Topics in Reinforcement Learning: Rollout and Approximate Policy Iteration

ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas dbertsek@asu.edu

Lecture 5
Rollout for Deterministic and Stochastic Problems

Outline

- Review of Deterministic Rollout
- Cost Improvement Property
- 3 Deterministic Rollout Extensions
- Stochastic Rollout and Monte Carlo Tree Search
- 5 On-Line Rollout for Deterministic Infinite Spaces Problems

The Pure Form of Rollout: Uses as Cost Approximation $\tilde{J}_{k+\ell}(x_{k+\ell})$ the Cost Function of Some Policy

- The suboptimal policy is called base policy
- The lookahead policy is called rollout policy

Deterministic Rollout: At x_{k+1} , Use a Heuristic with Cost $H_{k+1}(x_{k+1})$

• At state x_k , for every pair (x_k, u_k) , $u_k \in U_k(x_k)$, we generate a Q-factor

$$\tilde{Q}_k(x_k, u_k) = g_k(x_k, u_k) + H_{k+1}(f_k(x_k, u_k))$$

where $H_{k+1}(x_{k+1})$ is the heuristic cost starting from x_{k+1} .

- We select the control u_k with minimal Q-factor.
- We move to next state x_{k+1} , and continue.

Sequential Improvement Condition for (Cost of Rollout Policy) ≤ (Cost of Base Heuristic)

Conditions on the base heuristic that guarantee cost improvement:

Sequential improvement (Best heuristic Q-factor ≤ Heuristic cost):

$$\min_{u_k \in \mathcal{U}_k(x_k)} \left[g_k(x_k, u_k) + H_{k+1} \big(f_k(x_k, u_k) \big) \right] \leq H_k(x_k), \quad \text{for all } x_k$$

where $H_k(x_k)$: cost of the trajectory generated by the heuristic starting from x_k

- Rollout, upon reaching \tilde{x}_k , has obtained a "current" trajectory R_k
- Sequential improvement implies monotonicity: Cost of $R_k \ge \text{Cost}$ of R_{k+1}
- Sequential consistency (i.e., heuristic is a DP policy) -> Sequential improvement

Traveling Salesman Example: Rollout with a Nearest Neighbor Heuristic

Base heuristic: Nearest neighbor (sequentially consistent and sequentially improving)

Cost of $R_0 \ge \text{Cost of } R_1 \ge \text{Cost of } R_2$

Bertsekas Reinforcement Learning 8

Simplified Rollout Algorithm - Assuming Sequential Improvement

Simplified algorithm: Instead of control w/ minimal Q-factor, use any control with Q-factor \leq heuristic cost $H_k(x_k)$

• At any x_k , choose as rollout control any $\tilde{\mu}_k(x_k)$ such that

$$g_k(x_k, \tilde{\mu}_k(x_k)) + H_{k+1}(f_k(x_k, \tilde{\mu}_k(x_k))) \leq H_k(x_k),$$

where $H_k(x_k)$ is the cost of the trajectory generated by the heuristic from x_k .

- May save lots of computation (multiagent rollout, u_k has multiple components)
- An important idea for policy iteration later, when we talk about infinite horizon

Cost improvement for the simplified algorithm:

Let the rollout policy under the simplified algorithm be $\tilde{\pi} = \{\tilde{\mu}_0, \dots, \tilde{\mu}_{N-1}\}$, and let $J_{k,\tilde{\pi}}(x_k)$ denote its cost starting from x_k . Then for all x_k and k, $J_{k,\tilde{\pi}}(x_k) \leq H_k(x_k)$.

Proof: The monotonicity property

$$H_0(x_0) = \text{Cost of } R_0 \geq \cdots \geq \text{Cost of } R_k \geq \text{Cost of } R_{k+1} \geq \cdots \geq \text{Cost of } R_N = J_{0,\tilde{\pi}}(x_0)$$

is maintained

Rollout with Superheuristic/Multiple Heuristics

Consider combining several heuristics in the context of rollout

- The idea is to construct a superheuristic, which selects the best out of the trajectories produced by the entire collection of heuristics
- The superheuristic can then be used as the base heuristic for a rollout algorithm
- It can be verified using the definitions, that if all the heuristics are sequentially improving, the same is true for the superheuristic

Proof: Write the sequential improvement condition for each of the M heuristics

$$\min_{u_k \in U_k(x_k)} \tilde{Q}_k^m(x_k, u_k) \le H_k^m(x_k), \qquad m = 1, \dots, M,$$

and all x_k and k, where $\tilde{Q}_k^m(x_k, u_k)$ and $H_k^m(x_k)$ are Q-factors and heuristic costs that correspond to the mth heuristic. By taking minimum over m, and interchanging the order of the minimization $\min_{m=1,...,M} \min_{u_k \in U_k(x_k)}$,

$$\min_{u_k \in U_k(x_k)} \underbrace{\min_{m=1,\dots,M} \tilde{Q}_k^m(x_k, u_k)}_{\text{Superheuristic Q-factor}} \leq \underbrace{\min_{m=1,\dots,M} H_k^m(x_k)}_{\text{Superheuristic cost}},$$

which is the sequential improvement condition for the superheuristic.

