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Reinforcement Learning (RL): A Happy Union of Al and

Decision/Control Ideas

Al/RL Decision/
. Control/DP
Learning through
Experience o
Complementary Prlnqplg of
Simulation, Ideas Optimality
Model-Free Methods [ > Markov Dedisi
Late 80s-Early 90s arPovbl ecision
Feature-Based roblems
Representations I
A*/Games/ ' i
Heuristics Policy Iterat'lon
Value Iteration

Historical highlights
@ Exact DP, optimal control (Bellman, Shannon, 1950s ...)
@ First impressive successes: Backgammon programs (Tesauro, 1992, 1996)
@ Algorithmic progress, analysis, applications, first books (mid 90s ...)
@ Machine Learning, BIG Data, Robotics, Deep Neural Networks (mid 2000s ...)
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AlphaGo (2016) and AlphaZero (2017)

AlphaZero
Plays much better than all chess programs
Plays different!
Learned from scratch ... with 4 hours of training!

Same algorithm learned multiple games (Go, Shogi)

Methodology:
@ Simulation-based approximation to a form of the policy iteration method of DP

@ Uses self-learning, i.e., self-generated data for policy evaluation, and Monte Carlo
tree search for policy improvement

The success of AlphaZero is due to:
@ A skillful implementation/integration of known ideas
@ Awesome computational power
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Approximate DP/RL Methodology is now Ambitious and Universal

Exact DP applies (in principle) to a very broad range of optimization problems
@ Deterministic <—-> Stochastic
@ Combinatorial optimization <—-> Optimal control w/ infinite state/control spaces
@ One decision maker <—-> Two player games
@ ... BUT is plagued by the curse of dimensionality and need for a math model

Approximate DP/RL overcomes the difficulties of exact DP by:
@ Approximation (use neural nets and other architectures to reduce dimension)
@ Simulation (use a computer model in place of a math model)

State of the art:

@ Broadly applicable methodology: Can address broad range of challenging
problems. Deterministic-stochastic-dynamic, discrete-continuous, games, etc

@ There are no methods that are guaranteed to work for all or even most problems

@ There are enough methods to try with a reasonable chance of success for most
types of optimization problems

@ Role of the theory: Guide the art, delineate the sound ideas

Bertsekas (M.L.T.) Reinforcement Learning 4/36



Aims and References of this Talk

The purpose of this talk
@ To selectively review some of the methods, and bring out some of the Al-DP
connections.
@ To briefly describe a few recent ideas on aggregation.

References
@ Quite a few Exact DP books (1950s-present starting with Bellman). My latest book
“Abstract DP" came out a year ago: aims at algorithmic unification through an
operator formalism.

@ Quite a few DP/Approximate DP/RL/Neural Nets books (1996-Present)

Bertsekas and Tsitsiklis, Neuro-Dynamic Programming, 1996
Sutton and Barto, 1998, Reinforcement Learning (new edition 2018)

NEW BOOK: Bertsekas, Reinforcement Learning and Optimal Control, 2019, (to
appear). Draft, slides, and videolectures from ASU course at
http://web.mit.edu/dimitrib/www/RLbook.html

Aims for a coherent synthesis that spans the spectrum of common RL/OC ideas (with
some new research here and there)
@ Many books and surveys on all aspects of the subject; Tesauro’s papers on
computer backgammon; Silver, et al., papers on AlphaZero
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Terminology in RL/Al and DP/Control

RL uses Max/Value, DP uses Min/Cost
@ Reward of a stage = (Opposite of) Cost of a stage.
@ State value = (Opposite of) State cost.
@ Value (or state-value) function = (Opposite of) Cost function.

Controlled system terminology
@ Agent = Decision maker or controller.
@ Action = Control.
@ Environment = Dynamic system.

Methods terminology
@ Learning = Solving a DP-related problem using simulation.
@ Self-learning (or self-play in the context of games) = Solving a DP problem using
simulation-based policy iteration.
@ Planning vs Learning distinction = Solving a DP problem with model-based vs
model-free simulation.

