Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas dimitrib@mit.edu

Lecture 2

Outline

- Review of Exact Deterministic DP Algorithm
- Examples: Discrete/Combinatorial DP Problems
- 3 Stochastic DP Algorithm
- Problem Formulations and Simplifications

Finite Horizon Deterministic Problem

System

$$x_{k+1} = f_k(x_k, u_k), \qquad k = 0, 1, \dots, N-1$$

where x_k : State, u_k : Control chosen from some set $U_k(x_k)$

Cost function:

$$g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

• For given initial state x_0 , minimize over control sequences $\{u_0, \ldots, u_{N-1}\}$

$$J(x_0; u_0, \ldots, u_{N-1}) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

• Optimal cost function $J^*(x_0) = \min_{\substack{u_k \in U_k(x_k) \\ k=0,\dots,N-1}} J(x_0; u_0,\dots,u_{N-1})$

DP Algorithm: Solving Progressively Longer Tail Subproblems

Go backward to compute the optimal costs $J_k^*(x_k)$ of the x_k -tail subproblems

Start with

$$J_N^*(x_N) = g_N(x_N), \quad \text{for all } x_N,$$

and for $k = 0, \dots, N-1$, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k)) \right], \quad \text{for all } x_k.$$

Then optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.

Go forward to construct optimal control sequence $\{u_0^*, \ldots, u_{N-1}^*\}$

Start with

$$u_0^* \in \arg\min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + J_1^* \left(f_0(x_0, u_0) \right) \right], \qquad x_1^* = f_0(x_0, u_0^*).$$

Sequentially, going forward, for k = 1, 2, ..., N - 1, set

$$u_k^* \in \arg\min_{u_k \in U_k(x_k^*)} \left[g_k(x_k^*, u_k) + J_{k+1}^* \big(f_k(x_k^*, u_k) \big) \right], \qquad x_{k+1}^* = f_k(x_k^*, u_k^*).$$

Interesting fact for the future: We can replace J_k^* with an approximation \tilde{J}_k .

Bertsekas Reinforcement Learning

Finite-State Problems: Shortest Path View

- Nodes correspond to states x_k
- Arcs correspond to state-control pairs (x_k, u_k)
- An arc (x_k, u_k) has start and end nodes x_k and $x_{k+1} = f_k(x_k, u_k)$
- An arc (x_k, u_k) has a cost $g_k(x_k, u_k)$. The cost to optimize is the sum of the arc costs from the initial node s to the terminal node t.
- The problem is equivalent to finding a minimum cost/shortest path from s to t.

Interesting fact for the future: There are several alternative (exact and approximate) shortest path algorithms.

Discrete-State Deterministic Scheduling Example

Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)

DP Problem Formulation

- States: Partial schedules; Controls: Stage 0, 1, and 2 decisions; Cost data shown along the arcs
- Recall the DP idea: Break down the problem into smaller pieces (tail subproblems)
- Start from the last decision and go backwards

DP Algorithm: Stage 2 Tail Subproblems

Solve the stage 2 subproblems (using the terminal costs - in red)

At each state of stage 2, we record the optimal cost-to-go and the optimal decision

DP Algorithm: Stage 1 Tail Subproblems

Solve the stage 1 subproblems (using the optimal costs of stage 2 subproblems - in purple)

At each state of stage 1, we record the optimal cost-to-go and the optimal decision

9/24

DP Algorithm: Stage 0 Tail Subproblems

Solve the stage 0 subproblem (using the optimal costs of stage 1 subproblems - in orange)

- The stage 0 subproblem is the entire problem
- The optimal value of the stage 0 subproblem is the optimal cost J^* (initial state)

Combinatorial Optimization: Traveling Salesman Example

General Discrete Optimization

Minimize G(u) subject to $u \in U$

- Assume that each solution u has N components: $u = (u_1, \dots, u_N)$
- View the components as the controls of N stages
- Define $x_k = (u_1, \dots, u_k), k = 1, \dots, N$, and introduce artificial states x_0 and x_N
- Define just terminal cost as G(u); all other costs are 0

This formulation often makes little sense for exact DP, but a lot of sense for approximate DP/approximation in value space

