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Second Derivative Algorithms far Minimum Delay 
Distributed Routing in Networks 

DIMITRI P.  BERTSEKAS, ELI M. GAFNI, AND ROBERT G. GALLAGER, FELLOW, IEEE 

Abstract-We propose a class of algorithms  for finding an optimal 
quasi-static routing in a communication  network. The algorithms are 
based on Gallager’s method [11 and provide  methods  for iteratively 
updating the routing table entries of each  node  in a manner that guarantees 
convergence to a minimum  delay routing. Their main feature is that they 
utilize second derivatives of  the  objective  function and may be viewed as 
approximations to a constrained version of  Newton’s  method.  The use of 
second derivatives results in improved speed of convergence and automatic 
stepsize scaling with respect to level of traffic  input. These advantages are 
of crucial importance for the practical implementation  of the algorittim 
using distributed computation  in  an  environment where input traffic 
statistics gradually change. 

I.  INTRODUCTION 

W E consider  the  problem’of  optimal  routing of  messages 
in  a  communication  network so as  to  minimize  average 

delay  per  message.  Primarily,  we  have  in  mind  a  situation 
where  the  statistics  of  external  traffic  inputs  change  slowly 
with  time  as  described  in  the  paper  by  Gallager [ 1 1 .  While 
algorithms  of  the  type  to be described  can  also  be  used  for 
centralized  computation,  we  place  primary  emphasis  on  algo- 
rithms  that  are  well  suited  for  real-time  distributed  implemen- 
tation.  Thus,  it   may  be  desirable  to  modify  the  algorithm 
of  Section 111 to  include  a  line  search  procedure  before  using 
i t   for  centralized  computation. 

Two  critical  requirements  for  the  success of a  distributed 
routing  algorithm  are  speed of convergence  and  relative 
insensitivity of performance  to  variations  in  the  statistics  of 
external  traffic  inputs.  Unfortunately,  the  algorithm  of [ 1  ] 
is not  entirely  satisfactory  in  these  respects. In particular,  it 
is impossible  in  this  algorithm  to  select  a  stepsize  that will 
guarantee  convergence  and  good  rate of convergence  for  a 
broad  range  of  external’.traffic  inputs.  The  work  described  in 
this  paper  was  motivated  primarily  by  this  consideration. 

A standard  approach  for  improving  the  rate  of  convergence 
and  facilitating  stepsize  selection in optimization  algorithms 
is to  scale  the  descent  direction  using  second  derivatives of the 
‘objective  function  as  for  example  in  Newton’s  method.  This 
is also  the  approach  taken  here.  On  the  other  hand,  the  straight- 
forward  use of Newton’s  method is inappropriate  for  our 
problem  both  because  of  large  dimensionality  and  the  need 
for  algorithmic.  simplicity  in view of our  envisioned  decentral- 
ized  real-time  loop-free  implementation. We have  thus  intro- 
duced  various  approximations  to  Newton’s  method  which 

Paper  approved  by the  Editor for Computer  Communication  of  the  IEEE 
Communications  Society for publication  after  presentation  at  the  1978  Interna- 
tional  Symposium  on  Systems  Optimization  and  Analysis,  INRIA,  Rocquen- 
court,  France,  December  1978.  Manuscript  received  April 8, 1981;  revised 
October  19,  1983.  This  work  was  supported in part by the  Defense  Advanced 
Research  Projects  Agency  under  Grant  ONR-N00014-75-C-1183  and  in  part 
by  the  National  Science  Foundation  under  Grant  NSF/ECS-79-19880. 

D. P. Bertsekas  and R. G .  Gallager are with  the  Laboratory  for Infopation 
and  Decision  Systems,  Massachusetts  Institute of Technology,  Cambridge, 
MA 02139. 

E. M. Gafni  is  with  the  Department of Computer  Science,  University  of 
California, Los Angeles,  CA  90024. 

exploit  the  network  structure  of  the  problem,  simplify  the 
computations,  and  facilitate  distributed  implementation. 

[ A  Section I1 we  formulate  the  minimum  delay  routing 
problem  as  a  multicommodity  flow  problem  and  describe  a 
broad  class  of  algorithms  to  solve  the  problem.  This class 
is patterned  after  a  gradient  projection  method  for  nonlinear 
programming [ 21, [ 31 as  explained  in [4] ,   but   di f fers   sub-  
stantively  from  this  method  in  that  at  each  iteration  the  rout- 
ing pattern  obtained  is  loop-free.  An  interesting  mathematical 
complication  arising  from  this  restriction is that,  similarly  as 
in [ 1 1 ,  the  value  of  the  objective  function  need  not  decrease 
strictly  at  each  iteration.  Gallager’s  original  algorithm is re- 
covered  as  a  special  case  within  our  class  except  for  a  varia- 
tion  in  th’e  definition  of  a  blocked.  node  (compare  with [ 1, 
eq.  (15)].  This  variation  is  essential in order  to  maintain 
loop  freedom  during  operation of our  algorithms  and,  despite 
its  seemingly  minor  nature,  it   has  necessitated  major  differences 
in  the  proof  of  convergence  from  the  corresponding  proof  of 

Section 111 describes  in  more  detail  a  particular  algorithm 
from  the class of Section 11. This  algorithm  employs  second 
derivatives ‘in a  ‘manner  which  approximates  a  constrained 
version  of  Newton’s  method [3] and is well  suited  for  dis- 
tr ibuted  computation. 

The  algorithm of Section 111 seems  to  work well  for  most 
quasi-static  routing  problems  likely  to  appear  in  practice  as 
extensive  computational  experience  has  shown [ 51.  However, 
there  are  situations  where  the  unity  stepsize  employed  by 
this  algorithm  may  be  inappropriate.  In  Section IV we  present 
another  distributed  algorithm  which  automatically  corrects 
this  potential  difficulty  whenever  it   arises  at  the  expense  of 
additional  computation  per  iteration.  This  algorithm  also 
employs  second  derivatives,  and  is  based on minimizing  at 
each  iteration  a  suitable  upper  bound  to  a  quadratic  approxi- 
mation of the  objective  function. 

