Topics in Reinforcement Learning:
Rollout and Approximate Policy lteration

ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 9
Infinite Horizon Problems: Theory and Algorithms

Bertsekas Reinforcement Learning 1/29

0 Infinite Horizon - Transition Probability Notation
e Overview of Theory and Algorithms

e SSP Problems: Elaboration and Difficulties

Q Algorithms - Approximate Value lteration

e Exact Policy Iteration

e Approximate Policy Iteration

e Error Bounds

Bertsekas Reinforcement Learning 2/29

Infinite Horizon Problems

Random Transition
_ . Infinite Horizon
Tpr1 = f(og, ur, w) te Horizo

Random Cost

akg(xy, up, wy)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wx) with state, control, and random disturbance
@ Stationary policies p with p(x) € U(x) for all x
@ Cost of stage k: o g (xk, pu(Xk), Wk)
@ Cost of a policy p: The limit as N — oo of the N-stage costs

N—1
Ju(x) = I|m Euw, {Z o g (X, (), Wk)}

k=0

@ Optimal cost function J*(xo) = min, J.(xo0)
@ 0 < o < 1 is the discount factor. If & < 1 the problem is called Discounted

@ Problems with a = 1 typically include a special cost-free termination state t and
are called Stochastic Shortest Path (SSP) problems.

Bertsekas Reinforcement Learning 4/29

Transition Probability Notation for Finite-State Problems

@ States: x = 1,...,n. Successor states: y. (For SSP there is also the extra
termination state t.)

@ Probability of x — y transition under control u: py,(u)
@ Cost of x — y transition under control u: g(x, u, y)

Going from one notation system to the other (discounted case):
@ Replace X1 = f(Xk, Uk, W) With X1 = wi (a simpler system)
@ Replace P(w | x, u) with py,(u) (a 3-dimensional matrix)
@ Replace cost per stage E{g(x, u, w)} with 3°7_, py(u)g(x, u,y)

@ Replace cost-to-go E{J(f(x, u, W))} with 2521 Py (U)J(Y)

Example: Bellman equation (translated to the new notation)

_ urenJ(r] pry g(x,u,y) + ad*(y)) (for Discounted)

Sx) = min |pa(u)g(x, u f)+szy(u)(9(x, u,y) +J°(y)) (for SSP)

ueu
y=1

Bertsekas Reinforcement Learning

5/29

The Three Theorems for Discounted Problems: If g(x, u, y) is Bounded

1) VI convergence: Jx(x) — J*(x) for all Jy, where:

ueU(x)

Jkr1(x) = min {pry 9(x, UvY)"‘O‘Jk(Y))]

2) J* satisfies uniquely Bellman’s equation

3) Optimality condition
A stationary policy is optimal if and only if x(x) attains the minimum for every state x.

Also J,, is the unique solution of the Bellman equation (for policy 1)

pry ((X, u(x),)+aJu(y))., x=1,....n

Bertsekas Reinforcement Learning 7129

Exact and Approximate Policy lteration

i Policy
Base Policy Improvement
> Policy » Evaluation > . >
I J Bellman Eq. with
" J,, instead of J*

Rollout Policy fi

<

Important facts:
@ Exact Pl yields in the limit an optimal policy
@ Exact Pl is much faster than VI; it is Newton’s method for solving Bellman’s Eq.

@ Policy evaluation can be implemented by a variety of simulation-based methods.
Lots of RL theory (e.g., temporal difference methods)

@ Pl can be implemented approximately, with a value and/or a policy network

Base Approximation Approximation
» Policy »| in Value Space »{in Policy Space >
Y Value Network Policy Network
Value Data Policy Data
Rollout Policy [

Bertsekas Reinforcement Learning 8/29

Finite Spaces SSP Problems - Statement of Main Results

Most favorable Assumption (Termination Inevitable Under all Policies)

There exists m > 0 such that for every policy and initial state, there is positive
probability that f will be reached within m stages

