Topics in Reinforcement Learning:
Rollout and Approximate Policy lteration

ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 8
Off-Line Training, Neural Nets, and Other Parametric Architectures

Bertsekas Reinforcement Learning 1/34

0 Parametric Approximation Architectures

e Training of Architectures - Switch to Video-Lecture 6 from 2019
e Incremental Optimization of Sums of Differentiable Functions
0 Neural Networks

e Neural Nets and Finite Horizon DP

e Back from Video-Lecture 6 from 2019 - Miscellaneous Issues in Training

Bertsekas Reinforcement Learning 2/34

Recall Approximation in Value Space (Mostly Used for On-Line Control

Selection)

Approximate Min

i “ ”
Hllin E{gk(mk, Uk, wk)+Jk+1(q;k+1)}
Li \
Approximate E{-} Approximate Cost-to-Go Jy41
Certainty equivalence Problem approximat.iop
Adaptive simulation Rollout, Model Predictive Control

Parametric approximation
Neural nets
Aggregation

ONE-STEP LOOKAHEAD

Monte Carlo tree search

At State z

DP minimization

!

k-1
min E {gk<;l,';, S Ug, W) + Z gk(.’l?m‘ fom (T), u'm) + Jk,+(($k+1,)}

UksP k415 k+£—1 it

First ¢ Steps “Future”

Cost-to-go

Lookahead Minimization Approximation

MULTISTEP LOOKAHEAD

Bertsekas Reinforcement Learning 3/34

Types of Approximations Used in Off-Line Training

There are two types of off-line approximations in RL:
@ Cost approximation in finite and infinite horizon problems
Optimal cost function J (xk) or J*(x), optimal Q-function Qj (xk, ux) or Q*(x, u)

Cost function of a policy J k(Xk) or Ju(x), Q-function of a policy Q. x(xk, ux) or
OM(Xv U)

@ Policy approximation in finite and infinite horizon problems
Optimal policy pu; (k) or p*(x)
A given policy rux(Xk) or p(x)

We will focus on parametric approximations J(x, r) and fi(x, r)
@ These are functions of x that depend on a parameter vector r

@ An example is neural networks (r is the set of weights)

Bertsekas Reinforcement Learning

5/34

General Parametric Cost Approximation

Target Cost
Function

J(x)

Training Data

(zs, J(x%)) i
s=1,

Approximation
Architecture
Parameter r

Approximating
Function

J(x,7)

TRAINING CAN BE DONE WITH SPECIALIZED OPTIMIZATION SOFTWARE
SUCH AS
GRADIENT-LIKE METHODS OR OTHER LEAST SQUARES METHODS

Bertsekas

Reinforcement Learning

6/34

Parametric Policy Approximation - Finite Control Space

@ If the control has continuous/real-valued components, the training is similar to the
cost function case

@ If the control comes from a finite control space {u', ..., u™}, a modified approach
is needed

@ View a policy i as a classifier: A function that maps x into a “category” p(x)

Approximating
Classifier Randomized Policy
Target Policy | Training Data Assigns State z to Max
u(z)) Class/Control u o Operation[
s—=1..... q Parameter r Control Probabilities

i (x,r), . g (e,r)

TRAINING CAN BE DONE WITH CLASSIFICATION SOFTWARE
IF THE NUMBER OF CONTROLS IS FINITE

Randomized policies have continuous components
This helps algorithmically

Bertsekas Reinforcement Learning 7134

Cost Function Parametric Approximation Generalities

@ We select a class of functions J(x, r) that depend on x and a vector
r=(n,...,rm)of m-“unable" scalar parameters.

@ We adjust r to change J and “match” the training data from the target function.
@ Training the architecture: The algorithm to choose r (typically regression-type).
@ Local vs global: Change in a single parameter affects J locally vs globally.

@ Architectures are called linear or nonlinear, if J(x, r) is linear or nonlinear in r.

@ Architectures are feature-based if they depend on x via a feature vector ¢(x) that
captures “major characteristics" of x,

Jx,r) = J(s(x),r),

where J is some function. Intuitive idea: Features capture dominant nonlinearities.

@ A linear feature-based architecture: J(x, r) = 30, rege(x) = r'$(x), where r, and
¢e(x) are the £th components of r and ¢(x).

v

Feature Vector Linear Cost
State & | Feature Extraction B(x) Linear Approximator 7/¢(z)
—P . > . —_—
Mapping Mapping

Bertsekas Reinforcement Learning 8/34

A Simple Example of a Linear Feature-Based (Local) Architecture

T(a,r) = X5 rede(x)

Piecewise constant approximation

@ Partition the state space into subsets Si, ..., Sy. Let the ¢th feature be defined by
membership in the set S, i.e., the indicator function of S,

. 1ifxe S,
pe(x) = {o ifx ¢S,

@ The architecture

J(x,r) = Zfzcﬁz

is piecewise constant with value r, for all x within the set S,.

