Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 2

Reinforcement Learning

1/24

° Review of Exact Deterministic DP Algorithm
e Examples: Discrete/Combinatorial DP Problems
e Stochastic DP Algorithm

0 Problem Formulations and Simplifications

Bertsekas Reinforcement Learning 2/24

Finite Horizon Deterministic Problem
Control ug
=) @ @ O
Cost gi(zk, uk)

Stage k

@ System
Xk+1:fk(Xk,Uk), k:0,1,...,N71

where xi: State, ux: Control chosen from some set Uk (x«)
@ Cost function:

N—1
av(xn) +) g (X, Uk)
k=0

@ For given initial state xo, minimize over control sequences {uo, ..., Un—1}
N—1
J(X0i Uo, - - Un—1) = n(XN) + D Gk(Xe, Ux)
k=0
@ Optimal cost function J*(xp) = min “Keuk(xk) J(Xo; Ug, .-, UN—1)
(=000 —1

Bertsekas Reinforcement Learning 4/24

DP Algorithm: Solving Progressively Longer Tail Subproblems

Go backward to compute the optimal costs J; (xx) of the xx-tail subproblems

Start with
JIn(xn) = gn(xn), for all xy,

andfork=0,...,N—1, let

Ji(x) = min [gk(xk., Uk) + it (B (X, uk))], for all x.
Uk € Uy (xk)
Then optimal cost J*(Xo) is obtained at the last step: Jy (xo) = J*(X0).

Go forward to construct optimal control sequence {ug, ..., uy_+}

Start with

uj € arg quJLwa [go(xO,uO)+J1*(fo(xO,uO))], xi = fo(xo, Ug)-

Sequentially, going forward, for k =1,2,...,N — 1, set

ui e arg min g, u) + e (A0 u)) |, X = i,).
u € Uk (xg)

v

Interesting fact for the future: We can replace J; with an approximation Ji.
5/24

Bertsekas Reinforcement Learning

Finite-State Problems: Shortest Path View

Terminal Arcs
with Cost Equal
to Terminal Cost

Artificial Terminal

Initial Stat
nitial State Node

Stage 0 Stage 1 Stage 2 - -- Stage N —1 Stage N

@ Nodes correspond to states xj
@ Arcs correspond to state-control pairs (X, Ux)
@ An arc (Xk, ux) has start and end nodes xx and Xk+1 = fi(X«, Uk)

@ An arc (xk, ux) has a cost gk(xk, ux). The cost to optimize is the sum of the arc
costs from the initial node s to the terminal node t.

@ The problem is equivalent to finding a minimum cost/shortest path from s to .

Interesting fact for the future: There are several alternative (exact and approximate)
shortest path algorithms.

Bertsekas Reinforcement Learning 6/24

Discrete-State Deterministic Scheduling Example
(e9e

Empty schedule

Find optimal sequence of operations A, B, C, D (A must precede B and C must precede D)
DP Problem Formulation

@ States: Partial schedules; Controls: Stage 0, 1, and 2 decisions; Cost data shown
along the arcs

@ Recall the DP idea: Break down the problem into smaller pieces (tail subproblems)
@ Start from the last decision and go backwards

Bertsekas Reinforcement Learning

DP Algorithm: Stage 2 Tail Subproblems

Solve the stage 2 subproblems (using the terminal costs - in red)
At each state of stage 2, we record the optimal cost-to-go and the optimal decision J

Bertsekas Reinforcement Learning 8/24

DP Algorithm: Stage 1 Tail Subproblems

Solve the stage 1 subproblems (using the optimal costs of stage 2
subproblems - in purple)
At each state of stage 1, we record the optimal cost-to-go and the optimal decision

Bertsekas Reinforcement Learning 9/24

(xnlel
3
/ Sk
4
D

T @

@
5 3@

Solve the stage 0 subproblem (using the optimal costs of stage 1 subproblems
- in orange)

@ The stage 0 subproblem is the entire problem
@ The optimal value of the stage 0 subproblem is the optimal cost J* (initial state)

