Topics in Reinforcement Learning:
Rollout and Approximate Policy Iteration

ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 5
Rollout for Deterministic and Stochastic Problems

Bertsekas Reinforcement Learning 1/27

o Review of Deterministic Rollout

e Cost Improvement Property

e Deterministic Rollout Extensions

0 Stochastic Rollout and Monte Carlo Tree Search

e On-Line Rollout for Deterministic Infinite Spaces Problems

Bertsekas Reinforcement Learning 2/27

The Pure Form of Rollout: Uses as Cost Approximation JkHy(ka) the

Cost Function of Some Policy

At State xy,

DP minimization First £ Steps “Future”

l b k4+0—1 "
min E {gk(-’fk, Uk, W) + Z i (i, i), wi) + Jk+£(xk+€)}

Uk k415 sHk4+£—1
sHE+15- 5 Hk+ imkt1

Rollout Control i Lookahead Minimization Base Policy Cost
Rollout Policy fix

@ The suboptimal policy is called base policy
@ The lookahead policy is called rollout policy J

Bertsekas Reinforcement Learning 4/27

Deterministic Rollout: At xx. 1, Use a Heuristic with Cost Hy. 1(Xk11)

Next States

Current State

Heuristic

Q-Factors

@ At state x, for every pair (X, ux), ux € Uk(Xk), we generate a Q-factor

Qu(xk, Uk) = Gk (Xk, Uk) + Hic 1 (Fe(Xk, Ux))

where Hi1(Xk+1) is the heuristic cost starting from Xy 1.
@ We select the control ux with minimal Q-factor.
@ We move to next state xx. 1, and continue.

Bertsekas Reinforcement Learning

5/27

Sequential Improvement Condition for

Current Trajectory Ry

Base Heuristic Cost Hy (%) J

Tht1

Monotonicity Property
- < O e C X Under Sequential Improvement
o Ty T2 Th-1 Tk Cost of Ry, > Cost of Rjy+1

Trt1
g

Base Heuristic Cost Hj1(Zk+1)

Current Trajectory Ry

Conditions on the base heuristic that guarantee cost improvement:
@ Sequential improvement (Best heuristic Q-factor < Heuristic cost):

min [gk(Xk, Uk) + Hiiq (fk(Xk, Uk))} < Hk(Xk), for all xx

Uk € Uk (Xic)
where Hi(xx): cost of the trajectory generated by the heuristic starting from xi

@ Rollout, upon reaching Xx, has obtained a “current” trajectory Rx
@ Sequential improvement implies monotonicity: Cost of Rx > Cost of R 1

@ Sequential consistency (i.e., heuristic is a DP policy) — Sequential improvement

v

Bertsekas Reinforcement Learning 7127

Traveling Salesman Example: Rollout with a Nearest Neighbor Heuristic

Initial State zo

Rollout 13

1\’,2\

Matrix of Intercity
Travel Costs

Cost of Ry > Cost of Ry > Cost of Ro

Base heuristic: Nearest neighbor (sequentially consistent and sequentially improving) J

Bertsekas Reinforcement Learning

8/27

Simplified Rollout Algorithm - Assuming Sequential Improvement

Simplified algorithm: Instead of control w/ minimal Q-factor, use any control
with Q-factor < heuristic cost Hi(xk)

@ At any xx, choose as rollout control any fix(xx) such that
9k (Xk, ik (X)) + Hiit (fk(Xk,ﬁk(Xk))> < Hie(X«),

where Hi(xx) is the cost of the trajectory generated by the heuristic from x.
@ May save lots of computation (multiagent rollout, ux has multiple components)
@ An important idea for policy iteration later, when we talk about infinite horizon

Cost improvement for the simplified algorithm:

Let the rollout policy under the simplified algorithm be # = {/io, ..., fin—1}, and let
Jk,#(Xx) denote its cost starting from x,. Then for all xx and k, Jk = (xx) < Hi(Xx).

