Topics in Reinforcement Learning:
Rollout and Approximate Policy lteration

ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 3
Problem Formulations and Examples

Bertsekas Reinforcement Learning 1/31

Backgammon and Chess - Off-Line Training and On-Line Play

Current Position and Dice Roll

Possible
Moves

[11L.8m [111.4F
5 LN
] 1 i 1
Average Score Average Score Average Score Average Score
Monte-Carlo Monte-Carlo Monte-Carlo Monte-Carlo
Simulation Simulation Simulation Simulation
Best Score

Strong connections to DP, policy iteration, and approximation in value space
@ Off-line training of value and/or policy network approximations
@ On-line play by multistep lookahead, rollout, and cost function approximations

We are aiming to develop this methodology, so it applies far more generally J

Bertsekas Reinforcement Learning 3/31

Stochastic DP Problems - Perfect State Observation (We Know x)

Random Transition
The1 = [r(@h, g, wi)

@ O ey O oD
Random Cost

9k (Tk, Uk, W)

@ System xi1 = f(Xk, Uk, W) with random “disturbance" wx (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)

@ Cost function: o
E {QN(XN) + Z Gk (Xk, Uk, Wk)}
k=0

@ Policies ™ = {po, ..., un—1}, where py is a “closed-loop control law" or “feedback
policy"/a function of xx. A “lookup table" for the control ux = u«(xx) to apply at xk.

@ For given initial state xo, minimize over all * = {uo, ..., un—1} the cost

k=0

N—1
J=(x0) = E {QN(XN) 4 Z Ik (X, b (X), Wk)}

@ Optimal cost function: J*(xo) = min, Jx(xo). Optimal policy: J.-(x0) = J*(xo)

Bertsekas Reinforcement Learning 4/31

The Stochastic DP Algorithm

Produces the optimal costs J(xx) of the tail subproblems that start at xx
Start with Jy(xv) = gnv(xn), and fork =0,...,N —1, let

Ji (x) = Ukenpjikr(lxk) Ewk{gk(xln Uk, W) + Jir (Fe (X, Uk, Wk))}, for all xx.

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).

On-line implementation of the optimal policy, given J;, ..., Jy_;

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

vi € arg min B, { g, e, W) + i (B, U, wi)) }-
Uk € Uy (xk)

Issues: Need to know Ji, 4, compute Ey, {-} for each ux, minimize over all ux

Approximation in value space: Use Ji in place of Ji; approximate E,, {-} and
min,, (the three approximations)

Note the division in precomputation phase (off-line training) and real-time
implementation phase (on-line play)

Bertsekas Reinforcement Learning 5/31

0 Review

e Problem Formulations and Examples
@ Problems with Terminal State

0 Reformulations

e Partial State Observation Problems
e Multiagent Problems

o Unknown Problem Parameters: Adaptive Control

Bertsekas Reinforcement Learning 6/31

How do we Formulate DP Problems?

An informal recipe: First define the controls, then the stages (and info
available at each stage), and then the states
@ Define as state xx something that “summarizes" the past for purposes of future
optimization, i.e., as long as we know xk, all past information is irrelevant.

@ Rationale: The controller applies action that depends on the state. So the state
must subsume all info that is useful for decision/control.

Some examples

@ In the traveling salesman problem, we need to include all the relevant info in the
state (e.g., the past cities visited). Other info, such as the costs incurred so far,
need not be included in the state.

@ In partial or imperfect information problems, we use “noisy" measurements for
control of some quantity of interest yx that evolves over time (e.g., the
position/velocity vector of a moving object). If I« is the collection of all
measurements up to time Kk, it is correct to use Ik as state.

@ |t may also be correct to use alternative states; e.g., the conditional probability
distribution Px(yx | Ik). This is called belief state, and subsumes all the information
that is useful for the purposes of control choice.

V.

Bertsekas Reinforcement Learning 8/31

Cost-Free and Absorbing Terminal State: Finite or Infinite Horizon?