Bertsekas Reinforcement Learning 9/34

Generic Polynomial (Global) Architectures

Quadratic polynomial approximation
@ Let x = (x° X7
@ Consider features
do() =1, si(x)=x, g(x)=x¥, ij=1,...n,
and the linear feature-based approximation architecture

J(x, r)_ro+Zr,x +ZZ/’,,XX’

i=1 j=i

@ Here the parameter vector r has components ry, r;, and r;.

General polynomial architectures: Polynomials in the components x', ..., x” J
An even more general architecture: Polynomials of features of x
A linear feature-based architecture is a special case J

Bertsekas Reinforcement Learning 10/34

Examples of Problem-Specific Feature-Based Architectures

Features:
Material Balance,
Mobility, "
R Safety, etc Poslmqn
. . Feature | Weighting of Evaluation
g Extraction Features .
B swy ozl
Chess

Tetris

Bertsekas Reinforcement Learning 11/34

Architectures with Partitioned State Space

Feature Ky
Extraction

»
-

State Space Feature Space

A simple method to construct complex approximation architectures:

@ Partition the state space into several subsets and construct a separate cost
approximation in each subset.

@ Can use a separate architecture on each set of the partition.
@ It is often a good idea to use features to generate the partition. Rationale:

We want to group together states with similar costs

We hypothesize that states with similar features should have similar costs

Bertsekas Reinforcement Learning

12/34

Neural Networks: An Architecture that

z,v
= 7|£ o1(z,v) A Cost)
pproximation
State x y(a:l Ay(z) +b 7|£ d2(x,v) ' (x,v)
Lt 7|¢ ¢m (iL', ’U)
State Li] -
Encoding Llnear N(inhnear WLuLear
ayer ayer eighting
“Pﬁg)?gn{—nscll)i(clfﬁc” Paran;letgr Parameter
Features) v=(4) FEATURES T

A SINGLE LAYER NEURAL NETWORK

13/34

Bertsekas Reinforcement Learning

Training of Architectures

Least squares regression

@ Collect a set of state-cost training pairs (x°, 8°), s = 1,..., g, where 3° is equal to
the target cost J(x°) plus some “noise".

@ ris determined by solving the problem
q
min > (J(x*, r) - °)°
s=1

@ Sometimes a quadratic regularization term ~||r||? is added to the least squares
objective, to facilitate the minimization (among other reasons).

Training of linear feature-based architectures can be done exactly

o If J(x,r) = r'¢(x), where ¢(x) is the m-dimensional feature vector, the training
problem is quadratic and can be solved in closed form.

@ The exact solution of the training problem is given by
q -1 q
P= (Z ¢(x5)¢<x5)’> > o(x)s°
s=1 s=1

@ This requires a lot of computation for a large m and data set; may not be best.

Bertsekas Reinforcement Learning 15/34

Training of Nonlinear Architectures

The main training issue

How to exploit the structure of the training problem
! 2
i T vS s
mran;(J(x ,r) = B%)
S=

to solve it efficiently.

Key characteristics of the training problem

@ Possibly nonconvex with many local minima, horribly complicated graph of the cost
function (true when a neural net is used).

@ Many terms in the least least squares sum; standard gradient and Newton-like
methods are essentially inapplicable.

@ Incremental iterative methods that operate on a single term (J(x°,r) — ﬂS)Z at
each iteration have worked well enough (for many problems).

Bertsekas Reinforcement Learning 16/34

Incremental Gradient Methods

Generic sum of terms optimization problem
Minimize
m

) = > i)

where each f; is a differentiable scalar function of the n-dimensional vector y (this is
the parameter vector in the context of parametric training).

The ordinary gradient method generates y**! from y* according to
m
Y =y =) =y = VYY)
i=1

where v¥ > 0 is a stepsize parameter.

The incremental gradient counterpart
Choose an index i and iterate according to

Y = yf =V ()

where ~* > 0 is a stepsize parameter.
Bertsekas Reinforcement Learning 18/34

The Advantage of Incrementalism: An Interpretation from the NDP Book

(ciy —bi)?
. \
— min; y; R MaxX; Y
| = - — .
FAROUT REGION REGION OF CONFUSION FAROUT REGION

Minimize f(y) = 3 31", (ciy — bi)?