Intuitively: This is really a finite horizon problem, but with random horizon. Easy analysiSJ

VI Convergence: Jx — J* for all initial conditions Jy, where

Al = i, [pxr(u)g(x, u)+ Py (U)(g(x,u,y) + Jk(y))] , x=1...n

y=1

Bellman’s equation: J* satisfies

J(x) = UrgLi]r&) [pxz(u)g(x, ut)+ > pey(u)(g(x, u,y) + J*(y))] , x=1,....n,

y=1

and is the unique solution of this equation.
Optimality condition: is optimal if and only if for every x, p(x) attains the minimum in
the Bellman equation.

Bertsekas Reinforcement Learning 9/29

Line of Analysis for Finite-State Problems: From SSP to Discounted

Cost E{g(-T,Uu, Z/)}
Cost E{g(z,u,y)} apgz(u) apry(u) py.(u)

pmx(u) pxy(u) Pyy (u)

Pya(u)

Discounted Problem

SSP Equivalent

A discounted problem can be converted to an SSP problem (with termination
inevitable)
@ Reason: The stage k cost [a*E{g(x, u, y)}] is identical in both problems, under
the same policy.
@ Proofs for discounted case: Start with SSP analysis, get discounted analysis as
special case.

@ This line of proof applies to finite-state problems. For infinite-state discounted
problems a different line is needed (based on contraction mapping ideas).

Bertsekas Reinforcement Learning 10/29

SSP Extensions

SSP problems often do not satisfy the “termination inevitable for all policies"
assumption (e.g., deterministic SP problems with cycles)

v

A more general assumption for SSP results: Nonterminating policies are “bad"

@ Every policy that does not terminate with > 0 probability, has oo cost for some
initial states.

@ There exists at least one policy under which termination is inevitable.

@ Major results are salvaged under this assumption.

SSP further extensions can be very challenging
@ Bellman’s Eqg. can have many solutions

@ Bellman’s Eq. may have a unique solution that is not equal to J* (even for
finite-state, but stochastic, problems)!!

@ VI and Pl may fail (even for finite-state problems)

@ Infinite-state problems can exhibit “strange" behavior (even with bounded cost per
stage)

@ See the on-line Abstract DP book (DPB, 2018) for detailed discussion

Bertsekas Reinforcement Learning 12/29

Working Break: Challenge Questions About a Tricky SSP Problem; see

the Abstract DP Book, Section 3.1.1, for More Analysis

Cost a A

Terminal State ~ /

minfb, a + J|
Cost b J
o Bellman Equation

This example violates the “nonterminating policies are bad" assumption for
a=0. Then:

@ Bellman equation, J(1) = min [b, a+ J(1)], has multiple solutions

@ VI converges to J* from some initial conditions but not from others

Challenge questions: Consider the cases a > 0,a=0,and a< 0
@ Whatis J*(1)?
@ What is the solution set of Bellman’s equation?
@ What is the limit of the VI algorithm Jk.1(1) = min [b, a+ Jk(1)]?

Bertsekas Reinforcement Learning 13/29

Answers to the Challenge Questions

Cost a A I
blooo__ d
Terminal State o /
minfb, a + J|
0 .
Cost b a o
Bellman Equation

Bellman Eq: J(1) = min [b, a-+ J(1)]; VI: k1 (1) = min [b, a+ Jk(1)]

@ If a > 0 (positive cycle): J*(1) = b is the unique solution, and VI converges to
J*(1). Here the “nonterminating policies are bad" assumption is satisfied.
@ If a= 0 (zero cycle):
J*(1) = min[0, b].
Bellman Eq. is J(1) = min [b, J(1)]; its solution set is = (—oo, b].
The VIl algorithm, Jx11(1) = min [b, Jk(1)], converges to b starting from Jy(1) > b,
and does not move from a starting value Jy(1) < b.
@ If a < 0 (negative cycle): The Bellman Eq. has no solution, and VI diverges to
J*(1) = —o0.