Bertsekas Reinforcement Learning

Combinatorial Optimization: Traveling Salesman Example

Initial State z¢

1

12| AC 2

20 20 3 4 3
1saBc| 4[aBp| 19/acB| ofacp| 21[abB]| 25{ADC|
3 3 4 4 20 20

15jacep| sfacoyl 1fapBd s ppc

15

1 5 1

15

Matrix of Intercity
Travel Costs

Bertsekas Reinforcement Learning 12/24

General Discrete Optimization

Stage N

Artificial
End State

O—
" |/Cost G(u)
(u1) States gates States
u1, up) (w1, u2, us) u=(u,...,un)

Minimize G(u) subjectto u e U
@ Assume that each solution u has N components: u = (u, ..., Un)
@ View the components as the controls of N stages
@ Define xx = (u1,...,uUx), Kk =1,..., N, and introduce artificial states xo and xy
@ Define just terminal cost as G(u); all other costs are 0

This formulation often makes little sense for exact DP, but a lot of sense for
approximate DP/approximation in value space

Bertsekas Reinforcement Learning 13/24

Stochastic DP Problems

Random Transition

Th1 = fe(@r, up, wi)

O O O D)
Random Cost

gk(lIm Uk, wk)

@ System xx+1 = fi(Xk, Uk, wik) with random “disturbance" wx (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)

@ Cost function:

N—1
E {QN(XN) + Z Gk (X, Uk, wk)}
k=0

@ Policies m = {0, ..., un—1}, Where py is a “closed-loop control law" or “feedback
policy"/a function of xx. Specifies control ux = p(x«) to apply when at x.

@ For given initial state xo, minimize over all 7 = {uo, . . ., un—1} the cost

J-(x0) =E {QN(XN) + i: gk (Xk7 ok (Xk), Wk)}

k=0

@ Optimal cost function J*(xp) = min. J-(xo)

Bertsekas Reinforcement Learning 15/24

The Stochastic DP Algorithm

Produces the optimal costs J(xx) of the tail subproblems that start at xx
Start with Jy(xv) = gnv(xn), and fork =0,...,N —1, let

J; (Xk) = min E{gk(Xk, U, Wk) + J;+1 (fk(Xk7 Uk, Wk)) }, for all x.
Uk € Uy (xk)

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).

@ The optimal control function uj is constructed simultaneously with Ji, and
consists of the minimizing u; = pj(xx) above.

Online implementation of the optimal policy, given J;, ..., Jy_;

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

UZ € arg min E{gk(Xk,Uk,Wk) +Jz+1(fk(Xk,Uk,Wk))}.
Uk € Uy (xk)

Issues: Need to compute J;; (possibly off-line), compute expectation for each u,
minimize over all ux

v

Approximation in value space: Use Ji in place of J; ; approximate E{-} and miny,. J

Bertsekas Reinforcement Learning 16/24

Linear Quadratic Problem

Initial Final
Tcmp:(tz(t]aturo Oven 1 1 Oven 2 Tempg?gature
———— | Temperature Temperature ———=m
up U1

@ System: xx.1 = (1 — @)Xk + aux + wi (wk is random and 0-mean)
@ Cost: E{r(xy — T)? + X0, u2}
@ DP algorithm for N = 2

J (%) = re — T)?,

Ji (x1) = min Eo{ti + ()} = min EW1{u12 +r((1—a)x + aur + wy — T)2}
1 1

To obtain optimal p7(x), set Vi, Ji = 0, use E{wy} = 0, and solve:

i raT ra(l —a)xi . .
i) = 5 — (1+ra2 1 (linear in x)

Plug into the expression for J;', to obtain

Ji(xi) = f((1—16+)—):1a2—T) + rE{w?}

Bertsekas Reinforcement Learning 17/24

Linear Quadratic Problem (Continued) - Certainty Equivalence

@ The stage 1 DP calculation gives a form of J; that is similar to the one for J;:

r(l—ax —T)

2
S () = S + rE{wE}

@ We plug the expression for J; into the DP equation for Jj:

r((1 - a)((1 — a)xo + auo + wo) — T)*
1+ ra?

J5 (x0) = min Ev, {ug + } + rE{w?}
0

@ To obtain optimal u5(X0), set Vy,Jg = 0, use E{wy} = 0, and solve:

oy r(1 —a)aT 3 (1 - a)’x
Ho(xo) = 1+r2(1+(1—-ap) 1+r2(1+(1-apP)

@ The result is the same as if wy and wy were set to their expected values (= 0).

