Bertsekas

Reinforcement Learning and Optimal Control

ASU, CSE 691, Winter 2019

Dimitri P. Bertsekas
dimitrib@mit.edu

Lecture 11

Reinforcement Learning

1/26

0 Introduction to Aggregation

e Aggregation with Representative States: A Form of Discretization
e Aggregation with Representative Features

0 Examples of Feature-Based Aggregation

e What is the Aggregate Problem and How Do We Solve [t?

Bertsekas Reinforcement Learning 2/26

Aggregation within the Approximation in Value Space Framework

Approximate minimization

First Step “Future”
n B
min ii(w)(g(,u,5) +ad(j
ueU@)j;pU()9(i .) + (7))
Approximations: Computation of J:
Replace E{-} with nominal values Problem approximation
(certainty equivalence) Rollout

Approximate PI
Parametric approximation
Aggregation

Adaptive simulation
Monte Carlo tree search

@ Aggregation is a form of problem approximation. We approximate our DP problem
with a “smaller/easier" version, which we solve optimally to obtain J.

@ |s related to feature-based parametric approximation (e.g., when Jis piecewise
constant, the features are 0-1 membership functions).

@ Can be combined with (global) parametric approximation (like a neural net) in two
ways. Either use the neural net to provide features, or add a local parametric
correction to a J obtained by a neural net.

@ Several versions: multistep lookahead, finite horizon, etc ...

Bertsekas Reinforcement Learning 4/26

lllustration: A Simple Classical Example of Approximation

Approximate the state space with a coarse grid of states

\ . .
|—— States (Fine Grid)

| — Representative States
(Coarse Grid)

@ Introduce a “small" set of “representative” states to form a coarse grid.

@ Approximate the original DP problem with a coarse-grid DP problem, called
aggregate problem (need transition probs. and cost from rep. states to rep. states).

@ Solve the aggregate problem by exact DP.

@ “Extend" the optimal cost function of the aggregate problem to an approximately
optimal cost function for the original fine-grid DP problem.

@ For example extend the solution by a nearest neighbor/piecewise constant
scheme (a fine grid state takes the cost value of the “nearest" coarse grid state).

Bertsekas Reinforcement Learning 5/26

Approximate the Problem by “Projecting” it onto Representative States

Representative States] Aggregation Probabilities
by
Relate
Original States to

Original State Space - Representative States

@ Introduce a finite subset of “representative states" .4 C {1, ..., n}. We denote
them by x and y.

@ Original system states j are related to rep. states y € A with aggregation
probabilities ¢;, (‘weights" satisfying ¢, >0, -, 4 ¢y = 1).

@ Aggregation probabilities express “similarity” or “proximity" of original to rep.
states.

@ Aggregate dynamics: Transition probabilities between rep. states x, y

n
P (U) = py(u)dy
i=1
@ Expected cost at rep. state x under control u:

Q(X’ U) = ZpX/(U)g(X7 Uvj)

Bertsekas Reinforcement Learning 7126

The Aggregate Problem

Original States

Dij (u)7 9(7- u,])

Aggregation

Probabilities
¢jy

j=1

o If ry, x € A, are the optimal costs of the aggregate problem, approximate the
optimal cost function of the original problem by

Ji) = Z dyly, j=1,...,n, (interpolation)
yeA

@ If ¢, =0or 1 forall jand y, J(j) is piecewise constant. It is constant on each set

Sy =1{iléy=1}, y€A (calledthe footprint of y)

Bertsekas Reinforcement Learning 8/26

The Piecewise Constant Case (¢ = 0 or 1 for all /, y)

J(j) = Z,,(A DjyTy

¢jy =0o0r1
for all j and y

Each j connects
to a single x

Footprint Sets

The approximate cost function J = > e Piyly is constant within Sy = {j | ¢ = 1}.

)

Approximation error for the piecewise constant case (¢;, = 0 or 1 for all /, y)
Consider the footprint sets
Sy={jloy=1} yeA
The (J* — J) error is small if J* varies little within each S,. In particular,
D -JD < 5. JjeS.yeA

where € = maxyc.a4 max;jes, |J* (1) — J*(j)| is the max variation of J* within the S,.

Bertsekas Reinforcement Learning

9/26

Solution of the Aggregate Problem

Aggregation
Probabilities
Py

Data of aggregate problem (it is stochastic even if the original is deterministic)
n n

Py(u) =Y py(u)dy, 9(x.u)=>_ py(ualx,u.j), JG) =D eyl

j=1 j=1 yeA

Exact methods

Once the aggregate model is computed (i.e., its transition probs. and cost per stage),
any exact DP method can be used: VI, Pl, optimistic PI, or linear programming.

v

Model-free simulation methods - Needed for large n, even if model is available

Given a simulator for the original problem, we can obtain a simulator for the aggregate
problem. Then use an (exact) model-free method to solve the aggregate problem.