Bertsekas (M.L.T.) Reinforcement Learning 6/36



0 Approximation in Value and Policy Space

e General Issues of Approximation in Value Space
e Problem Approximation

0 Rollout and Model Predictive Control

e Parametric Approximation - Neural Networks

e Aggregation Frameworks
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Finite Horizon Problem - Exact DP

Wi

|

up = p (k) System Tk
Tpgr = fr(@, uk, wi)

Mk

@ System
Xk+1:fk(xkvukvwk)7 k:07173N71
where xx: State, ux: Control, wx: Random disturbance
@ Cost function:

N—1
E {QN(XN) + > gk(Xk, U, Wk)}

k=0

@ Perfect state information: ux is applied with (exact) knowledge of xx

@ Optimization over feedback policies {uo, - . ., un—1}: Rules that specify the control
uk(Xk) to apply at each possible state xx that can occur
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The DP Algorithm and Approximation in Value Space

Go backwards, k = N —1,...,0, using
In(xn) = gn(xw)
Jk(Xk) = n?lln (5, {gk(Xk, Uk, W) + Jrt (Fi (X, Uk, Wk))}

Jk(xx): Optimal cost-to-go starting from state x

Approximate DP is motivated by the ENORMOUS computational demands of exact DPJ

Approximation in value space: Use an approximate cost-to-go function Ji. 1

fik(Xx) € arg ”31” Ew, {Qk(Xk, Uk, Wie) + Jici 1 (e (X, Uk, Wk))}

There is also a multistep lookahead version

At state x4 solve an ¢-step DP problem with terminal cost function approximation Jj. ;.
Use the first control in the optimal ¢-step sequence.
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Approximation in Value Space

Approximate Min

1 @ ”
Discretization First Step &
HQlLiIl E{gk (Thy Wiy Wi )+ Tpe1 (Tg11) }
, X

Approximate F{-} Approximate Cost-to-Go J, k1
Certainty equivalence Problem approxmlat.lor.l
Adaptive simulation Rollout, Model Predictive Control
Monte Carlo tree search Parametric approximation

Neural nets

Aggregation

ONE-STEP LOOKAHEAD
At State z;,
DP minimization
First ¢ Steps “Future”
! —

k+0—1
min E {gk(zlfk, Uk, W) + Z i (@m s pn (Tm ), wm) + J k+1{(117k+1{>}

Uk sHk4-1s s Hk40—1 m=k+1

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD
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On-Line and Off-Line Lookahead Implementations

Approximate Min

irs “ 9
Discretization First Step &
min E{gk(xk, Uk, Wi )+ 1 (g;k,+1)}
Uk \
Approximate E{-} Approximate Cost-to-Go Jy 11
Certainty equivalence Problem appI'OXIHIat}OI}
Adaptive simulation ROI.IOM’ Model Predictive Control
Monte Carlo tree search Parametric approximation
Neural nets
Aggregation

@ Off-line methods: All the functions Jx,1 are computed for every k, before the
control process begins.

@ Examples of off-line methods: Neural network and other parametric
approximations; also aggregation.

@ On-line methods: The values Ji 1 (Xk+1) are computed only at the relevant next
states xx+1, and are used to compute the control to be applied at the N time steps.

@ Examples of on-line methods: Rollout and model predictive control.

@ On-line methods are well-suited for on-line replanning.

@ The minimizing controls fix(xx) are computed on-line for many-state problems

(because of the storage issue, as well as an off-line excessive computation issue).
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Model-Based Versus Model-Free Implementation

Our layman’s use of the term “model-free": A method is called model-free if it involves
calculations of expected values using Monte Carlo simulation.

Model-free implementation is necessary when:

@ A mathematical model of the probabilities px(wx | Xk, ux) is not available but a
computer model/simulator is. For any (xx, uk), it simulates probabilistic transitions
to a successor state xx;1, and generates the corresponding transition costs.

@ When for reasons of computational efficiency we prefer to compute an expected
value by using sampling and Monte Carlo simulation; e.g., approximate an integral
or a huge sum of numbers by a Monte Carlo estimate.