Proof: The monotonicity property

Ho(xo) = Cost of Ry > --- > Cost of Rx > Cost of Rk1 > --- > Cost of Ry = Jo,#(X0)

is maintained

Bertsekas Reinforcement Learning 10/27

Rollout with Superheuristic/Multiple Heuristics

Consider combining several heuristics in the context of rollout

@ The idea is to construct a superheuristic, which selects the best out of the
trajectories produced by the entire collection of heuristics

@ The superheuristic can then be used as the base heuristic for a rollout algorithm

@ It can be verified using the definitions, that if all the heuristics are sequentially
improving, the same is true for the superheuristic

Proof: Write the sequential improvement condition for each of the M heuristics

min = QF (X, uk) < H'(xx), m=1,.... M,
Uy € Uy (xx)

and all X and k, where Q' (x«, ux) and H'(x«) are Q-factors and heuristic costs that
correspond to the mth heuristic. By taking minimum over m, and interchanging the
order of the minimization minm—1,....» MiNy, cu, (x)»

min ~ min Q(x, u) < min H™(xx
U €Uk (xi) m=1,...,M ke (X)_m:1,...,M e (%K),

Superheuristic Q-factor Superheuristic cost

which is the sequential improvement condition for the superheuristic.

Bertsekas Reinforcement Learning 11/27

A Counterexample to Cost Improvement (w/out Sequential

Improvement Condition)

Optimal Trajectory
Chosen by Base Heuristic at zo

ut *
ug, uj

High Cost Transition

Chosen by Heuristic at 7
Violates

Sequential Improvement

Rollout
Choice

@ Suppose at xo there is a unique optimal trajectory (xo, Ug, X', U5, X3).

@ Suppose the base heuristic produces this optimal trajectory starting at xo.

@ Rollout uses the base heuristic to construct a trajectory starting from x;" and X;.
@ Suppose the heuristic’s trajectory starting from x;" is “bad" (has high cost).

@ Then the rollout algorithm rejects the optimal control ug in favor of the other control
ly, and moves to a nonoptimal next state X1 = fy(Xo, Uo).

@ So in the absence of sequential improvement, the rollout can deviate from an
already available good “current" trajectory.

@ This suggests a possible remedy: Follow the best “current” trajectory found even if
rollout suggests following a different (but inferior) trajectory.

Bertsekas Reinforcement Learning 12/27

Fortified Rollout: Restores Cost Improvement for Base Heuristics that

are not Sequentially Improving

Tentative Best Trajectory T,

: Heuristic
Permanent trajectory Py / @

Min Q-factor choice

Idea: At each step, follow the best trajectory computed thus far

@ At state xx in addition to the permanent rollout trajectory
Px = {Xo, Uo, - . ., Uk—1, X« } that has been constructed up to stage k, and also store
a tentative best trajectory

Tk ={Xo, -, Xk, Uk, Xk41, U1, - - -, UN—1, XN }

Tk is the best complete trajectory computed up to stage k of the algorithm

@ At xx we add the minimum Q-factor choice @ik to Py if its complete trajectory Tk 1
is less costly than T, and set T« as the new tentative best; otherwise we discard
ik and follow the tentative best trajectory, i.e., Txr1 = T«.

v

Bertsekas Reinforcement Learning 13/27

lllustration of Fortified Algorithm

Initial
Tentative Best
Trajectory

High Cost Transition
Chosen by Heuristic at x7
< Violates

Choice Sequential Improvement

@ At xo, the fortified rollout stores as initial tentative best trajectory the unique
optimal trajectory (xo, U3, X7, UT, X5) generated by the base heuristic.
@ It also runs the heuristic from x;” and X, and (even though the heuristic prefers X

to x{") it discards the control &y in favor of ug, which is dictated by the tentative best
trajectory.

@ It then sets the permanent trajectory to (xo, Ug, X{') and keeps the tentative best
trajectory unchanged to (xo, Ug, X', U3, X5).