A Counterexample to Cost Improvement (w/out Sequential Improvement Condition)

- Suppose at x_0 there is a unique optimal trajectory $(x_0, u_0^*, x_1^*, u_1^*, x_2^*)$.
- Suppose the base heuristic produces this optimal trajectory starting at x_0 .
- Rollout uses the base heuristic to construct a trajectory starting from x_1^* and \tilde{x}_1 .
- Suppose the heuristic's trajectory starting from x_1^* is "bad" (has high cost).
- Then the rollout algorithm rejects the optimal control u_0^* in favor of the other control \tilde{u}_0 , and moves to a nonoptimal next state $\tilde{x}_1 = f_0(x_0, \tilde{u}_0)$.
- So in the absence of sequential improvement, the rollout can deviate from an already available good "current" trajectory.
- This suggests a possible remedy: Follow the best "current" trajectory found even if rollout suggests following a different (but inferior) trajectory.

Fortified Rollout: Restores Cost Improvement for Base Heuristics that are not Sequentially Improving

Idea: At each step, follow the best trajectory computed thus far

• At state x_k in addition to the permanent rollout trajectory $\overline{P}_k = \{x_0, u_0, \dots, u_{k-1}, x_k\}$ that has been constructed up to stage k, and also store a tentative best trajectory

$$\overline{T}_k = \{x_0, \dots, x_k, \overline{u}_k, \overline{x}_{k+1}, \overline{u}_{k+1}, \dots, \overline{u}_{N-1}, \overline{x}_N\}$$

 \overline{T}_k is the best complete trajectory computed up to stage k of the algorithm

• At x_k we add the minimum Q-factor choice \tilde{u}_k to \overline{P}_k if its complete trajectory \overline{T}_{k+1} is less costly than \overline{T}_k and set \overline{T}_{k+1} as the new tentative best; otherwise we discard \tilde{u}_k and follow the tentative best trajectory, i.e., $\overline{T}_{k+1} = \overline{T}_k$.

Illustration of Fortified Algorithm

- At x_0 , the fortified rollout stores as initial tentative best trajectory the unique optimal trajectory $(x_0, u_0^*, x_1^*, u_1^*, x_2^*)$ generated by the base heuristic.
- It also runs the heuristic from x_1^* and \tilde{x}_1 , and (even though the heuristic prefers \tilde{x}_1 to x_1^*) it discards the control \tilde{u}_0 in favor of u_0^* , which is dictated by the tentative best trajectory.
- It then sets the permanent trajectory to (x_0, u_0^*, x_1^*) and keeps the tentative best trajectory unchanged to $(x_0, u_0^*, x_1^*, u_1^*, x_2^*)$.

Rollout with an Expert for the General Discrete Optimization $\min_{u_0 \in U_0, ..., u_{N-1} \in U_{N-1}} G(u_0, ..., u_{N-1})$

- Assume we do not know G, and/or the constraint sets U_k
- Instead we have a base heuristic, which given a partial solution (u_0, \ldots, u_k) , outputs all next controls \tilde{u}_{k+1} , and generates from each a complete solution

$$S_k(u_0,\ldots,u_k,\tilde{u}_{k+1})=(u_0,\ldots,u_k,\tilde{u}_{k+1},\ldots,\tilde{u}_{N-1})$$

- Also, we have a human or software "expert" that can rank any two complete solutions without assigning numerical values to them.
- Deterministic rollout can be applied to this problem; we have all we need.

Rollout with an Expert - RNA Folding Application (see [LPS21])

- Given a sequence of nucleotides (molecules of "types" A,C,G,U), "fold" it in an "interesting" way (introduce pairings that result in an "interesting" structure).
- Make a pairing decision at each nucleotide in sequence (open, close, do nothing).
- Base heuristic: Given a partial folding, generates a complete folding (this is the partial folding software).
- Two complete foldings can be compared by the expert software.
- There is no explicit cost function here (it is internal to the expert software).

