Topics in Reinforcement Learning:
Rollout and Approximate Policy lteration

ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 7
Constrained Rollout, Rollout for Discrete Optimization, Minimax Rollout

Bertsekas Reinforcement Learning

1/24

0 Constrained Rollout for Deterministic Optimal Control
e Discrete Optimization Applications

e Rollout for Minimax Control

Bertsekas Reinforcement Learning 2/24

Traveling Salesman: Example of a Trajectory Constraint

Initial State xq
Unconstrained
Min Cost Tour

4 3

[acB| [acp] [apB] [ADC]
1 3 4 4 20 20
[ancn| [rco| [xpBd fpCH|
20
Safety Costs of
Matrix of Intercit; Complete Tours
e ¥ A
Travel Costs ABCDA| 5
Terminal State ¢ ABDCA| 20
Constraint: ACBDA| 4
Tour Safety < 10
ACDBA| 3
ADBCA| 1
IADCBA| 15

Find a minimum cost tour subject to a safety constraint |

Bertsekas Reinforcement Learnii 4/24

Deterministic Rollout with Trajectory Constraint: Basic Idea

Trajectory T}

Base Heuristic Cost Hy (&) 1

Th+1
u, o .
do iy TUg—1 K Monotonicity Property
Under Sequential Improvement

}—»0—»0 - _
R = s AN . R S
o =[Fg T1 T2 Tp-1 Tk Cost of Ty, > Cost of Ti41
20—»0—»0 - O—BO—»0Q

Tra1
e

Base Heuristic Cost Hyy1(Zp41)

Current Trajectory Tj41

Review of the unconstrained rollout algorithm:
@ Construct sequence of trajectories { T, Ty, ..., Ty} with monotonically
nonincreasing cost (assuming a sequential improvement condition).
@ For each k, the trajectories Tk, Tk+1, - .., Tn share the same initial portion
(Xb,ao,...,ak_1,ik)
@ The base heuristic is used to generate candidate trajectories that correspond to
the controls ux € Uk(X«).

@ The next trajectory Ty 1 is the candidate trajectory that has min cost.

To deal with a trajectory constraint T € C, we discard all the candidate trajectories that
violate the constraint, and we choose Ti1 to be the best of the remaining trajectories.

Bertsekas Reinforcement Learning 5/24

Deterministic Problems with Constraints: Definition

@ Consider a deterministic optimal control problem with system Xx:+1 = fi(Xk, Uk).

@ A complete trajectory is a sequence
T = (Xo,Uo,X1,U1,. ..,UN_1,XN)

@ Problem:

HIREi)

where G is a given cost function and C is a given constraint set of trajectories.

State augmentation idea for rollout
@ Redefine the state to be the partial trajectory

Yk = (X(_)7 Uo, X1,..., Uk_1,Xk)
@ Partial trajectory evolves according to a redefined system equation:
Vit = (Vies Uk, (X, Uk))

@ The problem becomes to minimize G(yn) subject to the constraint yy € C.

Bertsekas Reinforcement Learning

6/24

Rollout Algorithm - Partial Trajectory-Dependent Base Heuristic

Uk+1 UN -1

O—»0
Oo—»0
O—»0
Yk TE+1 Th42 TN-1 TN
Yk+1 o R(yr+1)
T (G u) = (T uk, R(yrt1)) € C
@ Given yx = {Xo, Uo, X1, Uh, ..., Ux—1, Xk } consider all controls ux and corresponding

next states X 1-
@ Extend j to obtain the partial trajectories yixi1 = (¥, Uk, Xk+1), for ux € Uk(X«).
@ Run the base heuristic from each yj.1 to obtain the partial trajectory R(yk+1).
@ Join the partial trajectories yx+1 and R(yx+1) to obtain complete trajectories

denoted by Tk(Jk, uk) = (¥, Uk, R(Yk+1))
@ Find the set of controls U () for which Ti (¥, ux) is feasible, i.e., Tk(Jk, uk) € C
@ Choose the control i € Uk(ji«) according to the minimization

dx carg min G(Tk(Jx, uk))

Uk € Uk (V)

Bertsekas Reinforcement Learning 7124

Constrained Traveling Salesman Example

Initial State xg

Rollout Choice
Heuristic
from AB~_

Safety Costs of
Complete Tours

ABCDA| 5
ABDCA| 20
ACBDA| 4
ACDBA| 3
ADBCA| 1
Terminal State ¢ ADCBA| 15

Constraint:
Tour Safety < 10

Matrix of Intercity
Travel Costs

@ Rollout at A: Considers partial tours AB, AC, and AD; Obtains the complete tours
ABCDA, ACBDA, and ADCBA; Discards ADCBA as being infeasible; Compares
ABCDA and ACBDA, finds ABCDA to have smaller cost, and selects AB.