Bertsekas Reinforcement Learning 14/29

Approximations to the VI algorithm: Fitted VI

Consider (discounted problem) VI with sequential approximation

Jir1(X) = min pry(u) (9(x,u, ¥) + adk(y)) (VI algorithm)
=

Approximate version: Assume that for some § > 0

n

max [Jir(x) = min 37 Py (u)(9(x, .) + adi(y) | <9 (1)

y=1

@ Under condition (1), the cost function error max,—+.....» |Jk(x) — J*(x)| can be
shown to be < §/(1 — «) (asymptotically, as k — o).

@ ... but this result may not be meaningful for some natural methods: It may be
difficult to maintain Eq. (1) over an infinite horizon, because {Ji} may become
unbounded.

@ lllustration: Start with Jy, and let Ji be obtained using a parametric architecture:

Given parametric approximation Jj, obtain a parametric approximation Ji 1 using a
least squares fit.
We will give an example where the cost function error accumulates to co.

Bertsekas Reinforcement Learning 16/29

Instability of Fitted VI (Tsitsiklis and VanRoy, 1996)

Cost0 Single policy
Bellman Eq.: J(1) = aJ(2), J(2) = aJ(2)
J*(1) =J*(2) =0
Cost 0 Exact VI : Ji41(1) = adi(2), Jet1(2) = adi(2)
4 Range of
Weighted Projections
. | ——— Approximation Subspace
Fitted ‘ /

VI iterate |

— Orthogonal Projection
Jr+1
Je = (r1,2
k= (1, 2me) Exact VI iterate
2ary, 2ar
5= (0,0) (20, 2a%)

By using a weighted projection we may correct the problem. What is the right projection?

Bertsekas Reinforcement Learning 17/29

Policy Iteration (P1) Algorithm: Generates a Sequence of Policies {<}

Initial Policy

Evaluate Cost Function J,, of Policy Cost
Current policy p Evaluation

Generate “Improved” Policy 7z | Policy Improvement

Given the current policy 1%, a Pl consists of two phases:

@ Policy evaluation computes J,«(x), x = 1,..., n, as the solution of the (linear)
Bellman equation system

X) = 3 Py (1 00) (901 (), ¥) + adu(y)), x=1,....n
y=1

@ Policy improvement then computes a new policy pf*! as

k+1(

x)€arg m|n pry (9(x,u,y) +adi(y)), x=1,....n

Bertsekas Reinforcement Learning 19/29

Proof of Policy Improvement (Standard Rollout/PI Proof Line)

PI finite convergence: Pl generates an improving sequence of policies, i.e.,
Jk1(x) < Jk(x) for all x and k, and terminates with an optimal policy.

Let /i be the rollout policy obtained from base policy w: Will show that J; < J,

@ Denote by Jy the cost function of a policy that applies /i for the first N stages and
applies . thereafter.

@ We have the Bellman equation J,.(x) = 327_, Pay (1(x)) (g(x, w(x),) + aJu(y)),
SO

pry ((x, fi(x),)+aJy(y)> < Ju(x) (by policy improvement eq.

@ From the definition of J>» and J;, and the preceding relation, we have
n
=3 Py () (9(x, i(x), ¥) +adh () < pry () (9(x. fi(x), y)+ad(¥)

S0 Jo(x) < Ji(x) < Ju(x) for all x.

@ Continuing similarly, we obtain Jy1(x) < Jy(x) < Ju.(x) for all x and N. Since
JIv — Ji (VI for fi converges to J;), it follows that J; < J,..