An example of model-free implementation. Assume Ji. 1 has been computed:

Form a training set of (State,Control,Q-factor) triplets: ((xg, uz), 8¢),s=1,...,q,
where

B = E{Qk(xti U, wie) + Jier (Fe(XE, UR, Wk))}

Construct a Q-factor approximation ék(xk, Uux) using a least squares fit - approximation
in policy space on top of approximation in value space.
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Approximation in Policy Space: A Major Alternative

Uncertainty

Control l
u = fi(i,7) System

"] Environment

Cost

Current State i

Controller|
ﬁ'('v T)

@ Parametrize policies with a parameter vectors r. Each r defines a policy.
@ The idea is to optimize some measure of performance with respect to the r.
@ Important advantage: On-line computation of controls is often easier.

Five contexts where approximation in policy space is helpful
@ Problems with natural policy parametrizations (like supply chain problems)

@ Approximation in policy space on top of approximation in value space (e.g., train in
value space, use a neural network to “learn" the lookahead policy).

@ Problems with natural value parametrizations, where policy training works well.
@ Learning from a software or human expert.

@ Unconventional information structures, e.g., multiagent systems with local info.
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Problem Approximation: Simplify the Tail Problem and Solve it Exactly

First Step “Future”

Approximate Min

min E{gk(ﬂch Uk, Wi )+ Jh1 (atk+1)}
Approximate Cost-to-Go jk+1
Problem approximation

Rollout, Model Predictive Control
Parametric approximation

Neural nets

Aggregation

Approximate E{-}
Certainty equivalence
Adaptive simulation
Monte Carlo tree search

Use as cost-to-go approximation Ji1 the exact cost-to-go of a simpler problem J

Many problem-dependent possibilities:

@ Probabilistic approximation
Certainty equivalence: Replace stochastic quantities by deterministic ones (makes the
lookahead minimization deterministic)
Approximate expected values by limited simulation
@ Enforced decomposition of coupled subsystems
One-subsystem-at-a-time optimization
Constraint decomposition
Lagrangian relaxation

@ Aggregation: Group states together and view the groups as aggregate states
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Rollout: On-Line Simulation-Based Approximation in Value Space

Lookahead Tree

Terminal Cost .
Approximation J

Py
L4

Simulation with
Base Policy

[ ]

States p41

States Tp12

Use a base policy: Any suboptimal policy (obtained by another method)
One-step or multistep lookahead: Exact minimization or a “randomized form of
lookahead" that involves “adaptive” simulation and Monte Carlo tree search

Use (optionally) a terminal cost approximation (obtained by another method)
Important theoretical fact: With exact lookahead and no terminal cost
approximation, the rollout policy improves over the base policy

Additional error bounds: The rollout policy “improves" approximately on the base
policy (depending on assumptions on J)
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On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Tp41 Tkt

Current State

Base Heuristic
Minimization

Stage k Stages
k+1,...,k+0-1

When the control space is infinite rollout needs a different implementation
@ One possibility is discretization of Ux(xk); but then excessive number of Q-factors.
@ The major alternative is to use optimization heuristics.
@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single ¢-stage deterministic optimization.

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based).
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Model Predictive Control for Deterministic Regulation Problems

Next States
Tk+1

Current State State

(¢ — 1)-Stages Tt =0

Minimization

) Stage k B Stages
kE+1,...k+0-1

@ System: Xir1 = fi(Xk, Uk).

@ Cost per stage: gk(x«, ux) > 0, the origin 0 is cost-free and absorbing.

@ State and control constraints: xx € Xk, ux € Uk(xx) for all k.

@ At x, solve an ¢-step lookahead version of the problem, requiring Xk, = 0 while
satisfying the state and control constraints.