@ Rollout at AB: Considers the partial tours ABC and ABD; Obtains the complete
tours ABCDA and ABDCA; Discards ABDCA as being infeasible; Selects the
complete tour ABCDA.

Bertsekas Reinforcement Learning 8/24

Constrained Rollout Algorithm Properties

U1 UN-—1
Oo0—»O
Oo—»0
Yk Tk+1 Thk42 TN-1 TN
T
Yk+1 R(yr+1)

T (G u) = (G, wr, R(yes1)) € C

@ The notions of sequential consistency and sequential improvement apply. Their
definition includes that the set of “feasible" controls Uk(j«) is nonempty for all k.

@ Sequential improvement condition: The min heuristic Q-factor over U (j%) is no
larger than the heuristic cost at yx (see the notes).
@ Fortified version (if sequential improvement does not hold; see the notes):

Maintains the “tentative best" trajectory, and follows it up to generating a better
trajectory through rollout.

Has the cost improvement property, assuming the base heuristic generates a feasible
trajectory starting from the initial condition y = Xo.

@ Multiagent version: Selects one-control-component-at-a-time (apply constrained
rollout to the equivalent reformulation, i.e., the one with control space “unfolded").

Bertsekas Reinforcement Learning 9/24

Example of Sequential Consistency and Sequential Improvement

Rollout Choice

Heuristic 1

from AB~.

Rollout Choice

Matrix of Intercity
Travel Costs

Initial State xo

Heuristic
from A

Heuristic
/3 from AD

Safety Costs of
Complete Tours

ABCDA| 5
ABDCA| 20
ACBDA| 4
ACDBA| 3

ADBCA| 1
Terminal State t ADCBA| 15

Constraint:
Tour Safety < 10

@ The heuristic is not sequentially consistent at A, but it is sequentially improving.

@ If we change the D—A cost to 25, the heuristic is not sequentially improving at A,
and the cost improvement property is lost.

@ If we change the D—A cost to 25 and we add fortification, the rollout algorithm at
A sticks with the initial tentative best trajectory ACDBA, and rejects ABCDA.

Bertsekas

Reinforcement Learning

10/24

A Retrospective Summary on Deterministic Constrained Rollout

Structural components

(1) Trajectories T consisting of a sequence of decisions defined by a layered/optimal
control graph

(2) A cost function G(T) to rank trajectories
(3) A constraint T € C to determine feasibility of trajectories

(4) A base heuristic that starts from a partial trajectory and generates a complete
trajectory

Given (1)
The choices of (2), (3), and (4) are independent of each other

In particular, given (1)-(3):
We can try several different base heuristics or a superheuristic

Bertsekas Reinforcement Learning 11/24

General Discrete Optimization Problem: Minimize G(u) Subject to

ue C,where u=(up,...,Un_1)

Stage 3 cee Stage N

States u2 > e
(o) States States B States
(uo,u1) (ug,ur,uz) = (uo,..., un_1)
Cost G(u)

@ This is a special case of the constrained deterministic optimal control problem
where each state xx can only take a single value, i.e., xx = “artificial” xo.

@ A very broad range of problems, e.g., combinatorial, integer programming, etc.

@ Solution by constrained rollout applies. Provides entry point to the use of RL ideas

in discrete optimization through DP and approximation in value space.

@ Competing methods: local/random search, genetic algorithms, integer
programming/branch and bound, etc. Rollout is different.

Bertsekas Reinforcement Learning

13/24

Facility Location: A Prototype Integer Programming Problem

Clients

C': Set of (ug,...,un—1) such that uy € {0,1}
and can satisfy the demand and other constraints
(e.g., public policy constraints)

M N-1

L uUN-1) = . min Z Z QikYik + Z brug

koi,k)EH
(Wik-i-k)€H (uo,-un—1) = (=0

Locations
up=0or1
H(uo,...,un-1): Set of feasible demand allocations, i.e.

Set of y;r > 0 such that

>k vik = di for all 4,

> vik < ugey, for all k

Clients

@ Place facilities at some of the given candidate locations to serve M “clients."

@ Clienti=1,..., M has a demand d; for services that may be satisfied at a location
k=0,...,N—1 atacost ax per unit.