Both  algorithms  of  Sections 111 and IV have  been  tested 
extensively  and  computational  results  have  been  documented 
in [ 51  and [ 6 1 .  These  results  substantiate  the  assertions  made 
here  regarding  the  practical  properties  of  the  algorithms. 
There  are  also  other  related  second  derivative  algorithms [ 7 1 , 
[8]  that   operate  in  the  space of path  flows  and  exhibit  similar 
behavior  as  the  ones  of  this  paper,  while  other  more  complex 
algorithms [ 121, [ 131  ‘are  based  on  conjugate  gradient  approxi- 
mations  to  Newton’s  method  and  exhibit   a  faster  rate of 
convergence. A survey is given  in [ 151,  and  a  computer  code 
implementation  can  be  found  in [ 161.  These  algorithms  are 
well  suited  for  centralized  computation  and  virtual  circuit 
networks  but,   in  contrast   with  the  ones  of  this  paper,   require 
global  information  at  each  node  regarding  the  network  topology 
and  the  total  flow  on  each  link.  Depending  on  the  mode  of 
operation  of  the  network  this  information  may  not  be  availa- 
ble.  The  algorithms of [ 71, [ 81,  [ 121,   and [ 131  may  also 
require  more  computer  memory  when  implemented  for 
centralized  computation. 

We finally  mention  that  while  we  have  restricted  attention 
to   the  problem of  routing,  the  algorithms  of  this  paper  can  be 
applied to other  problems of interest  in  communication  net- 

1 1 1 .  
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works.   For  example,   problems of optimal  adaptive flow con- 
trol 'or  combined  routing  and  flow  control  have been formu- 
lated  in [91, [ 101  as  nonlinear  multicommodity  flowproblems 
of the  type  considered  here,  and.the  algorithms of this  paper 
are  suitable  for-their  solution. 

Due  'to  space  limitations  the  proofs  of  most of the  results 
of  the  paper  have  been  omitted.  They  can be found  in . twp 
reports [ 11 1 ,  [ 1 4 1 .  

11. A  CLASS OF ROUTING  ALGORITHMS 

Consider  a  network'  consisting  of N nodes  denoted  by 
I ,  2; ..., 'N and L directed  links.  The  set of links is tienoted 
by L .  We denote  by  ( i ,  I )  the  link  from  node  i  to  node I and 
assume  that  the  network  is  connected  in  the  sense  that  for 
?ny  two  nodes t n ,  i l  there is a  directed  path  from nz to 17. The 
flow on ,each  link (i, I )  for  any  destination j is denoted  by 
,fir(;). The  total  flow  on  each  link  (i,  I).is denoted  by Fil;i.e., 

N 

The  vector of all  flows  fir(;),  (i, I )  E L , j = 1 ~ -., N 1s denoted 

We are  interested  in  numerical  solution  of  the  following 
by f .  

multicommodity  network  flow  problem: 

V i =   l ; . . , N , i # j  

f i l ( j )>O,  ' d ( i , l ) E L , i =  I; . ; ,N, j= 1 > ... 3 '  N 
jjl(i) = 0 ,  'd ( I ,  I )  E L , j = I ,  ..., N 
d 

where,   for i Z j ,  r ; ( j )  is a  known  traffic  input  at  node  i  destined 
for,;, and O(i)  and /(i) are  the sets of nodes I for  which (i, 1 )  E 
L and ( I ,  i ) ' E L ,  respectively. 

The  standing  assumptions  throughout  the  paper  are as 
follows. 

l ) r i ( j ) > O , i , j =   l ; . . , N , i # ; .  
2)  Each  function Dir is defined  on  an  interval [ O ,  Cil) 

where Cil is  either  a  positive  number  (the  link  capacity)  or 
+m; Dil is:co,nvex, continuous,  and  has  strictly  positive  and 
continuous  first  and  second  derivatives  on [0 ,  Cir),  where  the 
derivatives a t '  0 are  defined  by  taking,  the  limit  from  the 
right.  Furthermore, D;r(Fij) -+ ~0 as Fir -+ C;l. 

3) (MFP)  has  at  least  one  feasible  solution, f, satisfying 
Fir < C;l fo r  all (i, I )  E L . 

For'notational  convenience  in  describing  various  algorithms 
in  what  follows, w e  will suppress  the  destination  index  and 
concentrate  on a si!Igle destitzatiotz 'choseg for  concreteness 
to be   node  N .  Our  definitions,  opti'mality  conditjons,  and 
algorithms  are  essentially.  identical  for  each  destination, so 
this  notational  simplification  should  not  become  a  source 
of  confusion.  In  the  case  where  there  are  multiple  destina- 
t ions  i t  is  possible to  implement  our  algorithms in at  least 
two  different  ways.  Either  iterate  simultaneously  for  all 
destinations  ( the 7zll-at-once" version),  or  iterate  sequentially 
one  d'estination  at  a  time  in'a  cyclic  manner  with  intermediate 
readjustment  of  link  flo,ws  in  the  spirit  of  the  Gauss-Seidel 
method.   ( the  '%ne-ut-artime" version).  The  remainder of our  
notation  follows  in  large  measure  the  one  employed  in [ 11,. 
In  addition,  all  vectors'will  be  considered  to  be  column  vectors, 
transposition will  be denoted  by  a  superscript  T,  and  the 
stan'dard  Euclidean  norm  of a vector  will  be  denoted  by 

I * 1, i.e., xTx = 1.y 12 for  any  vector x. Vector  inequalities 
are  meant  to be componentwise,  i.e.,  for x = (x,, -', x n )  
we  write x > 0 i f  x; > 0 for  all  i = 1, 1 2 .  