Bertsekas Reinforcement Learning 10/26

Extension: Continuous State Space - POMDP Discretization

Continuous state space

@ The rep. states approach applies with no modification to continuous spaces
discounted problems.

@ The number of rep. states should be finite.

@ The cost per stage should be bounded for the “good"/contraction mapping-based
theory to apply to the original DP problem.

@ A simulation/model-free approach may still be used for the aggregate problem.

@ We thus obtain a general discretization method for continuous-spaces discounted
problems.

Discounted POMDP with a belief state formulation

@ Discounted POMDP models with belief states, fit neatly into the continuous state
discounted aggregation framework.

@ The aggregate/rep. states POMDP problem is a finite-state MDP that can be
solved for r* with any (exact) model-based or model-free method (VI, PI, etc).

@ The optimal aggregate cost r* yields an approximate cost function
J() = >_,c.4 Piyly , Which defines a one-step or multistep lookahead suboptimal
control scheme for the original POMDP.

Bertsekas Reinforcement Learning 11/26

A Challenge Question - Think for Five Mins

B B
TTIT
T

Travel spe¢d ‘ ':::

.

1 m/se i

EyS |

s ¢ Gy -
A A TTIITT

1000 m 1000 m

Discretizing Continuous Motion

@ A self-driving car wants to drive from A to B through obstacles. Find the fastest
route.

@ Car speed is 1 m/sec in any direction.

@ We discretize the space with a fine square grid; restrict directions of motion to
horizontal and vertical.

@ We take the discretized shortest path solution as an approximation to the
continuous shortest path solution.

@ |s this a good approximation?

Bertsekas Reinforcement Learning 12/26

Answer to the Challenge Question

B B
TTIT

T
Travel spe¢d ‘ ':::

.

1 m/se I

. \‘ =
fo#o\ ' fo#o‘ .‘ I
A A TTIITT

1000 m 1000 m

Discretizing Continuous Motion
@ The discretization is FLAWED.
@ Example: Assume all motion costs 1 per meter, and no obstacles.
@ The continuous optimal solution (the straight A-to-B line) has length /2 kilometers.

@ The discrete optimal solution has length 2 kilometers regardless of how fine the
discretization is.

@ Here the state space is discretized finely but the control space is not.
@ This is not an issue in POMDP (the control space is finite).

Bertsekas Reinforcement Learning 13/26

From Representative States to Representative Features

The main difficulty with rep. states/discretization schemes:

@ |t may not be easy to find a set of rep. states and corresponding piecewise
constant or linear functions that approximate well J*.

@ Too many rep. states may be required for good approximate costs J(j).

Suppose we have a good feature vector F(i): We discretize the feature space
@ We introduce representative features that span adequately the feature space
F={F@i)|i=1,...,n}

@ We aim for an aggregate problem whose states are the rep. features.

@ We associate each rep. feature x with a subset of states /; that nearly map onto

RIS 5%, 16, F(iy~x, forallic

@ This is done with the help of weights dj; (called disaggregation probabilities) that
are 0 outside of /.

@ As before, we associate each state j with rep. features y using aggregation
probabilities ¢;,.
@ We construct an aggregate problem using dxi, ¢j,, and the original problem data.

v

Bertsekas Reinforcement Learning 15/26

lllustration of Feature-Based Aggregation Framework

Feature
@ Extraction T e e
> > L] L] L]

Representative Features

State Space Feature Space Aggregate States
Representative feature formation)
Original

System States

Disaggregation

Probabilities
d:m'

dyi =0 fori ¢ I,

Aggregation
Probabilities
iy

¢jy =1forjel,

Representative Features
Aggregate States

Transition diagram for the aggregate problem)

Bertsekas Reinforcement Learning 16/26

Working Break: Feature Formation Methods in Aggregation

Original
System States

pij(u), 9(i,u, j)
Disaggregation
Probabilities
dzi

dei =0fori ¢ I,

Aggregation
Probabilities
7y

¢y =1for j €I,

Representative Features
Aggregate States

Question 1: Why is the rep. states model a special case of the rep. features model?)

Assume the following general principle for feature-based aggregation:

Choose features so that states / with similar features F (i) have similar J*(i), i.e., J* (i)
changes little within each of the “footprint" sets Iy = {i | dx > 0} and S, = {j | ¢, > 0}.

Question 2: Can you think of examples of useful features for aggregation schemes?)

Bertsekas Reinforcement Learning 17/26

Feature Formation Using Scoring Functions
Ry
i

R{

S1 S22 S3 Se Srm—1Sm

Idea: Suppose that we have a scoring function V(i) with V(i) = J*(i). Then group
together states with similar score.