Compare the ordinary and the incremental gradient methods in two cases

@ When far from convergence: Incremental gradient is as fast as ordinary gradient
with 1/m amount of work.

@ When close to convergence: Incremental gradient gets confused and requires a
diminishing stepsize for convergence.

Bertsekas Reinforcement Learning 19/34

Incremental Aggregated and Stochastic Gradient Methods

Incremental aggregated method aims at acceleration
@ Evaluates gradient of a single term at each iteration.
@ Uses previously calculated gradients as if they were up to date

m—1

yk+1 _ yk o ﬁ/k Z Vfik,é(ykié)

£=0

@ Has theoretical and empirical support, and it is often preferable.

Stochastic gradient method (also called stochastic gradient descent or SGD)

@ Applies to minimization of f(y) = E{F(y. w)} where w is a random variable
@ Has the form
yk+1 _ yk o ’YKVyF(,Vk, Wk)
where w¥ is a sample of w and V, F denotes gradient of F with respect to y.

@ The incremental gradient method with random index selection is the same as SGD
[convert the sum 37, fi(y) to an expected value, where i is random with uniform
distribution].

Bertsekas Reinforcement Learning 20/34

Implementation Issues of Incremental Methods - Alternative Methods

@ How to pick the stepsize v* (usually v* = 25 or similar).

@ How to deal (if at all) with region of confusion issues (detect being in the region of
confusion and reduce the stepsize).

@ How to select the order of terms to iterate (cyclic, random, other).
@ Diagonal scaling (a different stepsize for each component of y).

@ Alternative methods (more ambitious): Incremental Newton method, extended
Kalman filter (see the textbook and references).

Bertsekas Reinforcement Learning 21/34

Neural Nets: An Architecture that Automatically Constructs Features

T,v
7'4 91(@) A Cost
pproximation
State = y(x) Ay(z) + b 7|4 ¢a(z,v) r'¢(x,v)
7'4 ¢m(1’7 U)
State .] -
Encoding [ﬂncar Nonlinear Linear
Layer Weightin
(May Include p %% y ghting
“Problem—Speciﬁc” va‘ia’r(nAe g)r Parameter
Features) ’ FEATURES 7
Given a set of state-cost training pairs (x°, 3°), s = 1,..., g, the parameters of the

neural network (A, b, r) are obtained by solving the training problem

i(Zrm (Ay(x®) + b),) — 55)2

@ Incremental gradient is typically used for training.

@ Universal approximation property.

Bertsekas Reinforcement Learning 23/34

Rectifier and Sigmoidal Nonlinearities

max{0, €} (&) =In(1 +€f)

The rectified linear unit o(€) = In(1 + €°). It is the rectifier function max{0, £} with its
corner “smoothed out."

Sigmoidal units: The hyperbolic tangent function o(¢) = tanh(¢) = ‘:Z;j:f is on the
left. The logistic function o(¢) = ;1= is on the right.

Bertsekas Reinforcement Learning 24/34

A Working Break: Challenge Question

Pp,~(2)
/ Slope v

T Linear Rectifier
y(x —5) max{0, £}

0 Jé; T

How can we use linear and rectifier units to construct the “pulse” feature below?

¢181 :/82753754,’}’(33)

Slope T i i
| |

»

0 Bif2 B3P

@ What are the features that can be produced by neural nets?
@ Why do neural nets have a “universal approximation” property? J

Bertsekas Reinforcement Learning 25/34

Answer

Linear Rectifier $51,62.7(%)
—
y(z — B1) max{0, £} 4 Slope 7 /!
* |
ol 0 B B2 x
Linear Rectifier
v(z — f2) max{0, £} (a)
Linear Rectifier
(= B1) max{0, £}
BB1,B2,Ba,61.4(T)
Linear Rectifier
y(z — f2) max{0, £}
- - e - l
Linear Rectifier 0 Aip Psbs @
Y(z — B3) » max{0,&} +
(b)
Linear Rectifier
(@ — fBa) max{0,&}
Using the pulse feature as a building block, any feature can be approximated J

Bertsekas Reinforcement Learning 26/34

Sequential DP Approximation - A Parametric Approximation at Every

Stage (Also Called

Start with Jy = gn and sequentially train going backwards, until k = 0

@ Given a cost-to-go approximation Jx,1, we use one-step lookahead to construct a
large number of state-cost pairs (xi, 35), s =1, ..., q, where

B: = min E{g(x,f,u,wk)+Jk+1(fk(x,f,u,wk),rk+1)}7 s=1,....q

u€ Uk (x§)

@ We “train" an architecture Jx on the training set (x§, 55), s =1,...,q.