@ A facility placed at location k has capacity cx and cost bx. Here ux € {0, 1}, with
ux = 1 if a facility is placed at k

@ Problem: Minimize >°", S"0" " aiyik + > 3o bxUx subject to total demand
satisfaction constraints (yj > 0, oy Yik = d; for all i, and Y=, yik < ukck for all k).

@ There may be additional constraints on u, but we will ignore for the moment.

@ Note: If the placement variables ux are known, the remaining problem is easily
solvable (it is a linear “transportation” problem).

Bertsekas Reinforcement Learning 14/24

Facility Location Problem: Formulation for Constrained Rollout

Clients

C': Set of (uo,...,un—1) such that u; € {0,1}
and can satisfy the demand and other constraints

e.g., public policy constraints)

M N-1 N-1
G(ug, ..., un—1) = min Z Z ikYix + Z bruy
ikt)€ g 1) S 4 =
Locations O
up =0or1
H(uo,...,un-1): Set of feasible demand allocations, i.e.

Set of y;x > 0 such that

> yir = d; for all 4,

i vik < ugey, for all k

@ Consider placements one location at a time.

@ Stage k = Placement decision ux € {0, 1} at location k (N stages).

@ Base heuristic: Having fixed wy, . . ., Uk, place a facility in all remaining locations.
@ Rollout: Having fixed wp, . . ., ux, compare two possibilities:

Set ux1 = 1 (place facility at location k + 1), set ux1 o = --- = uy_1 = 1 (as per the
base heuristic), and solve the remaining problem.
Set vk 1 = 0 (don'’t place facility at location k + 1), set ux, 0 = --- = uy_1 = 1 (as per

the base heuristic), and solve the remaining problem.
@ Select ux1 = 1 or ux1 = 0 depending on which yields feasibility and min cost.
@ Sequential improvement is satisfied in the absence of additional constraints.

@ Transportation problems are similar; solved efficiently with the auction algorithm
(see literature on network optimization).

Bertsekas Reinforcement Learning 15/24

Let’s Take a Working Break Before Discussing Minimax Control

A worst case point of view of the uncertainty
@ The disturbances wy are chosen by an adversarial and omniscient decision maker

@ Instead of a probabilistic description of wk, assume a set membership description
wi € Wj; think of a minimax version of the principle of optimality

Bertsekas Reinforcement Learning 17 /24

Minimax Control - Robust Control/Optimization - Games Against Nature

P o
PO i T

A worst case point of view of the uncertainty
The disturbances wy are chosen by an adversarial and omniscient decision maker J

Bertsekas Reinforcement Learning 18/24

Minimax Control Problems (Finite Horizon Case)

@ Instead of a probabilistic description of wk, assume a set membership description
Wi € Wi(Xk, uk) [it may depend on (X, uk)]

@ The minimax control problem is to find a policy m = {uo, - . ., un—1} With
1k(Xk) € Uk(xk) for all xx and k, which minimizes the cost function

J=(X0) = max
wi € Wi (X, 1 (k)
k=0,1 N—1

N—1
an(xn) + Z 9k (Xk, ok (Xi), Wk):|

k=0

@ The DP algorithm (max in place of E{-}): Starting with Jy(xn) = gn(Xn),
Ji(X¢) = min max Xk, Uk, W, Jiy1 (i (Xk, Uk, W,
he (Xk) B 11 [Qk(o Uk, Wie) + Ji 1 (Fie(Xk, Uk k))]
Similar to the stochastic case ... but the max operation is nonlinear and Monte
Carlo simulation is unavailable (this affects rollout/policy iteration)
@ Approximation in value space with one-step lookahead applies at state xx a control

Uk € argmin max [Qk(Xk, Uk Wie) + Tt (e (X, U, Wk))]
ug € U(xy) Wk € Wi (Xk>Uk)

@ Approximation in value space with multistep lookahead is similar

Bertsekas Reinforcement Learning 19/24

¢-Step Lookahead Approximation in Value Space for Minimax Control

At State First ¢ Steps “Future”
l ~ k+0—1 .
min max g (T, ug, wi) + Z gt (.‘L’t, we (), wf) + Jire(Thre)
Uk sH41s s Hhk4+0—1 Whoe-os Wh4—1 t—kt1
Control iy, Minimax Control Problem

with ¢-Step Horizon

@ Any cost function approximation jk+l(xk+g) is permissible

e Terminal cost approximation Ji.¢(X-¢) may be obtained by off-line training

@ The “three approximations” view is valid (min approx, max approx, Jx.¢ approx)
@ The ¢-step minimax control problem is solved by DP