Bertsekas Reinforcement Learning 20/29

Optimistic PI - This is Just Repeated Truncated Rollout

Generates sequence of policy-cost function approximation pairs {(uk, Jk)}

Given the typical pair (u*, Jx), do truncated rollout with base policy 1% and cost
approximation Jx:

° Pohcy evaluation (my steps of rollout using 1*): Starting with JAk,o = Jk, compute
Jk1, - -+ Jk,m, according to

Jimr(x) = 3 Py (i) (9%, 1 (x),¥) + adim(y)); x=1,...0n

@ Policy improvement (standard): Set

k+1

(x) carg m|n pry (9(x,u,y) + adim (¥)), x=1,....n,

Jes1(x) = min > Py (9(x,u,y) + adim (v)), x=1,....n.

v

Convergence (using similar argument to standard PI)

Multistep PI: Uses Multistep Lookahead

Given the typical policy p*:

@ Policy evaluation (standard): Computes J,«(x), x = 1,..., n, as the solution of the
(linear) Bellman equation

Ju(x) = pry(uk(x)) (g(x, 1(x),y) + onuk(y)), x=1,...,n
y=1

@ Policy improvement with ¢-step lookahead: Solves the ¢-stage problem with
terminal cost function J «. If {io, . . ., fie—1} is the optimal policy of this problem,

then the new policy ' is flo.

Motivation: It may yield a better policy p“*! than with one-step lookahead, at the
expense of a more complex policy improvement operation.

Convergence (using similar argument to standard Pl) J

Bertsekas Reinforcement Learning 22/29

Approximate Rollout and Pl Variants

Simplified Minimization
Multiagent policy improvement
X First Step “Future”
n

min szy(u) (g(@”, U, y) + ajﬂ(y»

Approximation of J,

Rollout by (possibly inexact) simulation
Truncated rollout (optimistic PI)
Parallel rollout (multiple policies)
Problem approximation (aggregation)

Approximation of F{-}
Adaptive simulation
Monte Carlo tree search
Certainty equivalence

@ Multistep lookahead may be used

@ Multiple policies variant uses J(y) = min {1 (x), - dum(x)}

@ Corresponding Pl variants

@ Approximate Pl: Repeated approximate rollout; generates a sequence of policies
{1}

@ Approximate Pl needs off-line training of policies and/or terminal cost function
approximations

Bertsekas Reinforcement Learning 24/29

Approximate (Nonoptimistic) Policy Iteration - Error Bound (NDP, 1996)

oy

Error Zone

.....

and an approximate policy improvement error satisfying

D Py (1 () (906 1 (%),) + ad k()

y=1

,,,,, n

n
B ugql‘i/&)yz:;pxy(u)(g(xa va) + aJﬂk(y)) Se

Bertsekas Reinforcement Learning 26/29

Error Bound for the Case Where Policies Converge (NDP, 1996)

Error Zone

PI index k

@ A better error bound (by a factor 1 — «) holds if the generated policy sequence
{1¥} converges to some policy.

@ Convergence of policies is guaranteed in some cases; approximate Pl using
aggregation is one of them.

Bertsekas Reinforcement Learning 27/29

Truncated Rollout with Multistep Lookahead - Error Bound

Consider truncated rollout with
@ /-step lookahead
@ Followed by rollout with a policy u for m steps
@ Followed by terminal cost function approximation J

For the rollout policy fi, we have:

@ The error bound

2af

@

[Ja = Il < (@1 = Jull + 1 = 1)),

1

pacag

where [|J|| = max,—1,....» |J(x)| is the max-norm.
@ The cost improvement bound

m—

,
|J = Jdulls x=1,...,n

—

Ja(x) < Ju(x) +

2a
1

Note that it helps to have:

¢and m: large, ||J — J.|| and ||J, — J*||: small

Bertsekas Reinforcement Learning 28/29

About the Next Lecture

We will cover distributed and multiagent RL:
@ Multiagent rollout and policy iteration
@ State space partitioning and use of parallel computation
@ Case studies

Bertsekas Reinforcement Learning 29/29

	Infinite Horizon - Transition Probability Notation
	Overview of Theory and Algorithms
	SSP Problems: Elaboration and Difficulties
	Algorithms - Approximate Value Iteration
	Exact Policy Iteration
	Approximate Policy Iteration
	Error Bounds