Let  ti  be  the  total  incoming  traffic  at  node i, 

and  for  ti f 0 let @il be  the  fraction  of  ti  that  travels  on  link 
( i ;   I ) ,  

f;/ 
ti 

@. I 1  =- > .  i =  I;. . ,N- l ( i , l )EL,  

Then  it is possible t o  reformulate  the  problem  in  terms  of  the 
variables @i/ as follows [ 1 1 . 
. For  each  node i + N we  fix  an  order  of  the  outgoing  links 

(i, I ) , '  I E 0 (i).'We'  identify  with  each  collection  I(i, I )  EL , 
i = I ,  ..., N - I}  a column  vector @ = T ,  9 2  ', - * , @ N -  T ) T ,  
where @i is the  column  vector  with  coordinates  @il, 1 E 0 (i). 
Let 

and  let cf, be  the  subset  of (r, consisting of all @ for  which  there 
exists  a  directed  path (i, I ) ,  -., (nz, N )  from  every  node. i. = 

@nlN _> 0.  Clearly, @ and @ are  convex  sets,  and  the  closure  of 
@ is @. It is shown.in [ I ]  that  for  every @ E @ and r = ( r l ,  
r z ,  .-, T N -  ) with r i  2 0 ,  i = 1 ,  -., N - 1 there  exist  unique 
vectors t (@, r )  = ( t l ( @ ,  r ) ,  .-, tN- 1 (@, r ) )  and  f(@, r )  with  co- 
ordinates , f i l (@,  r ) ,  (i, I )  EL , i # N satisfying 

. I ,  ... , N - 1  to   the   des tha t ion  N along  which @i/ > 0,  '-., 

t(@, I )  0,  f(@, y )  2 0 

ti(@, r )  = ri + j h i ( @ ,  r ) ,  i =. I ,  2, -, N - I 
m E I ( i )  
m + N  

Furthermore,   the  functions  t(@, r ) ,  f(@, r )  are  twice  contin- 
uously  differentiable  in  the  relative  interior of their  domain of 
definition @x(r  lr O } ,  The  derivatives  at  the  relative  bound- 
ary  can  also  be  defined  by  taking  the  limit  through.  the  relative . 
interior.  Furthermore,  for  every r .> 0, and  every f which  is 
feasible  for  (MFP)  there  exists  a $5 E 9 such  that f = f (@, r ) .  

I t  follows  from  the  above  discussion'that  the  prohlem  can 
be  written in terms  of  the  variables ( J ~ ~  as 

where  we  write D(@, I )  = m if fir(@, r )  2 Cil for  some (i, I )  E L . 
Similarly  as  in [ 11,  our  algorithms  generate  sequences  of 

loopifree  routing  variables @ and  this  allows  efficient  computa: 
t ion of  various  derivatives :of D .  Thus  for  a  given q5 E @ w e   s a y ,  
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BERTSEKAS e t  a l . :  SECOND DERIVATIVE ALGORITHMS 

tha t   node  k is downstream f rom  node  i if there  is a directed 
path  f rom i t o  k ,  and  for  every  l ink ( I ,  117) on   t he   pa th   we  have 

> 0. We say  that   node i is upstream f rom  node k if k is 
downstream  from i. We say  that  @ is loop-free if there is n o  
pair of nodes i ,  k such  that  i is both  upstream  and  dow.nstream 
f rom k .  F o r   a n y  @ ' €  @ and r Z 0 for  which D ( @ ,   r )  < 00 'the 
partial  derivatives a D ( @ ,  r ) / a @ i ,  can  be  computed ushg the 
following  equations [ 1  ] : 

aD 
- = o  
arN 

where Dill denotes  the  first  derivative of Di, with  respect  to 
f i r .  The  equations  above  uniquely  determine aD/a@il and 
aD/ari and  their  computation  is  particularly  simple if @ is 
loop-free.  In  a  distributed  setting  each  node i computes 
aD/a@il and aD/ari via (4) ,  ( 5 )  after  receiving  the  value of 
aD/ar,  f rom all its  immediate  downstream  neighbors. Be- 
cause @ is  loop-free  the  computation  can'  be  organized  in  a 
deadlock-free  manner  starting  from  the  destination  node N 
and  proceeding  upstream [ 1 ] , 

A  necessary  condition  for  optimality is  given  by  (see [ 1  ] ) 

aD  aD 

a@il r n E O ( i )  

aD  aD 

aCpi1 rnEO(i) a&,,, 

- -  - min - if @il> 0 

- -  - min - if @il = 0 

where ,all derivatives  are  evaluated  at  the  optimum.  These 
equations  are  automatically  satisfied  for i such  that  t ;  = 0 :  
and  for ti  > 0 ,  the  conditions  are  equivalent,  through  use of 
(4)  and ( 5 ) ,  t o  

aD 
- = min hinl 
ari , m E O ( i )  

where 6irn  is defined  by 

In  fact ,  if (6) holds  for all i (whether ti = 0 or t ;  > 0 ) ,  then  it 
is  sufficient  to  guarantee  optimality  (see [ 1, Theorem 31 1. 

We consider  the  class of algorithms 

where,  for  each i ,  the  vector A@ik with  components  & i l k z  
1 E 0 ( i )  is any  solution of the  problem 

91 3 

The  scalar 01 is  a  positive  parameter  and 6 i  is  the  vector  with 
components  { 6 i m }  given by  ( 7 ) .  

All derivatives  in (8) and (9)  are  evaluated  at Gk and f ( @ ,  
r ) .  For each i for  which t i(Gk, r )  > 0 ,  matrix Mik is some 
symmetric  matrix  which'  is  positive  definite  on  .the  subspace 
(u i  ( C / ~ o ( i ) u i  = 0 } ,  i.e., uiTMikui > 0,  'd ui f 0 ,  Cl&(;)uil = 0.  
This  wndition  guarantees  that   the  solution to  problem (9) 
exists  and is unique.  For nodes i for  which t i ( @ k ,   r )  = 0 the  
definition  of Mik is  immaterial.  The  set of indexes B(i; G k )  is 
specified  in  the  following  defintion. 