@ We partition the range of values of V into m disjoint intervals Ry, ..., Rn.
@ We define a feature vector F(i) according to

F(i) = ¢, allisuchthat V(i) € R,, £=1,...,m

@ Defines a partition of the state space into the footprints S, = I, = {i | F(i) = ¢}.

Bertsekas Reinforcement Learning 19/26

Examples of Scoring Functions

@ Cost functions of heuristics or policies.
@ Approximate cost functions produced by neural networks.

Let the scoring function be the cost function J,, of a policy s
Let's compare with rollout:
@ Rollout uses as cost approximation J = J,..

@ Score-based aggregation uses J,, as scoring function to form features. The
resulting J is a “nonlinear function of J,," that aims to approximate J*.

o If the scoring function quantization were so fine as to have a single feature value
per interval R,, we would have J = J* (much better than rollout).

@ Score-based aggregation can be viewed as a more sophisticated form of rollout.

@ Score-based aggregation is more computation-intensive, less suitable for on-line
implementation.

It is possible to use multiple scoring functions to generate more complex feature maps. J

Bertsekas Reinforcement Learning 20/26

Feature Formation Using Neural Networks

11, v) Cost
uli Approximation
State i y(9) i i,v 5 .
Ay(i) +b % 24, v) J(i,v) = r'¢(i,v)
% Bm(i,v)
State Linear Nonlinear Linear
Encoding Layer Layer Weighting
Parameter Parameter
v = (A,b) FEATURES

Suppose we have trained a NN that provides an approximation J(i) = r'¢(i, v)
@ Features from the NN can be used to define rep. features.
@ Training of the NN yields lots of state-feature pairs.

@ Rep. features and footprint sets of states can be obtained from the NN training set
data, perhaps supplemented with additional (state,feature) pair data.

@ NN features may be supplemented by handcrafted features.

@ Feature-based aggregation yields a nonlinear function J of the features that
approximates J* (not J).

Bertsekas Reinforcement Learning 21/26

Policy lteration with Neural Nets, and Feature-Based Aggregation

Feature Vector

Neural F(7) R Eolfey Approximately
Current | Network Approximate Improvement Tmproved
Polic - . .
v Cost J,. (F(i)) Policy /1
Feature Aggregate
Neural | Vector States Aggregate |Approximately
> S li > L
Current | Network ampne 0 Piglsllem Improved
Policy u ptimization| A
v Policy fi

Several options for implementation of mixed NN/aggregation-based Pl

@ The NN-based feature construction process may be performed multiple times,
each time followed by an aggregate problem solution that constructs a new policy.

@ Alternatively: The NN training and feature construction may be done only once
with some “good" policy.

@ After each cycle of NN-based feature formation, we may add problem-specific
handcrafted features, and/or features from previous cycles.

@ Note: Deep NNs may produce fewer and more sophisticated final features

Bertsekas Reinforcement Learning 22/26

A Simple Version of the Aggregate Problem

Original
System States

pij(u), 9(i,u,)

Disaggregation Aggregation
Probabilities Probabilities
dzi ¢j!/

dyi =0 fori ¢ I ¢jy =1for jely

Representative Features
Aggregate States

Patterned after the simpler rep. states model.)

Aggregate dynamics and costs
@ Aggregate dynamics: Transition probabilities between rep. features x, y

Pry(u) = Z Ohi Z pi(u)djy

i€ly

=> dy Z px(u)g(x, u,j)

i€lx

Bertsekas Reinforcement Learmng 24/26

@ Expected cost per stage

The of the Simple Version of the Aggregate Problem

Original
System States

pij(u), 9(i,u,)
Disaggregation

Probabilities
dzi

dyi =0 fori ¢ I

Aggregation
Probabilities
Py

by =1for j €1,

Representative Features
Aggregate States

There is an implicit assumption in the aggregate dynamics and cost formulas

Po(t) =D du > Py, 80 u) =3 da > py(w)glx, u.f)

i€lx j=1 i€ly j=1

For a given rep. feature x, the same control u is applied at all states i in the footprint /.
v

So the simple aggregate problem is legitimate, but the approximation J of J* may not
be very good. We will address this issue in the next lecture.

Bertsekas Reinforcement Learning 25/26

About the Next Lecture

We will continue approximation in value space by aggregation. We will cover:
@ A more sophisticated aggregate problem formulation.
@ Aggregate problem solution methods.
@ Variants of aggregation.

CHECK MY WEBSITE FOR READING MATERIAL
PLEASE DOWNLOAD THE LATEST VERSIONS FROM MY WEBSITE

Bertsekas Reinforcement Learning 26/26

	Introduction to Aggregation
	Aggregation with Representative States: A Form of Discretization
	Aggregation with Representative Features
	Examples of Feature-Based Aggregation
	What is the Aggregate Problem and How Do We Solve It?