Typical approach: Train by least squares/regression and possibly using a
neural net

We minimize over r

g
Z (J(xXE, 1) 3)2
p

Bertsekas Reinforcement Learning 28/34

Sequential Q-Factor Approximation

@ Consider sequential DP approximation of Q-factor parametric approximations

Qk (X, Uk, k) = E{gk(xk~, U we) + min Qupt (Xeit, U, fk+1)}
UE Upey1 (X 1)

(Note a mathematical magic: The order of E{-} and min have been reversed.)

@ We obtain Qk(xk, Uk, r) by training with many pairs ((x2, Ug), Bi), where 37 is a
sample of the approximate Q-factor of (x¢, ug). [No need to compute E{-}.]

@ Note: No need for a model to obtain ;. Sufficient to have a simulator that
generates state-control-cost-next state random samples

(XK, Uk), (Gk (Xk, Uk, Wi), Xkr1))

@ Having computed ri, the one-step lookahead control is obtained on-line as

T (x) €arg min Qx(xk, U, 1)
u€e Uk (xk)

without the need of a model or expected value calculations.
@ Important advantage: The on-line calculation of the control is simplified.

Bertsekas Reinforcement Learning 29/34

On The Mystery of Deep Neural Networks
“l=

State Linear Nonlinear Linear Nonlinear Linear
Encoding Layer Layer Layer Layer ‘Weighting

@ Extensive research has gone into explaining why they are more effective than
shallow neural nets for some problems.
@ Recent research strongly suggests that overparametrization (many more
parameters than data) is the main reason.
@ Generally the ratio
_ Number of weights
" Number of data points

affects the quality of the trained architecture.

@ If R ~ 1, the architecture tends to fit very well the training data (overfitting), but do
poorly at states outside the data set. This is well-known in machine learning.

@ For R considerably larger than 1 this problem can be overcome.

@ See the research literature and the recent text by Hardt and Recht, 2021,
“Patterns, Predictions, and Actions", arXiv preprint arXiv:2102.05242

Bertsekas Reinforcement Learning 31/34

Should we Approximate Q-Factors or Q-Factor Differences?

To compare controls at x, we only need Q-factor differences Q(x, u) — Q(x, ') J

An example of what can happen if we do not use Q-factor differences:
@ Scalar system and cost per stage:

Xi41 = Xk + Uk, 9(x, u) = 6(x* + 1), 0 > 0is very small;
think of discretization of continuous-time problem involving dx(t)/dt = u(t)
@ Consider policy u(x) = —2x. Its cost function can be calculated to be
5X2 2 .
Ju(x) = T(1 +9) + O(5°), HUGE relative to g(x, u)
Its Q-factor can be calculated to be
5x2 <9x2 5

OIA(X’U):T—'_& T+U2+EXU>+O(52)

@ The important part for policy improvement is §(u® + 3xu). When Q. (x, u) is
approximated by Q,.(x, u; r), it will be dominated by 5x2 /4 and will be “lost"

Bertsekas Reinforcement Learning 32/34

A More General Issue: Disproportionate Terms in Q-Factor Calculations

Remedy: Subtract state-dependent constants from Q-factors (“baselines")

The constants subtracted should affect the offending terms (such as J)

Example: Consider rollout with cost function approximation J ~ Ju
@ At x, we minimize over u

E{g(x,u, w) + J(f(x,u, w))}

@ Question: How to deal with g(x, u, w) being tiny relative to J(f(x, u, w))? An
important case where this happens: Time discretization of continuous-time
systems.

@ Aremedy: Subtract J(x) from J((x, u, w)) (see Section 2.3 of the class notes).

Other possibilities:
@ Learn directly the cost function differences D, (x, X") = J.(x) — J.(x") with an
approximation architecture. This is known as differential training.

@ Methods known as advantage updating. [Work with relative Q-factors, i.e., subtract
the state-dependent baseline min, Q(x, u’) from Q(x, u).]

v

Bertsekas Reinforcement Learning 33/34

About the Next Lecture

We will cover:
@ Infinite horizon theory and algorithms
@ Discounted and stochastic shortest path problems

PLEASE REVIEW THE INFINITE HORIZON MATERIAL OF THE CLASS NOTES
WATCH VIDEO LECTURE 7 OF 2019 COURSE OFFERING AT MY WEB SITE

Bertsekas Reinforcement Learning 34/34

	Parametric Approximation Architectures
	Training of Architectures - Switch to Video-Lecture 6 from 2019
	Incremental Optimization of Sums of Differentiable Functions
	Neural Networks
	Neural Nets and Finite Horizon DP
	Back from Video-Lecture 6 from 2019 - Miscellaneous Issues in Training