Bertsekas Reinforcement Learning 13 / 24

Stochastic DP Problems

- System $x_{k+1} = f_k(x_k, u_k, w_k)$ with random "disturbance" w_k (e.g., physical noise, market uncertainties, demand for inventory, unpredictable breakdowns, etc)
- Cost function:

$$E\left\{g_N(x_N)+\sum_{k=0}^{N-1}g_k(x_k,u_k,w_k)\right\}$$

- Policies $\pi = \{\mu_0, \dots, \mu_{N-1}\}$, where μ_k is a "closed-loop control law" or "feedback policy"/a function of x_k . Specifies control $u_k = \mu_k(x_k)$ to apply when at x_k .
- For given initial state x_0 , minimize over all $\pi = \{\mu_0, \dots, \mu_{N-1}\}$ the cost

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

• Optimal cost function $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$

The Stochastic DP Algorithm

Produces the optimal costs $J_k^*(x_k)$ of the tail subproblems that start at x_k

Start with $J_N^*(x_N) = g_N(x_N)$, and for k = 0, ..., N - 1, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} E\Big\{g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k)\big)\Big\}, \quad \text{for all } x_k.$$

- The optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.
- The optimal control function μ_k^* is constructed simultaneously with J_k^* , and consists of the minimizing $u_k^* = \mu_k^*(x_k)$ above.

Online implementation of the optimal policy, given J_1^*, \ldots, J_{N-1}^*

Sequentially, going forward, for k = 0, 1, ..., N - 1, observe x_k and apply

$$u_k^* \in \arg\min_{u_k \in U_k(x_k)} E\Big\{g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k)\big)\Big\}.$$

Issues: Need to compute J_{k+1}^* (possibly off-line), compute expectation for each u_k , minimize over all u_k

Approximation in value space: Use \tilde{J}_k in place of J_k^* ; approximate $E\{\cdot\}$ and \min_{u_k} .

Bertsekas Reinforcement Learning 16 / 24

Linear Quadratic Problem

- System: $x_{k+1} = (1 a)x_k + au_k + w_k$ (w_k is random and 0-mean)
- Cost: $E\{r(x_N-T)^2+\sum_{k=0}^{N-1}u_k^2\}$
- DP algorithm for N=2

$$J_2^*(x_2) = r(x_2 - T)^2,$$

$$J_1^*(x_1) = \min_{u_1} E_{x_2} \left\{ u_1^2 + J_2^*(x_2) \right\} = \min_{u_1} E_{w_1} \left\{ u_1^2 + r \left((1-a)x_1 + au_1 + w_1 - T \right)^2 \right\}$$

To obtain optimal $\mu_1^*(x_1)$, set $\nabla_{u_1}J_1^*=0$, use $E\{w_1\}=0$, and solve:

$$\mu_1^*(x_1) = \frac{raT}{1 + ra^2} - \frac{ra(1 - a)x_1}{1 + ra^2}$$
 (linear in x_1)

Plug into the expression for J_1^* , to obtain

$$J_1^*(x_1) = \frac{r((1-a)x_1 - T)^2}{1 + ra^2} + rE\{w_1^2\}$$

Linear Quadratic Problem (Continued) - Certainty Equivalence

• The stage 1 DP calculation gives a form of J_1^* that is similar to the one for J_2^* :

$$J_1^*(x_1) = \frac{r((1-a)x_1 - T)^2}{1 + ra^2} + rE\{w_1^2\}$$

• We plug the expression for J_1^* into the DP equation for J_0^* :

$$J_0^*(x_0) = \min_{u_0} E_{w_0} \left\{ u_0^2 + \frac{r((1-a)((1-a)x_0 + au_0 + w_0) - T)^2}{1 + ra^2} \right\} + rE\{w_1^2\}$$

• To obtain optimal $\mu_0^*(x_0)$, set $\nabla_{u_0} J_0^* = 0$, use $E\{w_0\} = 0$, and solve:

$$\mu_0^*(x_0) = \frac{r(1-a)aT}{1+ra^2(1+(1-a)^2)} - \frac{(1-a)^2x_0}{1+ra^2(1+(1-a)^2)}$$

- The result is the same as if w_1 and w_0 were set to their expected values (= 0).
- This is called certainty equivalence, and generalizes to more complex types of linear quadratic problems.
- For other problems it may be used as basis for approximation.