Definition: For   any  @ E and i = 1, ..', N - 1 the  set  
B( i ;  @), referred  to  as the  set of blocked  nodes  for Cp a t   i ,  is 
the  set  of all 1 E O(i) such  that  @il = 0 ,  and  either do(@, 
r))dri < do(@, r ) / d r l ,  or  there  exists  a  l ink ( V I ,  1 2 )  such  that  
m = 1 or  m is downstream of 1 and  we  have &,,, > 0 ,  ?D(@. 
r ) /? r ,  Z do(@, r) /arn .  (Such  a  link will be  referred to  as a n  
improper  l ink.)  

We r e f e r   t o   [ I ]  for a  description  of  the  method  for  gen- 
erating  the  sets B ( i ;  q5k) in  a  manner  suitable  for  distributed 
computation.  Our  definit ion  of B ( i ;  G k )  differs   f rom  the  one 
o f  [ 1  ]  primarily  in  that  a  special  device  that  facilitated  the 
proof  of  convergence  given  in [ I ]  is not  employed  (compare 
with 11, eq .   (15 ) l ) .  

The  following  proposition  shows  some of the  properties  of 
the  algorithm.  I ts   proof-can  be  found  in [ 1 1 ] , [ 141.  

Proposition 1 :  
a)  If Qk is loop-free,  then g k + l  is loop-free. 
b )  If Qk 1s loop-free  and A@k = 0 solves  problem (9),  then 

c)  If G k  is  optimal,  then G k + l  is  also  optimal. 
d )  If A@ik # 0 for   some i for  which t i(@, r )  > 0 ,  then  there  

qbk is optimal. 

exists  a  positive  scalar qk such  that  

D(& + VAG', r ) <  D($bk.  r), rl E ( 0 , 7 ? k ] .  (10) 

The  following  proposit ion  is   the  main  convergence  result  
regarding  the  class of algorithms (81, (9). I ts   proof will not  be 
given  in  view of its  complexity  and  length.  It  may  be  found  in 
[ 11 1 .  The  propostion  applies  to  the  multiple  destination  case 
in  the  "all-at-once"  as  well  as  the  "one-at-a-time''  version. 

Proposition 2: Let  the  initial  routing @o be  loop-free  and 
satisfy D(@O, r )  < D o  where DO is  some  scalar.  Assume  also 
that  there  exist  two  positjve  scalars X ,  A such  that  the  se- 
quences of matrices { M i k }  satisfy  the  following  two  condi- 
tions. 

a)  The  absolute  value of each  element of M i k  is bounded 
above  by A.  

b)  There  holds 

for  all vi in the  subspace 

Then  there  exists  a  positive  scalar 6i (depending  on D o ,  h ,  and 
A )  such  that  for  all a ~ ( 0 ,  if] and k = 0,1, ... the  sequence 
{ G k }  generated  by  algorithm ( 8 ) ,  (9) satisfies 

Furthermore  every  l imit   point of { Q k }  is an  optimal  solution 
of  problem (3). 

Another  interesting  result  which will not  be  given  here  but 
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can  be  found  in [ 111  states  that,  after  a  finite  number  of 
i terations,   improper  l inks  do  not  appear  further in the al- 
gorithm so 'that  for  rate  of  convergence  analysis  purposes  the 
potential  presence  of  improper  links  can  be  ignored. Based 
on  this  fact   i t .can  be  shown  under  a mild assumption  that   for 
the  single'  destination  case  the  rate of convergence  of  the 
algorithm  is  linear [ '1 11 . 

The  class  of  algorithms (8), (9),is  quite  broad  since  dif- 
ferent  choices  of  matrices M; yield  different  algorithms. A 
specific  choice  of M i k  yields  Gallager's  algorithm [ 11 (except 
for  the  difference  in  the  definition  of B(i ;  qbk) mentioned 
earlier).  This  choice is the  one  for  which  Mik is diagonal_  with 
all elements  along  the  diagoual  being  unity  except  the ( I ,  1)th 
element  which is zero  where 1 is a  node  for  which 

We leave the  verification  of  this  fact  to  the  reader.  In  the  next 
section  we  describe  a  specific  algorithm  involving  a  choice  of 
Mik based  on  second  derivatives  of  Dil.  The  convergence  result 
of  Proposition  2'is  applicable  to  this  algorithm. 

111. AN ALGORITHM BASED ON SECOND DERIVATIVES 

A drawback  of  the  algorithm  of [ 1 1  is that  a  proper  range 
of  the  stepsize  parameter CY is  hard  to  determine.  In  order  for 
the  algorithm  to  have  guaranteed  convergence  for  a  broad 
range  of  inputs  r,   one  must  take 01 quite  small,  but  this will 
lead to  a  poor  speed'of  convergence  for  most of these  inputs. 
It appears  that   in  this  respect  a  better  choice of the  matrices 
Mik  can  be  based  on  second  derivatives.  This  tends  to  make 
the  algorithm  to  a  large  extent scale-free, and  for  most  prob- 
lems  likely  to  appear  in  practice,  a  choice  of  the  stepsize 01 
near  unity  results  in  both  convergence  and  reasonably  good 
speed of convergence  for  a  broad  range  of  inputs  r.  This  is 
supported  by  extensive  computational  experience  some of 
which  is  reported  in [ 51 and [ 61 .  

We use  the  notation 

We have  already  assumed  that  Dill '  is positive  in  the  set [ 0 ,  
Cir). We would  like  to  choose  the  matrices  Mik  to  be  diagonal 
with  t i -2a2D(@k,  r ) / [a@i1l2  a long  the  diagonal .   This   corre-  
sponds  to   an  approximation of a  constrained  version  of 
Newton's  method  (see [3 ] ) ,  where.  the  off-diagonal  terms  of 
the  Hessian  matrix  of  D  are  set   to  zero.   This  type  of  approxi- 
mated  version of Newton's  method is often  employed  in  solv- 
ing  large-scale  unconstrained  optimization  problems.  Un- 
fortunately,  the  second  derivatives  a2D/[a@il]  are  difficult 
to  compute.   However,   i t  is possible  to  compute  easily  upper 
and  lower  bounds  to   them  which,   as   shown  by  computat ional  
experiments,  are  sufficiently  accurate  for  practical  purposes. 