@ One possibility is to convert to a finite horizon problem: Introduce as horizon an
upper bound to the optimal number of stages (assuming such a bound is known)

@ Add BIG penalty for not terminating before the end of the horizon

Optimal
Solution

12

Vehicle 1

9 6 3 1

Typical discrete optimization problem: Multi-vehicle routing; all vehicles move
one step at a time

@ Minimize the number of vehicle moves to perform all tasks

@ How do we formulate the problem as a DP problem? What is the state?

@ Astronomical number of states, even for modest number of tasks and vehicles

@ Use rollout. Base heuristic: Move vehicles, one-at-a-time, one step to nearest task

Bertsekas Reinforcement Learning 10/31

Multi-Vehicle Routing Example: Solution by Rollout

@ At the current state consider all possible joint vehicle moves, and from each of the
next states, run the base heuristic to termination

@ Use the joint move that results in min cost. Repeat at the next state, etc

11 8 5 9 Vehicle 2

O
1

Optimal
Solution

12

Vehicle 1

At state/position pair (1,2), consider possible moves to (3,5), (3,4), (4,5), (4,4)
@ (3,5): (1) 3-56, (2) 5->2, (1) 6->9 (performs task), (2) 2->4, (1) 9->12, (2) 4->7
(performs task)
@ (3,4): (1) 3->6, (2) 4->7 (performs task), (1) 6->9 (performs task)
@ Repeat for (4,5) and (4,4); winner is move (3,4). Repeat starting from (3,4), etc
@ Rollout algorithm performs optimally (5 moves). Base heuristic needs 9 moves

Bertsekas Reinforcement Learning 11/31

State Augmentation: Delays

Xi1 = fic(Xiy Xk—1, Uy Uk—1, Wk), X1 = fo(Xo, Uo, Wo)

@ Introduce additional state variables yx and s, where yx = Xk_1, Sk = Ux—1. Then

Xk4-1 fx(Xk, Yk, Uk, Sk, Wk)
Yk+1 | = Xk
Sk+1 Uk

@ Define Xx = (Xk, Y, Sk) as the new state, we have
Kicer = (e, Uk, Wi)
@ Reformulated DP algorithm: Start with Jg(xn) = gn(Xn)

Ji (Xk, Xk—1, Uk—1) = min Ewk{gk(xk, U, Wie) 4k 1 (T Xk, Xk—1, Uk, Uk—1, Wi), Xk, U)
Uk € U (Xic)

J (x0) = Uoénul;:’(\XO) Ewo{go(Xo-, Uo, Wo) + Ji (fo(Xm Uo, Wo), Xo, Uo)}

Deal similarly with delays in the cost function)

Bertsekas Reinforcement Learning 13/31

Simplification for Uncontrollable State Components: Tetris

TETRIS
An Infinite Horizon

Stochastic Shortest Path
Problem

{1
] ISR Tt
am BEOCR R

State = (Board position x, Shape of falling block y); Control = Apply translation
and rotation on y

y is an “uncontrollable" component of the state, evolving according to yi.1 = wi

Simplified/Averaged Bellman Equation [involves functions of x and not (x, y)]
It involves J(x), the optimal expected score at position x (averaged over shapes y):
Jx)=>"p(y) max [g(x,y, u) + J(f(x,y, u))}, for all x,
y

where
@ g(x,y,u) is the number of points scored (rows removed),

@ f(x,y,u) is the next board position (or termination state).

Bertsekas Reinforcement Learning 14/31

Parking: Uncontrollable State Components, Terminal State

Parking Spaces
Termination State

@ Start at spot 0; either park at spot k with cost c(k) (if free) or continue; park at
garage at cost C if not earlier

@ Spot k is free with known probability p(k); status is observed upon reaching it
@ How do we formulate the problem as a DP problem?

v

States: F: current spot is free, F: current spot is taken, Parked (terminal state)
Averaged DP algorithm (Jy is the expected cost upon arrival at position k):

Jn—1 = p(N —1)ymin [¢(N — 1), C] + (1 — p(N — 1)) C,

Jk = p(k) min [c(k), Jik1] + (1 — p(K))Jks1, k=0,...,N—2

4

Optimal policy: Park at the first free spot within m of the garage (m depends on data)
Bertsekas Reinforcement Learning 15/31