Bertsekas Reinforcement Learning 16 / 27

A Working Break with a Challenge Question

Consider deterministic rollout with multistep lookahead

- How would the rollout algorithm work?
- What is the proper definition of sequential improvement?
- What is the main computational difficulty in applying multistep rollout?
- What would the simplified rollout algorithm look like?
- Speculate on rollout with an expert.

Stochastic Rollout with MC Simulation: Multistep Approximation in Value Space with $\tilde{J}_{k+\ell}(x_{k+\ell})$ the Cost Function of Some Policy

Consider the pure case (no truncation, no terminal cost approximation)

- Assume that the base heuristic is a legitimate policy $\pi = \{\mu_0, \dots, \mu_{N-1}\}$ (i.e., is sequentially consistent, in the context of deterministic problems)
- Let $\tilde{\pi} = \{\tilde{\mu}_0, \dots, \tilde{\mu}_{N-1}\}$ be the rollout policy. Then cost improvement is obtained

$$J_{k,\tilde{\pi}}(x_k) \leq J_{k,\pi}(x_k)$$
, for all x_k and k

- Essentially identical induction proof as for the deterministic case
- The big issue: How do we save in simulation effort?

Backgammon Example of Rollout (Tesauro, 1996)

- Truncated rollout with cost function approximation provided by TD-Gammon (a 1992 famous program, involving a neural network trained by a form of approximate policy iteration that uses "Temporal Differences").
- Plays better than TD-Gammon, and better than any human.
- It is slow due to excessive simulation time.

Monte Carlo Tree Search - Motivation: Save Simulation Effort

We assumed equal effort for evaluation of Q-factors of all controls at a state x_k

Drawbacks:

- Some controls may be clearly inferior to others and may not be worth as much sampling effort.
- Some controls that appear to be promising may be worth exploring better through multistep lookahead.

Monte Carlo tree search (MCTS) is a "randomized" form of lookahead

- MCTS involves adaptive simulation (simulation effort adapted to the perceived quality of different controls).
- Aims to balance exploitation (extra simulation effort on controls that look promising) and exploration (adequate exploration of the potential of all controls).
- MCTS does not directly improve performance; it just tries to save in simulation effort.

Monte Carlo Tree Search - Adaptive Simulation

MCTS provides an economical sampling policy to estimate the Q-factors

$$\tilde{Q}_k(x_k, u_k) = E\Big\{g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}\big(f_k(x_k, u_k, w_k)\big)\Big\}, \qquad u_k \in U_k(x_k)$$

Assume that $U_k(x_k)$ contains a finite number of elements, say u = 1, ..., m

- After the *n*th sampling period we have $Q_{u,n}$, the empirical mean of the Q-factor of each control u (total sample value divided by total number of samples corresponding to u). We view $Q_{u,n}$ as an exploitation index.
- How do we use the estimates $Q_{u,n}$ to select the control to sample next?

MCTS Based on Statistical Tests

MCTS balances exploitation (sample controls that seem most promising, i.e., a small $Q_{u,n}$) and exploration (sample controls with small sample count).

- A popular strategy: Sample next the control u that minimizes the sum $Q_{u,n} + R_{u,n}$ where $R_{u,n}$ is an exploration index.
- $R_{u,n}$ is based on a confidence interval formula and depends on the sample count S_u of control u (which comes from analysis of multiarmed bandit problems).
- The UCB rule (upper confidence bound) sets $R_{u,n} = -c\sqrt{\log n/S_u}$, where c is a positive constant, selected empirically (values $c \approx \sqrt{2}$ are suggested, assuming that $Q_{u,n}$ is normalized to take values in the range [-1,0]).
- MCTS with UCB rule has been extended to multistep lookahead ... but AlphaZero has used a different (semi-heuristic) rule.

Bertsekas Reinforcement Learning 23

Classical Control Problems - Infinite Control Spaces

On-Line Rollout for Deterministic Infinite-Spaces Problems

Suppose the control space is infinite (so the number of Q-factors is infinite)

- One possibility is discretization of $U_k(x_k)$; but excessive number of Q-factors.
- \bullet Another possibility is to use optimization heuristics that look $(\ell-1)$ steps ahead.
- Seemlessly combine the kth stage minimization and the optimization heuristic into a single ℓ-stage deterministic optimization.
- Can solve it by nonlinear programming/optimal control methods (e.g., quadratic programming, gradient-based). Constraints can be readily accommodated.
- This is the idea underlying model predictive control (MPC).

About the Next Lecture

We will cover:

- Model predictive control; relation to rollout
- Rollout for multiagent problems

Homework to be announced next week

Watch videolecture 5 from the 2019 ASU course offerings