Calculation of Upper atld Lower Bouttds to Second  Derivatives 
1 We compute  a2D/[a@i1]2  evaluated  a t   a   loop-free @ E a, 

for  all  links (i, I )  E L for  which I $! B(i ;  @), We have,  using (4), 

Since 19 B(i; @) and @ is  loop-free,  the  node I is not  :pstream 

again  the fact that  1 is not   upstream of i we  have ati/&, = 0 ,  
of i ,  It  follows  that = o and  aDiI'la@, = D~~ ti. Using 

Thus  we  finally  obtain 

A little  thought.shows  that  the  second  derivative  a2D/[arIl 
is  given by  the  more  general  formula 

a 2 0  

where  qjk(1) is the  portion  of  a  unit  of  flow  originating  at 1 
which  goes  through  link c, k ) .  However  calculation of 
a2D/[a,l]2  using  this  formula  is   complicated,   and  in  fact  
there  seems  to  be  no  easy  way  to  compute  this  second  deriva- 
tive.  However,  upper  and  lower  bounds  to  it   can  be  easily  com- 
puted  as  we  now  show. By using (5) we  obtain 

Since @ is  loop-free  we  have  that  if @ l m  > 0, then  m, is no t  
upstream of I and  therefore  atl /arl  = 1  and aD1, /a r l  = 
D l m " @ l m .  A similar  reasoning  shows  that 

Combining  the  above  relatiqns  we  obtain 

S ince   a2D/armarn  > 0,  by  sett ing  a2D/arm  ar,   to  zero  for 
m f  n we  obtain  the  lower  bound 

By  applying  the  Cauchy-Schwarz  inequality  in  conjunction 
with (1 2) we  also  obtain 

~~. 

Using  this  fact  in  (1 3) we  obtain  the  upper  bound 
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It is   now  easy  to  see  that   we  have  all  I 

a2D 
R _ 1 < -  < Rl 

[arJ 

where & and zl are  generated  by 

m 

The computat ion i s  carried  out  by  passing  and Fl upstream 
together  with aD/ar, and  this  is  well  suited  for  a  distributed 
algorithm.  Upper  and  lower  bounds a1, ail for  azo/[ a@il] 2 ,  
1 9 B ( i ;  @) are  obtained  simultaneously  by  means of t h e  
equation  [cf.   (1  1))  

- 
Qi1 = t i2(Dil“ -t Rl). 

I t   i s   to   be  noted  that   in   some  s i tuat ions  occuricg  f requent ly   in  
practice  the  upper  and  lower  bounds  and Qi1 coincide  and 
are  equal  to  the  true  second  derivative.  This will occur if 
@lm@lna2D/ar,nar,  = 0 for  rn f 1 2 .  For   example ,  if the  rout ing 
pattern  is  as  &own  in  Fig. 1 (only  links  that  carry  flow  are 
shown)  then ail = = a2D/[a@i l12  for  all ( i ,  1 )  E L , 19 
B ( i ;  4). A typical  case  where Ti1 # and  the  discrepancy 
affects  materially  the  algorithm  to  be  presented  is  when 
flow  originating  at i spli ts   and  joins  again  twice  on  i ts   way  to 
N as   shown  in   Fig.   2 .  

The Algorithm 
The  following  algorithm  seems  to  be  a  reasonable  choice. 

@iJt i2;  1 E O(i) along the  diagonel where Qil is the  upper 
bound  computed  f rom  (1 8) and  (14)-(  16)  and 01 is  a  positive 
scalar  chosen  experimentally,  (In  most  cases O( = 1 is satis- 
factory .) Convergence of this  algorithm  can  be  easily  established 
by  verifying  that  the  assumption  of  Proposition  2  is  satisfied. 
A variation of the   method  resu l t s  if we  use  in  place of t h e  
upper  bound ail the  average of the  upper  and  lower  bounds 
(@il i- qi1)/2.  This,  however,  requires  additional  computation 
and  communication  between  modes. 

- I f  t i  Z 0 we tuke Mik i n  ( 9 )  to be the diagonal  matrix  with 

Problem (9) can  be  wri t ten  for  t i  f 0 as  

and  can  be  solved  using  a  LagrangeEultiplier  technique.  By 
introducing  the  expression (18) for  ail and  carrying  out  the 
straightforward  calculation  we  can  write  the  corresponding 
iteration (8) as 

Fig. 1, Case  where  the upper and  lower  bounds  on  the  second derivative are 
equal. 

ilN 
Fig. 2. Case  where the upper and  lower  bounds  on  the  second derivative  are 

not equal. 

where pi is  a  Lagrange  multiplier  determined  from  the  condi- 
t ion 

The  equation  above  is  piecewise  linear  in  the  single  variable 
ki and  is  nearly  trivial  computationally.  Note  from (20) that  

plays  the  role of a  stepsize  parameter.  For ti = 0 the  algo- 
rithm-sets,  consistently  with  problem (9), @ i l k + 1  = 1 for the  
node 1 fo_r which 6 i i  is  minimum  over  all 6 i l ,  and  sets Qllk+l  = 
0 for  I # 1. 

It  can  be  seen  that (20) is such  that  all  routing  variables 
(bil such  that  6il  < p i  will  be  increased  or  stay  fixed  at  unity, 
while  all  routing  variables  such  that 6i l  > p i  will  be  de- 
creased  or  stay  fixed  at  zero.  In  particular,  the  routing  vari- 
able  with  smallest 6, will  either  be  increased  or  stay  fixed  at 
unity,  similarly  as  in  Gallager’s  algorithm. 

