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Infinite Horizon Problems

Random Transition
_ . Infinite Horizon
Tpr1 = f(og, ur, w) te Horizo

Random Cost

akg(xy, up, wy)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wx) with state, control, and random disturbance
@ Stationary policies p with p(x) € U(x) for all x
@ Cost of stage k: o g (xk, pu(Xk), Wk)
@ Cost of a policy p: The limit as N — oo of the N-stage costs

N—1
Ju(x) = I|m Euw, {Z o g (X, (), Wk)}

k=0

@ Optimal cost function J*(xo) = min, J.(xo0)
@ 0 < o < 1 is the discount factor. If & < 1 the problem is called Discounted

@ Problems with a = 1 typically include a special cost-free termination state t and
are called Stochastic Shortest Path (SSP) problems.
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Transition Probability Notation for Finite-State Problems

@ States: x = 1,...,n. Successor states: y. (For SSP there is also the extra
termination state t.)

@ Probability of x — y transition under control u: py,(u)
@ Cost of x — y transition under control u: g(x, u, y)

Going from one notation system to the other (discounted case):
@ Replace X1 = f(Xk, Uk, W) With X1 = wi (a simpler system)
@ Replace P(w | x, u) with py,(u) (a 3-dimensional matrix)
@ Replace cost per stage E{g(x, u, w)} with 3°7_, py(u)g(x, u,y)

@ Replace cost-to-go E{J(f(x, u, W))} with 2521 Py (U)J(Y)

Example: Bellman equation (translated to the new notation)

_ urenJ(r] pry g(x,u,y) + ad*(y)) (for Discounted)

Sx) = min |pa(u)g(x, u f)+szy(u)(9(x, u,y) +J°(y)) (for SSP)

ueu
y=1
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The Three Theorems for Discounted Problems: If g(x, u, y) is Bounded

1) VI convergence: Jx(x) — J*(x) for all Jy, where:

ueU(x)

Jkr1(x) = min {pry 9(x, UvY)"‘O‘Jk(Y))]

2) J* satisfies uniquely Bellman’s equation

3) Optimality condition
A stationary policy  is optimal if and only if x(x) attains the minimum for every state x.

Also J,, is the unique solution of the Bellman equation (for policy 1)

pry ( (X, u(x), )+aJu(y))., x=1,....n
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Exact and Approximate Policy lteration

i Policy
Base Policy Improvement
> Policy »  Evaluation > . >
I J Bellman Eq. with
" J,, instead of J*

Rollout Policy fi

<

Important facts:
@ Exact Pl yields in the limit an optimal policy
@ Exact Pl is much faster than VI; it is Newton’s method for solving Bellman’s Eq.

@ Policy evaluation can be implemented by a variety of simulation-based methods.
Lots of RL theory (e.g., temporal difference methods)

@ Pl can be implemented approximately, with a value and/or a policy network

Base Approximation Approximation
» Policy »| in Value Space »{in Policy Space >
Y Value Network Policy Network
Value Data Policy Data
Rollout Policy [
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Finite Spaces SSP Problems - Statement of Main Results

Most favorable Assumption (Termination Inevitable Under all Policies)

There exists m > 0 such that for every policy and initial state, there is positive
probability that f will be reached within m stages

Intuitively: This is really a finite horizon problem, but with random horizon. Easy analysiSJ

VI Convergence: Jx — J* for all initial conditions Jy, where

Al = i, [pxr(u)g(x, u )+ Py (U)(g(x,u,y) + Jk(y))] , x=1...n

y=1

Bellman’s equation: J* satisfies

J(x) = UrgLi]r&) [pxz(u)g(x, ut)+ > pey(u)(g(x, u,y) + J*(y))] , x=1,....n,

y=1

and is the unique solution of this equation.
Optimality condition:  is optimal if and only if for every x, p(x) attains the minimum in
the Bellman equation.
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Line of Analysis for Finite-State Problems: From SSP to Discounted

Cost E{g(-T,Uu, Z/)}
Cost E{g(z,u,y)} apgz(u) apry(u)  py.(u)

pmx(u) pxy(u) Pyy (u)

Pya(u)

Discounted Problem

SSP Equivalent

A discounted problem can be converted to an SSP problem (with termination
inevitable)
@ Reason: The stage k cost [a*E{g(x, u, y)}] is identical in both problems, under
the same policy.
@ Proofs for discounted case: Start with SSP analysis, get discounted analysis as
special case.

@ This line of proof applies to finite-state problems. For infinite-state discounted
problems a different line is needed (based on contraction mapping ideas).
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SSP Extensions

SSP problems often do not satisfy the “termination inevitable for all policies"
assumption (e.g., deterministic SP problems with cycles)

v

A more general assumption for SSP results: Nonterminating policies are “bad"

@ Every policy that does not terminate with > 0 probability, has oo cost for some
initial states.