@ This is called certainty equivalence, and generalizes to more complex types of
linear quadratic problems.

@ For other problems it may be used as basis for approximation.

Bertsekas Reinforcement Learning

18/24

DP Algorithm for Q-Factors

@ Optimal Q-factors are given by
Qi (X, uk) = E{gk(xh Uk, i) + Ji1 (Fe(Xk, Uk, Wk))}
They define optimal policies and optimal cost-to-go functions by

wi(xc) € arg min Qg (xk, Uk), Ji(xx) = min Q(Xk, Uk)
Uy € Uy (xk) Uk € Uk (xk)

@ DP algorithm can be written in terms of Q-factors
QK (Xk, uk) = E{gk(xk-, Uk, Wk) + min Qi1 (Fe(Xk, Uk, wi), Uk+1)}
k+1
Some math magic: With E{-} outside the min, the right side can be approximated

by sampling and simulation.

@ Approximately optimal Q-factors Qk(xx, ux), define suboptimal policies and
suboptimal cost-to-go functions by

fik(Xx) € arg min ék(Xk, Uk) jk(Xk) = min ék(Xk, Uk)
Uk € Uk (xk) Uk € Uy (xk)

Bertsekas Reinforcement Learning 19/24

How do we Formulate DP Problems?

An informal recipe: First define the stages and then the states

Define as state xx something that summarizes the past for future optimization
purposes, i.e., as long as we know Xk, all past information is irrelevant.

Some examples

@ In the traveling salesman problem, we need to include all the info (past cities
visited) in the state.

@ In the linear quadratic problem, when we select the oven temperature ux, the total
info available is everything we have seen so far, i.e., the material and oven
temperatures xo, Uo, X1, U1, . . ., Uk—1, Xx. However, all the useful information at time
k is summarized in just xx.

@ In partial or imperfect information problems, we use “noisy" measurements for
control of some quantity of interest yx that evolves over time (e.g., the
position/velocity vector of a moving object). If I is the collection of all
measurements up to time k, it is correct to use I as state.

@ It may also be correct to use alternative states; e.g., the conditional probability
distribution Px(y« | Ik). This is called belief state, and should subsume all the
information that is useful for the purposes of control choice.

Bertsekas Reinforcement Learning 21/24

Problems with a Terminal State: A Parking Example
ﬁ_ Garage

Parking Spaces
Termination State

@ Start at spot 0; either park at spot k with cost c(k) (if free) or continue; park at
garage at cost C if not earlier.

@ Spot k is free with a priori probability p(k), and its status is observed upon
reaching it.

@ How do we formulate the problem as a DP problem?

We have three states. F: current spot is free, F: current spot is taken, parked
state

Jiii(F)y=min[¢(N-1),C], J(F)=cC
Ji(F) = min [o(K), pk+1)dice1 (F) + (1= plk +1)Jis ()], fork=0,...,N~2
Ji(F) = p(k + 1)Jdi1 (F) + (1 _p(k+1))J,f+1(?), fork=0,...,N-2

Bertsekas Reinforcement Learning 22/24

More Complex Parking Problems

Parking Spaces
Termination State

@ Bidirectional parking: We can go back to parking spots we have visited at a cost

» “Easy case:" The status of already seen spots stays unchanged
» “Complex case:" The status of already seen spots changes stochastically

@ Correlations of the status of different parking spots

@ More complicated parking lot topologies

@ Multiagent versions: Multiple drivers and “searchers”

@ Our homework will revolve around versions of the parking problem

Bertsekas Reinforcement Learning 23/24

About the Next Lecture

We will cover:
@ General principles of approximation in value and policy space

@ Problem approximation methods (enforced decomposition, probabilistic
approximation)

PLEASE READ AS MUCH OF SECTIONS 2.1, 2.2 AS YOU CAN)

Bertsekas Reinforcement Learning 24/24

	Review of Exact Deterministic DP Algorithm
	Examples: Discrete/Combinatorial DP Problems
	Stochastic DP Algorithm
	Problem Formulations and Simplifications