Iv. AN ALGORITHM BASED ON AN  UPPER BOUND TO 
NEWTON’S METHOD 

While the  introduct ion of a  diagonal  scaling  based on sec- 
ond  derivatives  alleviates  substantially  the  problem  of  stepsize 
selection,  it  is  still  possible  that  in  some  iterations  a  unity 
stepsize  will  not  lead t o  a  reduction of the  objective  function 
and  may  even  cause  divergence of the  algorithm  of  the  previous 
section.  This  can  be  corrected  by  using  a  smaller  stepsize  as 
shown  in  Proposition 2 but  the  proper  range of stepsize  mag- 
ni tude  depends  on  the  network  topology  and  may  not   be  easy 
to  determine.  This  dependence  stems  from  the  replacement 
of the  Hessian  matrix of D by  a  diagonal  approximation  which 
in  turn  facil i tates  the  computation of upper   bounds  to   second 
derivatives  in  a  distributed  manner.  Neglecting  the  off-djagonal 
terms of the  Hessian  has  two  types of effects,  First,  while 
operating  the  algorithm  for  one  destination.  we  ignore  changes 
which  are  caused  by  other  destinations.  The  potential  dif- 
ficulties  resulting  from  this  can  be  alleviated  (and  for  most 
practical  problems  eliminated)  by  operating  this  algorithm 
in  a  “one-at-a-time’’  version  as  discussed  in  Section 11. Second, 
the  effect  of neglecting  off-diagonal  terms  can  be  detrimental 
in  situations  such  as  the  one  depicted  by  Fig. 3. Here r1  = 
r2 = r 3  = r4 > 0 ,  rs  = r6 = 0 and  node 7 is the  only  destina- 
t ion.  If the  algorithm of the  previous  section  is  applied  to  this 
example  with a = 1 ,  then  it  can  be  verified  that  each of 
the  nodes 1, 2 ,  3 ,  and 4 will adjust  its  routing  variables  accord- 
ing  to  what  would  be  Newton’s  method if all  other  variables 
remained  unchanged. If we  assume  symmetric  initial  conditions 

Authorized licensed use limited to: MIT. Downloaded on March 25,2025 at 06:41:29 UTC from IEEE Xplore.  Restrictions apply. 



916 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-32,  NO. 8 ,  AUGUST 1984 

Fig. 3. Network for which a stepsize 01 = 1 leads to divergence 

and  that  the  first  and  second  derivatives D ,  7 ' ,  D57" and D,, ', 
0 6 7 "  are  much  larger  than  the  corresponding  derivatives of 
all  other  links,  then  the  algorithm  would  lead  to  a  change of 
flow  about  four  times  larger  than.  appropriate.  Thus,  for 
example,  a  stepsize CY = 1/4 is appropriate,  while (Y = 1  can 
lead to   divergence.  

The  algorithm  proposed  in  this  section  bypasses  these 
difficult ies  at   the  expense of additional  computation  per 
iteration. We show  that  if  the  initial  flow  vector is near  opti- 
mal  then  the  algorithm is guaranteed  to  reduce  the  value of the  
objective  function  at  each  iteration  and  to  converge  to  the 
opt imum  wi th  a unity  stepsize.   The  algorithm  "upper  bounds" 
a  quadratic  approximation  to  the  objective  function D .  This  is 
done  by  first  making  a  trial  change A@* in  the  routing  variables 
using  algorithm ( 8 ) ,  (9). The  link  flows  that  would  result 
from  this  change  are  then  calculated  going  from  the  "most 
upstream"  nodes  downstream  towards  the  destination.  Based 
on  the  calculated  tr ial   f lows  the  algorithm "sens_es" situations 
l ike  the  one  in  Fig.  3 and  finds  a  new  change A@. We describe 
the  algorithm  for  the  case of a  single  destination  (node N ) .  The 
algorithm  for  the  case of more  than  one  destination  consists 
of sequences of single  destination  iterations  whereby all 
destinations  are  taken  up  cyclically (Le., the  one-at-a-time 
mode  of operation). 

The  Upper Boutzd 
At  the  typical  iteration of the  algorithm,  we  have a vector 

of loop-free  routing  variables 4 and a corresponding  flow  vector 
f. Let  Af denote   an  increment  of flow  such  that .f + A,f is 
feasible. A constrained  version of Newton ' s   method  [3]  is 
obtained if Af is  chosen  to  minimize  the  quadratic  objective 
function 

i. I i,I 

subject ,   to  f + Af E F where f is the  set  of feasible  flow 
vectors.  Let A@ be a  change  in @ corresponding  to  A.f and  let  

&=@+A@. (23)  

Let  t be  the  vector of total   traffic  at   the  network  nodes  [cf.  
( I ) ] ,  and  let  At be  the  corresponding  change  in t .  Then 

I 

Afi l  = + 
- 

Substituting ( 2 5 )  in ( 2 2 ) ,  we  can  express N ( A 0  in  termsiof 
A@ > 

We would  like t o  minimize  this  expression  by  a  distributed 
algorithm in which  each  node i selects A@il  for  each  outgoing 
link (i, I ) .  The  difficulty  here is that  the  nodes  are  all  coupled 
through  the  vector At;  a  change A@il generates  a  change At,  a t  
each  node I I  downstream of the  link (i, I ) .  

In what  follows,  we will  first  eliminate  the  dependence of 
N ( A f )  on  the  linear  terms  in At;  we  then  proceed to  upper  
bound N ( A f )  in  such  a  way  as  to  eliminate  the  quadratic  terms 
in At. Finally  then,  we  show  how  each  node i can  select A@il 
for  its  outgoing  links so as to  approximately  minimize  the 
upper   bound  to  N ( A f ) .  We start   by  combining  the  two  terms 
in  (26)  that   are  l inear  in At ,  

i,l 

where 

We can  interpret z i l '  t o  first  order  as  'the  derivative  of D i l  
evaluated  at   the  f low tl$il. The  following  simple  lemma 
will eliminate At from  the  first  term  in (27);  we  state  it   in 
greater  generality  than  needed  here  since  we will use  it  again 
on  the  quadrat ic   term  in  At.  