Bertsekas Reinforcement Learning 18 / 24

DP Algorithm for Q-Factors

Optimal Q-factors are given by

$$Q_{k}^{*}(x_{k}, u_{k}) = E\left\{g_{k}(x_{k}, u_{k}, w_{k}) + J_{k+1}^{*}(f_{k}(x_{k}, u_{k}, w_{k}))\right\}$$

They define optimal policies and optimal cost-to-go functions by

$$\mu_k^*(x_k) \in \arg\min_{u_k \in U_k(x_k)} Q_k^*(x_k, u_k), \qquad J_k^*(x_k) = \min_{u_k \in U_k(x_k)} Q_k^*(x_k, u_k)$$

• DP algorithm can be written in terms of Q-factors

$$Q_k^*(x_k, u_k) = E\left\{g_k(x_k, u_k, w_k) + \min_{u_{k+1}} Q_{k+1}^*(f_k(x_k, u_k, w_k), u_{k+1})\right\}$$

Some math magic: With $E\{\cdot\}$ outside the min, the right side can be approximated by sampling and simulation.

• Approximately optimal Q-factors $\tilde{Q}_k(x_k, u_k)$, define suboptimal policies and suboptimal cost-to-go functions by

$$ilde{\mu}_k(x_k) \in \arg\min_{u_k \in U_k(x_k)} ilde{Q}_k(x_k, u_k) \qquad ilde{J}_k(x_k) = \min_{u_k \in U_k(x_k)} ilde{Q}_k(x_k, u_k)$$

How do we Formulate DP Problems?

An informal recipe: First define the stages and then the states

Define as state x_k something that summarizes the past for future optimization purposes, i.e., as long as we know x_k , all past information is irrelevant.

Some examples

- In the traveling salesman problem, we need to include all the info (past cities visited) in the state.
- In the linear quadratic problem, when we select the oven temperature u_k , the total info available is everything we have seen so far, i.e., the material and oven temperatures $x_0, u_0, x_1, u_1, \ldots, u_{k-1}, x_k$. However, all the useful information at time k is summarized in just x_k .
- In partial or imperfect information problems, we use "noisy" measurements for control of some quantity of interest y_k that evolves over time (e.g., the position/velocity vector of a moving object). If I_k is the collection of all measurements up to time k, it is correct to use I_k as state.
- It may also be correct to use alternative states; e.g., the conditional probability distribution $P_k(y_k \mid I_k)$. This is called belief state, and should subsume all the information that is useful for the purposes of control choice.

Problems with a Terminal State: A Parking Example

- Start at spot 0; either park at spot k with cost c(k) (if free) or continue; park at garage at cost C if not earlier.
- Spot k is free with a priori probability p(k), and its status is observed upon reaching it.
- How do we formulate the problem as a DP problem?

We have three states. F: current spot is free, \overline{F} : current spot is taken, parked state

$$J_{N-1}^*(F) = \min \left[c(N-1), C \right], \qquad J_{N-1}^*(\overline{F}) = C$$

$$J_k^*(F) = \min \left[c(k), p(k+1)J_{k+1}^*(F) + \left(1 - p(k+1)\right)J_{k+1}^*(\overline{F}) \right], \qquad \text{for } k = 0, \dots, N-2$$

$$J_k^*(\overline{F}) = p(k+1)J_{k+1}^*(F) + \left(1 - p(k+1)\right)J_{k+1}^*(\overline{F}), \qquad \text{for } k = 0, \dots, N-2$$

Bertsekas Reinforcement Learning

22 / 24

More Complex Parking Problems

- Bidirectional parking: We can go back to parking spots we have visited at a cost
 - "Easy case:" The status of already seen spots stays unchanged
 - "Complex case:" The status of already seen spots changes stochastically
- Correlations of the status of different parking spots
- More complicated parking lot topologies
- Multiagent versions: Multiple drivers and "searchers"
- Our homework will revolve around versions of the parking problem

About the Next Lecture

We will cover:

- General principles of approximation in value and policy space
- Problem approximation methods (enforced decomposition, probabilistic approximation)

PLEASE READ AS MUCH OF SECTIONS 2.1, 2.2 AS YOU CAN