that eventually

L
f(x)-f[x(a)] e (Vf(xk), Xk X(a)) --a(d, Ddk} +--]]Xk(a)--(Xk + ak)]] 2 L- IIx()- xll

a<d, Dd> +--Ilxk(a)--(Xk +

Zll11=- tllx()-(x
e (1 (d,d>+ e

where the third inequality follows from

IIx +ll211xll
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the last inequality follows from (67) and L is a Lipschitz constant that corresponds to
any nonempty bounded neighborhood of :. Taking any 6 > 0 satisfying

ti’--<_, 1-ti’LA2>o’, 5(al--_-L)>tr
we obtain, using (73) that

lim inf ak > 5

and the Lemma is proved. Q.E.D.
Proof of Proposition 3. The fact limk_,Xk is part of Lemma B.1, while (93)

follows from Lemmas B.2 ahd B.3.
In order to show (94) we note that from Lemma B.1 and (B.8) we have eventually

(B.12) Ck=, C- t+

and

(B.13) lim d;=-Vf().

Equation (B.13) implies that eventually assumption (B) holds with d- replacing -Vf(:)
and 6/2 replacing 6. Therefore for all As and pi > 0 such that [Ipia[I < 6/2 we have

(B. 14) P(X + d- + p,a,) 6 2 + Nz,

(B. 15) P(X + d -) + N.
For any z, z: H we have from a general property of projection on X

(z, n(z,), P(z2)- n(z,)) <= O,

(z:- n(z:), n(z,)- n(z:)) <= O.

By adding these two inequalities, we obtain

(B.16) IIP(z,)-n(z2)ll:<=(z,-z2, P(z,)-n(z2)) Yz,, z2 H.

By applying (B.16), we obtain

(B.17) IlP(Y+d-+pia)-P(X+d-)ll2<-(+pai, n(X+d-+pa)-P(.+d-)).

Since (a, z)= 0 for all z N, i As it follows from (B.14), (B.15) that the right
side of (B.17) is zero and therefore eventually

P( + d - + p,a,) P( + d -) f
+Since from (B.12) we have eventually dk/, it follows that P(+d-)= and

therefore also

Hence eventually

which implies that

(B.18)

Let

P( + d- + pa,) X V

/d k =l= piai E
__, + f 6 A

(d-+piai, y)<=O ly,iA.

y 6 {zlz C, (z, d-) 0}.
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From (B.12) and (B.18) we have eventually

(ai, y) 0 ViA,

or equivalently y N. Hence eventually

= {zlz c, (z, d) 0}

and it follows that

span N= N = span {C,f’l{z[(z, d[) 0}} F.
To show the reverse inclusion, note that if y N then by Assumption (B) and (B.12)
we have eventually

(y, d-) 0.

Since N c and eventually Ck (, it follows that eventually y Ck f’) {zl(z, d) 0}
and afortiori y span { Ck fq {zl(z, d) 0}} Fk. Therefore eventually

NcFk
and the proof of (94) is complete.

Since d is the projection of-Tf(x) on C fq {zl(z, d-)= 0}, equation (95) follows
easily from (94).

Also from (93) and (94) we have eventually x + N, dk N, N and d-
is o.rthogonal to N, while by Lemma B.2 the vector x/ is the projection of x +
ak(dk + d-) on ff + N. Therefore (96) and (97) follow. Q.E.D.
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