Lemma 1 :  Let pilebe  real  for  each (i, I )  E L , and  for  each 
n o d e  i, let Ti, T i ,  d i ,  d i  be  variables  related  by 

i 

Then 

x ZiTi = diTi.  
I i 

Proof; Using  (30)  and  then  (29),   we  have 

X Z i T i  = x d i T i  - 2 dlpilTi 
I I I 

= x diTi - d l (TJ  - T I )  
i 1 

= x dl?;,. Q.E.D. 
I 

To  use  this  lemma  on  the  f irst   term  of ( 2 7 L  associate &I 
with p i / ,  Ati with Ti and X,,, t,A@,,i with Ti. Then (24) 
and (25)  are  equivalent  to  (29)  in  the  lemma.  Defining Di' by 

I l 

and  associating Di' with d i  and XJDil'$i/ with d i ,  the   l emma 
asserts  that 

- 

It  can  be  seen  that Di' can  be  calculated  in  a  distributed  fashion 
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starting from the  destination  and  proceedingupstreamsimilarly Finally,  using  the  Cauchy-Schwarz  inequality on (39 ) ,   we  ob- 
as  in  algorithm ( 8 ) ,  (9).  Using  (33)  in  (271,  we  have tain 

+ -xDi11r(Ati$il)2 + - xD;{( t ;A@i,)2.  (34)  
1 1 

Ati+(@;I + A@il+) 
2 i , l  2 i.1 + ~~~A~~ dAti*+(@il+ A@ir*+) I' 

All of   the  terms  in   (34)   except   for  (At;)' can  be  calculated 
in a distributed  fashion,  moving  upstream  as in ( 8 ) ,  (9).  We ~ [?t;(~;l+)'  (Ati+I2(@il+ A@ir+)2 AtI*+ 
recall  now  that  the  algorithm  is  going  to  use  the  algorithm  of 
(8) ,  (9)  first  to  calculate  a  trial  change A@*. We next  show A@;[*+ 
how A@* will be  used  to   upper   bound (Ati')2 in such  a  way  (44) 
that  Lemma 1 can  be  employed  on  the  result .   For  al l  (i, I )  E 
L ,  define  where  we  have  used  (36),  and  where  from  each  summation We 

exclude all nodes i for   which  the  denominator   [and  hence  the 

+? Ati*+(@;l + --I A&[*+) 

A@;[*+ = max (0 ,  A@il*);  A@i/*- = I min ( 0 ,  A@il*) I (35)   numerator   by  (41)   and  (43)]  is 0.  Similarly, 

Atl*+ = [tiA&/*+ + Ati*'(@i, + A@il*+)] (36)  
1 ti(A@i1-)2 +xp Q i l ]  . Atl*- (45)  

(Ati-)2 

A@il*- i Ati*- 
At*- = [tiAgi1*- + At;*-@;l].  

1 
(37)  The  following  propostion  yields  the  desired  upper  bound. 

The  quantit ies Atl*+,  Atl*- are  well  defined  by  virtue  of 
the  fact   that   the  set  of links 

Propositior13: Under  the  constraint  (41), 

N ( A ~ )  E t i e i (A@i)  (46)  
L * = {(i, I )  E L I > 0 o r  + A&l* > 03 i 

forms  an  acyclic  network  [ in view of the  manner  that   the 
sets of blocked  nodes B(@; i) are  defined  in  algorithm ( 8 ) ,  
(9) ] .  As a result Atl*+ and Atl*- are  zero  for all nodes I 
which  are  the  "most  upstream"  in  this  acyclic  network. 
Starting from these  nodes  and  proceeding  downstream  the 
computat ion of Atl*+ and At,*- can  be  carried  out  in a dis- 
tr ibuted  manner  for  each 1 using  (36)  and  (37).  

We next  define  the  same  positive  and  negative  parts  for 
A@ > 

The  following  constraints  are  now  placed  on A@: 

A@il> 0 only if A@il* > 0 (4 1 a )  

A@i/< 0 only if A@il* < 0 ( 4  1 b) 

C A @ i /  = 0 ;  @ i l +  A@il> 0. ( 4  1 C) 
I 

With  these  constraints At[+,  At,- are  also  well  defined; 
Atl+ is  interpreted as the  increase  in  flow  at 1 d u e  to increases 
in A@, omitting  the  effects of decreases  in A@, Similarly 
Atl- is an  upper   bound  to   the  magni tude  of   the  decrease  in  
f low  a t  I due  to   decreases  in A@. It  follows  easily  that 

< + (At,-)2. (42)  

With  the  'constraint  (41),  it   is also easy  to  see,   from (35)- 
(40) ,   that   for   each 1 

Atl+ > 0 only if Atl*+ > 0 

At,- > 0 only if Atl*- > 0. 

where 

\ 0  if A@il* = 0 

and 

i f N  (49)  

Dirt-= x, [Dilrr$i12At;*- + Di"-@;l1; i # N (50 )  
I 

D, I1 + = DN"-  = 0 

Proof: In view of   (34 j ,   i t  will suff ice   to   show  that  
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Define T / ,  for all nodes 1,  to satisfy 

By  comparing  with  (44),  we  see  that ( A t / + ) 2 / A t / * +  < T J .  
Thus, 

where 

I - 
Applying  Lemma 1 ,  associating TI with  the  first  term  of ( 5 3 )  
and di with Di"+ in  (49),  we  have 

The  second  term  can  be  considered  as  a  sum  over  just  those 
terms  for  which A@il*+ > 0 .  Handling  the At i -  term  in  the 
same  way, 

Combining ( 5 5 ) ,  ( 5 6 j  with  (51),  (52) completes  the 
proof .   Q.E.D.  