More Complex Parking Problems

Parking Spaces
Termination State

@ Bidirectional parking: We can go back to parking spots we have visited at a cost
@ More complicated parking lot topologies

@ Multiagent versions: Multiple drivers/autonomous vehicles, “parkers" and
“searchers", etc

A major distinction

@ “Relatively easy" case: The status of already seen spots stays unchanged
@ More complex case: The status of already seen spots changes probabilistically

Bertsekas Reinforcement Learning 16/31

Bidirectional Parking: Partial State Observation Problems

Parking Spaces
Termination State

@ Consider a complex type of parking example, where free or taken parking spots
may get taken or free up, at the next time step with some probability

@ The free/taken state of the spots is “estimated" in a “probabilistic sense" based on
the observations (the free/taken status of the spots visited ... when visited)

@ What should the “state” be? It should summarize all the info needed for the
purpose of future optimization

@ First candidate for state: The set of all observations so far.

@ Another candidate: The “belief state", i.e., the conditional probabilities of the
free/taken status of all the spots: p(0), p(1),...,p(N — 1), conditioned on all the
observations so far

@ Generally, partial observation problems (POMDP) can be “solved" by DP with
state being the belief state: by = P(xx | set of observations up to time k)

Bertsekas Reinforcement Learning 18/31

Partial State Observation Problems: Reformulation via Belief State

l2k+1

Belief Estimator
Belief State System | Belief State by
| kg1 = Fr(br, uk, 241) v

Cost g (bk, ux) Control of

Belief State

Controller
HE

Control uy = uy(br)

The reformulated DP algorithm has the form

Je(bx) = UTEka Gk (b, Uk) + Ez,., {J;f+1 (Fk(bk, Uk, Zk41)) }}

@ J; (bk) denotes the optimal cost-to-go starting from belief state by at stage k.
@ Uk is the control constraint set at time k

@ O«x(bx, ux) denotes expected cost of stage k: expected stage cost gk (x«, Uk, Wk),
with distribution of (xx, wk) determined by b, and the distribution of w

@ Belief estimator: Fx(bx, Uk, Zx+1) is the next belief state, given current belief state
bk, uk is applied, and observation zx,+ is obtained

Bertsekas Reinforcement Learning 19/31

Multiagent Problems (1960s —)

Environment

Computing Cloud

Info Info Info Info Info

Info

@ Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

@ Agent / applies decision u; sequentially in discrete time based on info received

The major mathematical distinction between problem structures

@ The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by DP

@ The nonclassical information pattern: Agents are partially sharing information, and

may be antagonistic. HARD because it cannot be treated by DP
——
Bertsekas Reinforcement Learning 21/31

Starting Point: A Classical Information Pattern (We Generalize Later)

Sensor Sensor
Info Info

l 7Y\
ik g),) V= ,Lf‘:'\

Info

At each time: Agents have exact state info; choose their controls as function of state J

Model: A discrete-time (possibly stochastic) system with state x and control u
@ Decision/control has m components u = (us, . .., Un) corresponding to m “agents”
@ “Agents" is just a metaphor - the important math structure is u = (us, . .., Um)

@ The theoretical framework is DP. We will reformulate for faster computation

Deal with the exponential size of the search/control space
Be able to compute the agent controls in parallel (in the process we will deal in part with
nonclassical info pattern issues)

v

Bertsekas Reinforcement Learning 22/31

Spiders-and-Flies Example

(e.g., Vehicle Routing, Maintenance, Search-and-Rescue, Firefighting)

7 7
7 == 78
78
7 15 spiders move in 4 directions with perfect vision
7% 7/ 3 blind flies move randomly
Zﬂ 4’“
7~ Objective is to
J
78 Catch the flies in minimum time
7 Gl I Kl
,7‘#

@ At each time we must select one out of ~ 5'° joint move choices
@ We will reduce to (5 choices) - (15 times) = 75 (while maintaining good properties)
@ Idea: Break down the control into a sequence of one-spider-at-a-time moves

@ For more discussion, including illustrative videos of spiders-and-flies problems,
see https://www.youtube.com/watch?v=egbb6vVIN38&t=1654s

Bertsekas Reinforcement Learning 23/31

Reformulation Idea: Trading off Control and State Complexity (NDP

Book, 1996)