® If {Uk, ..., Ukie—1} is the control sequence so obtained, apply .
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Parametric Approximation in Value Space

Cost-to-go
Lookahead Minimization Approximation
First ¢ Steps “Future”
< - +—>

Uk s M4 15+ Bk 40—1

k40—1
min ) {gk;(flfk, Uk, 'U/’]g;) + Z gk (-/I/'m,7 ,U"m,(-/l;m), /wm> + Jk:+£ ($k+ﬂ) }
m=k+1 T

Parametric approximation

@ Jx comes from a class of functions Jx(xx, rx), where rx is a tunable parameter
@ Proceed as in DP (w/ approximation): Sample (State,Cost) pairs, least squares fit

Feature-based architectures: The linear case

Linear Cost
State Tx | Feature Extraction | Feature Vector ¢x(zk)| [inear |Approximator ¢ (zy)

— : . —>
Mapping " Mapping
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Neural Networks for Constructing Cost-to-Go Approximations Jj

A Cost
. (i pproximation
State y(i) E v
ate v /J(z,v) =1r'¢(i,v)
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
v=(A,b) FEATURES r

Major fact about neural networks
They automatically construct features to be used in a linear architecture
@ Neural nets are approximation architectures of the form

m

Jix,v,r) =>"ngi(x,v) =r'¢(x,v)
i=1
involving two parameter vectors r and v with different roles
@ View ¢(x, v) as a feature vector
@ View r as a vector of linear weights for ¢(x, v)
@ By training v jointly with r, we obtain automatically generated features!
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A List of Some Important Topics We Will Not Cover in this Talk

@ Infinite horizon extensions: Approximate value and policy iteration methods, error
bounds, model-based and model-free methods

@ Approximate policy iteration - Self-learning - optimistic and multistep variants:
Policy evaluation/Policy improvement

@ Temporal difference methods: A class of methods for policy evaluation in infinite
horizon problems with a rich theory, issues of variance-bias tradeoff

@ Sampling for exploration, in the context of policy evaluation

@ Monte Carlo tree search, and related methods

@ Q-learning, with and without approximations

@ Approximation in policy space, actor-critic methods, policy gradient and
cross-entropy methods

@ Special aspects of imperfect state information problems, connections with
traditional control schemes

@ Special aspects of deterministic problems: Shortest paths and their use in
approximate DP

@ A broad view of using simulation for large-scale computations: Methods for large
systems of equations and linear programs, connection to proximal algorithms
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Aggregation within the Approximation in Value Space Framework

Approximate minimization

& First Step “Future”
" e ——
min ii(w)(g(i,u, 7) +aJ(j
ueU(i);pu( )90 u, §) + e J (7))
Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Approximate PI
Parametric approximation
Aggregation

DISCOUNTED INFINITE HORIZON and ONE-STEP LOOKAHEAD
MULTISTEP LOOKAHEAD IS SIMILAR - WE WILL DISCUSS LATER

Adaptive simulation
Monte Carlo tree search

Some important differences from alternative schemes:
@ In aggregation, J aims to approximate J*, not the cost function J,, of a policy ,
like rollout or approximate PI.
@ J converges to J* as the aggregation becomes “finer".

@ Key factor for good performance: Choose properly the aggregation structure so
that the “aggregate problem" size needed for good performance is not excessive.
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Aggregation with Representative States: A Classical Form of

Discretization

\\ . .
0—— States (Fine Grid)

H = Representative States
(Coarse Grid)

@ Relate the original states with the representative states with interpolation
coefficients called aggregation probabilities.

@ Solve the coarse grid problem, and interpolate.

Representative States | Aggregation Probabilities
@iy
Relate
Original States to

Original State Space -} Representative States
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Representative States - The Aggregate Problem

Original States

pij(u), 9(i,u, 7)

Aggregation

Probabilities
Pjy

1

| :
Cost 7‘*| ——————— S mmmm o

Original cost approximation by interpolation
n

Py (u ZpX] )by, G(x,u) = ZPX/’(U)Q(Xv u, j), Ji) = Z bty
j=1

yeA

Exact methods

Once the aggregate model is computed (i.e., its transition probs. and cost per stage),
any exact DP method can be used: VI, Pl, optimistic PI, or linear programming.

Model-free (simulation-based) methods

Given a simulator for the original problem, we can obtain a simulator for the aggregate
problem. Then use an (exact) model-free method to solve the aggregate problem.
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Feature-Based Aggregation - Discretize the Feature Space

Feature
@ Extraction T e e
> > L] L] L]

Representative Features
State Space Feature Space Aggregate States

Guiding ideas for representative features formation:
@ Feature map F: States i with similar F (/) should have similar J* (/).
@ Footprint /x of feature x: States i in I should have feature F(i) ~ x.