The Algorithm 
The  algorithm  can  now  be  complete  defined.  After  the 

routing  increment A@* is calculated  in  a  distributed  manner 
by  means  of  algorithm ( 8 ) ,  (9),  each  node i co.mputes  the 
quantit ies Ati*+ and A t i * - .  This is done  recursively  and  in  a 
distributed  manner  by  means  of ( 3 6 ) ,  ( 3 7 )  starting  from  the 
"most  upstream"nodes  and  proceeding  downstream  towards  the 
destination,  When  this  downstream  propagation  of  information 
reaches  the  destination  indicating  that  all  nodes  have  completed 
the  computation  of Ati*+ and A t i * - ,  the  destination  gives  the 
signal for  initiation  of  the  second  phase  of  the  iteration  which 
co_nsists of  computation of the  actual  routing'   increments 
A@. To  do   th i s   each   node  i must  receive  the  values of Dl ' ,  
Dl'",  and Dl"- from  its  dowzstream  neighbors 1 and  then 
determine  the  increments A@;/ which  minimize Q;(A@i)  
subject to the  constraint  (41)  and  the  new  routing  variables 

Then  node i proceeds to compute Dit, Di t '+ ,  and Di"- via 
( 3 2 ) ,  (49)  , and (50) and  broadcasts  these  values to all up-  
stream  neighbors.  Thus  proceeding  recursively  upstream 
from  the  destination  each  node  computes  the  actual  routing 
increments A@i in  much  the  same  way  as,  the  trial  routing 
increments A@i* were  computed  earlier. 

We now.  analyze  the  descent  properties  of  the  algorithm, 
We assume  a  single  destination  but  the  proof  extends  trivially 
to the  case  where  we  have  multiple  destinations  and  the 
algorithm is operated  in  the  one  destination  at   a  t ime  mode. 
In view of the  fact   that   each  function Dil is strictly  convex 
it follows  that  there  is  a  unique  optimal  set of total  link 
flows {.fil*I(i, I )  E L}. It is clear  that  given  any E > 0 there 
exists  a  scalar 7, such  that   for all feasible  total  link  flow 
vectors  j 'satisfying 

I fir - fir* I < YE, tr (L  I )  E L ( 5  7 )  

we  have 

The  strict  positivity  assumption  on DiI" also  implies  that 
for  each y, > 0 there  exists  a  scalar & ( y e )  such  that  every 
feasible f satisfying Ci, lDil( f ; l )  G &(ye)  also  satisfies ( 5 7 )  
and  hence  also (58). Furthermore,  6(y,) can  be  taken 
arbitrarily  large  provided ye is sufficiently  large. We will 
make  use of this  fact  in  the  proof  of  the  following  result 
the  proof  of  which  may  be  found  in [ 141. 

Propositiolz 4: Let @ and @ be  two  successive  vectors  of 
routing  variables  generated  by  the  algorithm  of  this  section 
(with  stepsize 0: = 1)   and  le t  f and f be  the  corresponding 
vectors  of  link  flows.  Assume  that  some E with 0 < ~ < m  - 

1 we  have 

i, I 

where ye is the  scalar  corresponding to E as  in ( 5 7 ) ,  ( 5 8 ) ,  
and &(ye) is such  that  ( 5 7 )  [and  hence  also ( 5 8 ) ]  holds  for 
all feasible f satisfying  (59).   Then  for all E with 0 < E < m- 1 

where 

The  preceding  proposition  shows  that  the  algorithm  of 
this  section  does  not  increase  the  value  of  the  objective  func- 
tion  once  the  flow  vector f enters  a  region  of  the  form 
{ . f l  Ci, lDil( f ; l )  < 6(ye)}, .and that   the  size  of  this  region  in- 
creases  as  the  third  derivative of D;l becomes  smaller.  Indeed 
if each  function Dil is quadratic  then (58) is satisfied  for  all 
E > 0 and  the  algorithm will not  increase  the  value  of  the 
objective  for  all .f. These  facts  can  be  used  to  show  that if 
the  starting  total f low vector j is sufficientlUv close to   t he  
optirnal the algorit lm of  this  section  will  converge to the 
optimal  solution. The  proof is similar to the  one of  Proposi- 
t ion 2 as given in [ 1 1 ] and is omi t ted .  

We cannot  expect  to  be  able to guarantee  theoretical 
convergence  when  the  starting  routing  variables  are  far  from 
optimal  since  this is not a  generic  property  of  Newton's 
method  which  the  a lgori thm  at tempts   to   approximate.   How- 
ever,  in  a  large  number  of  computational  experiments  with 
objective  functions  typically  aiising  in  communication  net- 
works  and  starting  flow  vectors  which  were  far  from  optimal 
[ 5 ]  we  have  never  observed  divergence  or  an  increase  of  the 
value of the  objective  function  in  a  single  iteration.  In  any 
case  it is possible to  prove  a  global  convergence  result  fcr  the 
version  of  the  algorithm  whereby  the  expression Qi(A@i)  is 
replaced  by 

r 

J L  -I 
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where a is a sufficiently  small  positive  scalar  stepsize. The projection  and  a  path  flow  formulation,”  Lab.  Inform.  and  Decision 
preceding  analysis can be  easily  modified to show  tha t  if we Syst.,  Mass.  Inst. Technol., Cambridge,  Rep.  LIDS-P-1364,  Jan. 
introduce a stepsize (Y as   i n  (61) ,  then the algorithm  of  this 
section is a descent  algorithm  at  all flows  in the region * 1984. 

From this it follows  that  given  any  starting  point @‘e@’, 
there  exists  a scalar % > 0 such  that   for  all  stepsizes  ote(0, a] 
the  algorithm of this  section  does  not  increase  the  value o f  
the  objective  function  at  each  subsequent  iteration. This 
fact   can  be  used to prove a convergence  result  similar to the 
one of   Proposi t ion 2 .  
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