@ There exists at least one policy under which termination is inevitable.

@ Major results are salvaged under this assumption.

SSP further extensions can be very challenging
@ Bellman’s Eqg. can have many solutions

@ Bellman’s Eq. may have a unique solution that is not equal to J* (even for
finite-state, but stochastic, problems)!!

@ VI and Pl may fail (even for finite-state problems)

@ Infinite-state problems can exhibit “strange" behavior (even with bounded cost per
stage)

@ See the on-line Abstract DP book (DPB, 2018) for detailed discussion
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Working Break: Challenge Questions About a Tricky SSP Problem; see

the Abstract DP Book, Section 3.1.1, for More Analysis

Cost a A

Terminal State ~ /

minfb, a + J|
Cost b J
o Bellman Equation

This example violates the “nonterminating policies are bad" assumption for
a=0. Then:

@ Bellman equation, J(1) = min [b, a+ J(1)], has multiple solutions

@ VI converges to J* from some initial conditions but not from others

Challenge questions: Consider the cases a > 0,a=0,and a< 0
@ Whatis J*(1)?
@ What is the solution set of Bellman’s equation?
@ What is the limit of the VI algorithm Jk.1(1) = min [b, a+ Jk(1)]?
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Answers to the Challenge Questions

Cost a A I
blooo__ d
Terminal State o /
minfb, a + J|
0 .
Cost b a o
Bellman Equation

Bellman Eq: J(1) = min [b, a-+ J(1)]; VI: k1 (1) = min [b, a+ Jk(1)]

@ If a > 0 (positive cycle): J*(1) = b is the unique solution, and VI converges to
J*(1). Here the “nonterminating policies are bad" assumption is satisfied.
@ If a= 0 (zero cycle):
J*(1) = min[0, b].
Bellman Eq. is J(1) = min [b, J(1)]; its solution set is = (—oo, b].
The VIl algorithm, Jx11(1) = min [b, Jk(1)], converges to b starting from Jy(1) > b,
and does not move from a starting value Jy(1) < b.
@ If a < 0 (negative cycle): The Bellman Eq. has no solution, and VI diverges to
J*(1) = —o0.
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Approximations to the VI algorithm: Fitted VI

Consider (discounted problem) VI with sequential approximation

Jir1(X) = min pry(u) (9(x,u, ¥) + adk(y)) (VI algorithm)
=

Approximate version: Assume that for some § > 0

n

max [Jir(x) = min 37 Py (u)(9(x, . ) + adi(y) | <9 (1)

y=1

@ Under condition (1), the cost function error max,—+.....» |Jk(x) — J*(x)| can be
shown to be < §/(1 — «) (asymptotically, as k — o).

@ ... but this result may not be meaningful for some natural methods: It may be
difficult to maintain Eq. (1) over an infinite horizon, because {Ji} may become
unbounded.

@ lllustration: Start with Jy, and let Ji be obtained using a parametric architecture:

Given parametric approximation Jj, obtain a parametric approximation Ji 1 using a
least squares fit.
We will give an example where the cost function error accumulates to co.
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Instability of Fitted VI (Tsitsiklis and VanRoy, 1996)

Cost0 Single policy
Bellman Eq.: J(1) = aJ(2), J(2) = aJ(2)
J*(1) =J*(2) =0
Cost 0 Exact VI : Ji41(1) = adi(2), Jet1(2) = adi(2)
4 Range of
Weighted Projections
. | ——— Approximation Subspace
Fitted ‘ /

VI iterate |

— Orthogonal Projection
Jr+1
Je = (r1,2
k= (1, 2me) Exact VI iterate
2ary, 2ar
5= (0,0) (20, 2a%)

By using a weighted projection we may correct the problem. What is the right projection?
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Policy Iteration (P1) Algorithm: Generates a Sequence of Policies {<}

Initial Policy

Evaluate Cost Function J,, of Policy Cost
Current policy p Evaluation

Generate “Improved” Policy 7z | Policy Improvement

Given the current policy 1%, a Pl consists of two phases:

@ Policy evaluation computes J,«(x), x = 1,..., n, as the solution of the (linear)
Bellman equation system

X) = 3 Py (1 00) (901 (), ¥) + adu(y)), x=1,....n
y=1

@ Policy improvement then computes a new policy pf*! as

k+1(

x)€arg m|n pry (9(x,u,y) +adi(y)), x=1,....n
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Proof of Policy Improvement (Standard Rollout/PI Proof Line)

PI finite convergence: Pl generates an improving sequence of policies, i.e.,
Jk1(x) < Jk(x) for all x and k, and terminates with an optimal policy.