Original
System States

pij(u), 9(i,u, j)
Disaggregation
Probabilities
dzi

qujZOfOriilm

Aggregation
Probabilities
vy

¢jy = 1forjel,

Representative Features
Aggregate States
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The Aggregate Problem: Control Applied on a State-by-State Basis

Enlarged State Space
pij(u), 9(i,u, j)

Cost Jo Cost Ji

Zontrols u are associated

Disaggregation with states i
Probabilities

Aggregation
Probabilities
Pjy

Cost r* Representative Features

Bellman equations for the enlarged problem
re =Y dado(i), XxE€A,

i=1

i) = min Zp,, )(9(i,u,j) +adi(f)),  i=1,...,n,

ueU(i)

J1(/ =>"gyr;,  j=1,...,n

yeA

r* solves uniquely the composite Bellman equation r* = Hr*:

(Hr*)(x) = der mln Zpr/ a(i, Uaj)JFOde’jyr;
yeA
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Analysis, Algorithms, and Variations

Error Bound [Tsitsiklis and Van Roy (1995)]

Consider the footprint sets S, = {j | ¢, = 1}. The (J* — J) error is small if J* varies
little within each S,. In particular,

OB

€ 5
&L =
_1—057 jeSy7

where € = maxyc.a4 max;jes, |J* (1) — J*(j)| is the max variation of J* within S, .

Implication
Choose representative features x so that J* varies little over the footprint of x.

Value and policy iteration [Tsitsiklis and Van Roy (1995)]
Simulation-based versions of value and policy iteration and convergence analysis.

Variations

@ Use of (deep) neural nets to construct the representative features and their
footprints.

@ Biased aggregation: Make local corrections to an existing J ~ J*.
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Spatio-Temporal Aggregation - Compressing Space and Time

‘‘‘‘‘‘ ATLANTIC

ocEAN

0CEAN

Plan 5-day auto travel from Boston to San Francisco - How would you do it?
@ Select major stops/cities (New York, Chicago, Salt Lake City, Phoenix, etc).
@ Select major stopping times (times to stop for sleep, rest, etc).
@ Decide on space and time schedules at a coarse level. Optimize the details later.

@ We may view this as an example of reduction of a very large-scale shortest path
problem to a manageable problem by spacio-temporal aggregation.
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Spatio-Temporal Decomposition

\R(‘,] resentative
State-Time Pairs

Formalization - Deterministic shortest path problem
@ Consider the space-time tube of a deterministic shortest path problem.

@ Introduce space-time barriers, i.e., subsets of representative state-time pairs that
“separate past from future" (think of the Boston-San Francisco travel).

@ “Compress" the portions of the space-time tube between two successive barriers
into shortest path problems between each state-time pair of the left barrier to each
state-time pair of the right barrier.

@ Form a “master" shortest path problem of low dimension that involves only the
representative state-time pairs. Use it to approximate the solution of the original.

@ Stochastic extensions; partial certainty equivalence.
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Concluding Remarks

Some words of caution

@ There are challenging implementation issues in all approaches, and no fool-proof
methods

@ Problem approximation and feature selection require domain-specific knowledge
@ Training algorithms are not as reliable as you might think by reading the literature
@ Approximate policy iteration involves exploration and oscillation challenges

@ Recognizing success or failure can be difficult!

@ The RL successes in game contexts are spectacular, but they have benefited from
perfectly known and stable models and small number of controls (per state)

@ Problems with partial state observation remain a big challenge

On machine learning (Steven Strogatz, NY Times Article, Dec. 2018)

“What is frustrating about machine learning is that the algorithms can'’t articulate what

they’re thinking. We don’t know why they work, so we don’t know if they can be trusted
... As human beings, we want more than answers. We want insight. This is going to be
a source of tension in our interactions with computers from now on."
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On the Positive Side

@ Massive computational power together with distributed computation are a source
of hope

@ Silver lining: We can begin to address practical optimization problems of
unimaginable difficulty!

@ There is an exciting journey ahead!

Thank you!
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