Bertsekas Reinforcement Learning 14/27

Rollout with an Expert for the General Discrete Optimization

minUoEUo,...,UNqEUNq G(Uo, ceey UN_1)

Current
Partial Solution

Base
Heuristic
Complete
Solutions N1

Expert Ranks Complete Solutions
Sk(uo; - - - Uk, Ukt1), Ukt1 € U

@ Assume we do not know G, and/or the constraint sets Uk

@ Instead we have a base heuristic, which given a partial solution (uo, . . ., Ux),
outputs all next controls k.1, and generates from each a complete solution

Si(Uo, -, Uk, Bics1) = (Uo, -, Uy kst - - - Un-1)

@ Also, we have a human or software “expert" that can rank any two complete
solutions without assigning numerical values to them.

@ Deterministic rollout can be applied to this problem; we have all we need.

Bertsekas Reinforcement Learning

15/27

Rollout with an Expert - RNA Folding Application (see [LPS21])

Complete Folding

‘il Folding_O! 1e00040 |
>artial Foldine 0S¢
- Partial Folding N ' Expert
- Partial Software

Software| Compares
Complete

0b0d0és [o60ved |

Complete Folding
Corresponding to Open

@ Given a sequence of nucleotides (molecules of “types" A,C,G,U), “fold" it in an
“interesting" way (introduce pairings that result in an “interesting" structure).

@ Make a pairing decision at each nucleotide in sequence (open, close, do nothing).

@ Base heuristic: Given a partial folding, generates a complete folding (this is the
partial folding software).

@ Two complete foldings can be compared by the expert software.

@ There is no explicit cost function here (it is internal to the expert software).

Bertsekas Reinforcement Learning 16/27

A Working Break with a Challenge Question

Final States

States at the End
of the Lookahead

Heuristic

Current State Y&

Heuristic

Heuristic

Heuristic

Q-Factors

Consider deterministic rollout with multistep lookahead
@ How would the rollout algorithm work?
@ What is the proper definition of sequential improvement?
@ What is the main computational difficulty in applying multistep rollout?
@ What would the simplified rollout algorithm look like?
@ Speculate on rollout with an expert.

Bertsekas Reinforcement Learning 17/27

Stochastic Rollout with MC Simulation: Multistep Approximation in

Value Space with Jy ¢(Xk+¢) the Cost Function of Some Policy

At State zy,

DP minimization First £ Steps “Future”

l b k40—1 "
min FE {gk(a;k, Uy WE) + Z gi (.’I,‘z’,/tz‘(il/‘z‘)f ’U!i) + Jk+£($k+e)}

Uk s 415wy k401
Hi+ Hr+ ikl T

Rollout Control i Lookahead Minimization Base Policy Cost
Rollout Policy fix

Consider the pure case (no truncation, no terminal cost approximation)

@ Assume that the base heuristic is a legitimate policy © = {uo, ..., un—1} (i.e., is
sequentially consistent, in the context of deterministic problems)
@ Let @ = {jio,- .., fin—1} be the rollout policy. Then cost improvement is obtained
Jiqx(Xk) < Ik (Xk), for all x,x and k

@ Essentially identical induction proof as for the deterministic case
@ The big issue: How do we save in simulation effort?

Bertsekas Reinforcement Learning 19/27

Backgammon Example of Rollout (Tesauro, 1996)

Possible Moves

il

i

|

\
I |
"
vy

1

A L

Ty Ty

Av. Score by Av. Score by Av. Score by Av. Score by
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation

@ Truncated rollout with cost function approximation provided by TD-Gammon (a
1992 famous program, involving a neural network trained by a form of approximate
policy iteration that uses “Temporal Differences").

@ Plays better than TD-Gammon, and better than any human.
@ |t is slow due to excessive simulation time.

Bertsekas Reinforcement Learning 20/27

Monte Carlo Tree Search - Motivation: Save Simulation Effort

We assumed equal effort for evaluation of Q-factors of all controls at a state xx
Drawbacks:

@ Some controls may be clearly inferior to others and may not be worth as much
sampling effort.