@ lts solution is facilitated by a special technique, called "alpha-beta pruning"

@ There are variants with selective step lookahead

@ This is the algorithm that most chess programs use for on-line play (including
AlphaZero)

Bertsekas Reinforcement Learning 20/24

One-Step Rollout for Minimax Control in Discrete Spaces Problems

Cost of Base Policy

At State 1, Corresponding to zp+1 = [r(@p, we, wi)
l and Wy, .., WN-1
min max [!/L:<171\‘¢ o wye) + et (fr(@, wh, Wi), Wieg 1, - ,’wN71)}
up €U (Tg) Wk WN -1
i t
Rollout Control iy, LONGEST PATH PROBLEM
Optimal Control with
Control Variables wy, ..., wn_1

@ At state xx: For ux € Uk(xx), compute the Q-factor of the base policy

Qu(Xk, Ux) = ymax [gk(xk,uk, Wie) + Jr kit (Fe(Xe, Uk, W), Wk+1»---7WN—1)]

This is a longest path problem.
@ Rollout control: dx € argminy, ey, x,) Qx(Xk, Uk)
@ Any policy can be used as base policy (must be a legitimate policy, not a heuristic)
@ Sequential consistency holds (assuming no terminal cost approximation)
@ Sequential consistency implies cost improvement

@ Variants: Terminal cost approx., extra constraints (no cost improvement guarantee)

Bertsekas Reinforcement Learning 21/24

Minimax Rollout Subject to Trajectory Constraint

(XOTUOT"‘FUN—15XN) e C

. Cost of Base Policy
At trajectory

5 hed 4 N Corresponding to zy+1 = fi (T, uk, wk)
Tk = (To, 00y -+ -, Uk—1,Tk) and Wet, .. W1
min max | gr(@n. we, wr) + Jr kgt (@, Uhs W), Wit - - aU’N—l)}
ug €U () Wk WN-1
Rollout Control iy, Q-factor Qp(Tk, uk)

LONGEST PATH PROBLEM
Optimal Control with
Control Variables wy, ..., wn_1

@ At partial trajectory yx = (Xo, lo, - - - , Uxk—1, Xk): Compute the Q-factor

ék()?k, Ux) = " m%/ 1 |:gk()ﬂ(k7 Uk, Wk) + Jﬂ-,k+1 (fk(;(k, Uy Wi)y Wity - - - s WN_1)]

for each uy in the set Ux(jx) that guarantee feasibility. A longest path problem.

@ Once the set of “feasible controls” Ux(ji) is computed, we can obtain the rollout
control: dx € argmin,, g, 7,y Qk(Xk, Uk)

@ Fortified version guarantees that the algorithm leads to a feasible cost-improved
rollout policy, assuming the base heuristic at the initial state produces a trajectory
that is feasible for all possible disturbance sequences

Bertsekas

Reinforcement Learning 22/24

Relation of Minimax Control with Zero-Sum Game Theory

Zero-sum game problems involve two players and a cost function; one player
aims to minimize the cost and the other aims to maximize the cost

@ They involve TWO minimax control problems:

The min-max problem where the minimizer chooses policy first and the maximizer
chooses policy second with knowledge of the minimizer’s policy

The max-min problem where the maximizer chooses policy first and the minimizer
chooses policy second with knowledge of the maximizer’s policy

We have Max-Min optimal value < Min-Max optimal value

@ Game theory is particularly interested on conditions that guarantee that
Max-Min value = Min-Max value. This question is beyond the range of practical
RL (but may still be of theoretical interest in many contexts).

@ An interesting question: How do various algorithms work when approximations are
used in the min-max and max-min problems?

@ We can certainly improve either the minimizer’s policy or the maximizer’s policy by
rollout, assuming a fixed policy for the opponent

@ Can the policies be improved simultaneously? In practice this seems to work
“often" ... but there is no reliable theory on this question ...

@ In symmetric games like chess: What if both players train w/ a common policy?

Bertsekas Reinforcement Learning 23/24

About the Next Lecture

We will cover:
@ Parametric approximation architectures.
@ Neural networks and how we use them.
@ Approximation in value space and policy space using neural nets.
@ We will use material from videolecture 6 of the 2019 ASU class.

Bertsekas Reinforcement Learning 24/24

	Constrained Rollout for Deterministic Optimal Control
	Discrete Optimization Applications
	Rollout for Minimax Control