Let /i be the rollout policy obtained from base policy w: Will show that J; < J,

@ Denote by Jy the cost function of a policy that applies /i for the first N stages and
applies . thereafter.

@ We have the Bellman equation J,.(x) = 327_, Pay (1(x)) (g(x, w(x), ) + aJu(y)),
SO

pry ( (x, fi(x), )+aJy(y)> < Ju(x) (by policy improvement eq.

@ From the definition of J>» and J;, and the preceding relation, we have
n
=3 Py () (9(x, i(x), ¥) +adh () < pry () (9(x. fi(x), y)+ad(¥)

S0 Jo(x) < Ji(x) < Ju(x) for all x.

@ Continuing similarly, we obtain Jy1(x) < Jy(x) < Ju.(x) for all x and N. Since
JIv — Ji (VI for fi converges to J;), it follows that J; < J,..
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Optimistic PI - This is Just Repeated Truncated Rollout

Generates sequence of policy-cost function approximation pairs {(uk, Jk)}

Given the typical pair (u*, Jx), do truncated rollout with base policy 1% and cost
approximation Jx:

° Pohcy evaluation (my steps of rollout using 1*): Starting with JAk,o = Jk, compute
Jk1, - -+ Jk,m, according to

Jimr(x) = 3 Py (i ) (9%, 1 (x),¥) + adim(y));  x=1,...0n

@ Policy improvement (standard): Set

k+1

(x) carg m|n pry (9(x,u,y) + adim (¥)), x=1,....n,

Jes1(x) = min > Py (9(x,u,y) + adim (v)),  x=1,....n.

v

Convergence (using similar argument to standard PI)




Multistep PI: Uses Multistep Lookahead

Given the typical policy p*:

@ Policy evaluation (standard): Computes J,«(x), x = 1,..., n, as the solution of the
(linear) Bellman equation

Ju(x) = pry(uk(x)) (g(x, 1(x),y) + onuk(y)), x=1,...,n
y=1

@ Policy improvement with ¢-step lookahead: Solves the ¢-stage problem with
terminal cost function J «. If {io, . . ., fie—1} is the optimal policy of this problem,

then the new policy ' is flo.

Motivation: It may yield a better policy p“*! than with one-step lookahead, at the
expense of a more complex policy improvement operation.

Convergence (using similar argument to standard Pl) J

Bertsekas Reinforcement Learning 22/29



Approximate Rollout and Pl Variants

Simplified Minimization
Multiagent policy improvement
X First Step “Future”
n

min szy(u) (g(@”, U, y) + ajﬂ(y»

Approximation of J,

Rollout by (possibly inexact) simulation
Truncated rollout (optimistic PI)
Parallel rollout (multiple policies)
Problem approximation (aggregation)

Approximation of F{-}
Adaptive simulation
Monte Carlo tree search
Certainty equivalence

@ Multistep lookahead may be used

@ Multiple policies variant uses J(y) = min {1 (x), - dum(x)}

@ Corresponding Pl variants

@ Approximate Pl: Repeated approximate rollout; generates a sequence of policies
{1}

@ Approximate Pl needs off-line training of policies and/or terminal cost function
approximations
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Approximate (Nonoptimistic) Policy Iteration - Error Bound (NDP, 1996)

oy

Error Zone

.....

and an approximate policy improvement error satisfying

D Py (1 () (906 1 (%), ) + ad k()

y=1

,,,,, n

n
B ugql‘i/&)yz:;pxy(u)(g(xa va) + aJﬂk(y)) Se
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Error Bound for the Case Where Policies Converge (NDP, 1996)

Error Zone

PI index k

@ A better error bound (by a factor 1 — «) holds if the generated policy sequence
{1¥} converges to some policy.

@ Convergence of policies is guaranteed in some cases; approximate Pl using
aggregation is one of them.
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Truncated Rollout with Multistep Lookahead - Error Bound

Consider truncated rollout with
@ /-step lookahead
@ Followed by rollout with a policy u for m steps
@ Followed by terminal cost function approximation J

For the rollout policy fi, we have:

@ The error bound

2af

@

[Ja = Il < (@1 = Jull + 1 = 1)),

1

pacag

where [|J|| = max,—1,....» |J(x)| is the max-norm.
@ The cost improvement bound

m—

,
|J = Jdulls x=1,...,n

—

Ja(x) < Ju(x) +

2a
1

Note that it helps to have:

¢and m: large, ||J — J.|| and ||J, — J*||: small
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About the Next Lecture

We will cover distributed and multiagent RL:
@ Multiagent rollout and policy iteration
@ State space partitioning and use of parallel computation
@ Case studies
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