@ Some controls that appear to be promising may be worth exploring better through
multistep lookahead.

Monte Carlo tree search (MCTS) is a “randomized" form of lookahead

@ MCTS involves adaptive simulation (simulation effort adapted to the perceived
quality of different controls).

@ Aims to balance exploitation (extra simulation effort on controls that look
promising) and exploration (adequate exploration of the potential of all controls).

@ MCTS does not directly improve performance; it just tries to save in simulation
effort.

Bertsekas Reinforcement Learning 21/27

Monte Carlo Tree Search - Adaptive Simulation

Control 1

Simulation

Current State Control 2

Simulation

Control 3

Simulation

Sample Q-Factors

MCTS provides an economical sampling policy to estimate the Q-factors

QX U) = E{gk(xk, Uk, Wie) + Jier (e (X, U, Wk))}: Uk € Uk(xk)

Assume that Uk (xx) contains a finite number of elements, say u=1,....m

@ After the nth sampling period we have Q.,», the empirical mean of the Q-factor of
each control u (total sample value divided by total number of samples
corresponding to u). We view Q,» as an exploitation index.

@ How do we use the estimates Qy,» to select the control to sample next?

Bertsekas Reinforcement Learning 22/27

MCTS Based on Statistical Tests

Qin+ Rin

Simulation

Current State

Simulation
Qli,n + R&,n

Simulation

Sample Q-Factors

MCTS balances exploitation (sample controls that seem most promising, i.e., a small
Qu,n) and exploration (sample controls with small sample count).

@ A popular strategy: Sample next the control u that minimizes the sum Qu,» + Ru,n
where Ry, is an exploration index.

@ R, ,is based on a confidence interval formula and depends on the sample count
Sy of control u (which comes from analysis of multiarmed bandit problems).

@ The UCB rule (upper confidence bound) sets R,,» = —c+/log n/ Sy, where cis a
positive constant, selected empirically (values ¢ ~ /2 are suggested, assuming
that Q. is normalized to take values in the range [—1, 0]).

@ MCTS with UCB rule has been extended to multistep lookahead ... but AlphaZero
has used a different (semi-heuristic) rule.

Bertsekas Reinforcement Learning 23/27

Classical Control Problems - Infinite Control Spaces

REGULATION PROBLEM
Keep the state near the origin

PATH PLANNING
Acceleration
Constraints

Moving Obstacle

Fixed Obstacles

Must Deal with

State and Control Constraints

Linear-Quadratic Formulation is
Often Inadequate

Velocity

Constraints

Bertsekas cement Learning 25/27

On-Line Rollout for Deterministic Infinite-Spaces Problems

Next States States
Th+1 Tk+e

Current State

Base Heuristic
Minimization

h Stage k o Stages
E+1,.. . k+e—1
Suppose the control space is infinite (so the number of Q-factors is infinite)
@ One possibility is discretization of Ux(xk); but excessive number of Q-factors.
@ Another possibility is to use optimization heuristics that look (¢ — 1) steps ahead.

@ Seemlessly combine the kth stage minimization and the optimization heuristic into
a single ¢-stage deterministic optimization.

@ Can solve it by nonlinear programming/optimal control methods (e.g., quadratic
programming, gradient-based). Constraints can be readily accommodated.

@ This is the idea underlying model predictive control (MPC).

Bertsekas Reinforcement Learning 26/27

About the Next Lecture

We will cover:
@ Model predictive control; relation to rollout
@ Rollout for multiagent problems

Homework to be announced next week J

Watch videolecture 5 from the 2019 ASU course offerings J

Bertsekas Reinforcement Learning 27/27

	Review of Deterministic Rollout
	Cost Improvement Property
	Deterministic Rollout Extensions
	Stochastic Rollout and Monte Carlo Tree Search
	On-Line Rollout for Deterministic Infinite Spaces Problems