Control uy,
Random Transition

e uy @ Uz @ Uz Um— z = f(z,u,w)
Random Cost
g(l‘Y u7 w)

Stage

An equivalent reformulation - “Unfolding" the control action

@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost functions

JOxur), P(x, i, te), . I (X U U)

@ Allows far more efficient rollout (one-agent-at-a-time). This is just standard rollout
for the reformulated problem

@ The increase in size of the state space does not adversely affect rollout (only one
state per stage is looked at during on-line play)

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to n- m, where n is the number of possible choices for each component u;

Bertsekas Reinforcement Learning 24/31

Changing Problem Parameters: Adaptive Control (1960s —)

A cruise control-type problem
@ Control car velocity: xx.1 = axx + bux + wyi (a < 1 models friction, wind drag, etc)
@ Cost over N stages: (xy — Xn)° + 0o (X — Xk)? + ru?), where r > 0 is given
@ ... but a, b, and xx are changing all the time; they may be measured with error (?))

Adaptive control deals with such situations. Some possibilities:

@ Ignore the changes in parameters; design a controller that is robust (works for a
broad range of parameters). PID control is a time-honored relevant methodology

@ Try to estimate the parameters, and use the estimates to modify the controller
On-line replanning by optimization; modify the controller to make it optimal for the
current set of estimates. This is sophisticated/time consuming: needs on-line system
identification, and optimal control computation. Has other pitfalls (identifiability; see
notes)...
On-line replanning by rollout with a base policy whose cost function is computed using
the current parameter estimates. This is simpler ...

Bertsekas Reinforcement Learning 26/31

On-Line Replanning by Optimization

Data
System g
State
- Controller |
Control
Parameter
Estimation [~
Introduce on-line estimation of changing parameters J

@ Recompute the controller so it is optimal for the new set of parameters

@ This can be time-consuming, so a suboptimal controller may be recalculated
instead

Bertsekas Reinforcement Learning 27/31

On-Line Replanning by Rollout

s AN

Changing System,
Cost, and Constraint
Parameters

Lookahead Rollout with
Minimization Base Policy

Possible States
Th+t1

Use on-line replanning with rollout instead of controller reoptimization; this is faster)

@ Introduce new parameter estimates in the lookahead minimization and the rollout
@ Continue to use the same base policy
@ Possibly recalculate the base policy in the background

Bertsekas Reinforcement Learning 28/31

A Linear-Quadratic Example of On-Line Replanning

24\, T T T T T T T T 8
2210 7t
2F 6 ,‘:,:"“C/
Base Base 0~
) « LS Rollout
185 N Rollout 4t
14t e sl —
121 Optimal " 2t - Optimal
b 08 1 12 14 15 18 2 L I S ea—
b
.
Performance comparison of on-line replanning by rollout and by optimization)

One-dimensional linear-quadratic example:
N—1
X1 = X+ bk, Cost= lim ;(x,f + ruf)
Quadratic cost coefficient as b and r change. Base policy is optimal for b = 2 and
r=20.5

Bertsekas Reinforcement Learning 29/31

Model Predictive Control (MPC) - Relation to Rollout

Next States
Th41

Current State State

(€ —1)-Stages Trye =0 System: wx1 = f (g, ur)

Minimization Cost: g(xg,ur) >0, forall (xy,u)

The system can be kept at the origin
at zero cost by some control

Stage k i Stages
E+1,... k+£-1

Consider undiscounted infinite horizon; we want to keep the system near 0 J

@ We minimize the cost function over the next ¢ stages while requiring xx., = 0

@ We then apply the first control of the minimizing sequence, discard the other
controls

@ This is rollout w/ base heuristic the min that drives xx., to 0 in (¢ — 1) steps
@ Well-suited for on-line replanning

@ A variant that uses a terminal cost approximation instead of xx;, = 0; can be
viewed as rollout/approximation in value space with single or multistep lookahead

Bertsekas Reinforcement Learning 30/31

About the Next Lecture

@ We are done with the overview of the topics of this course. We will now go more
deeply

@ We will cover general issues of one-step and multistep approximation in value
space

@ We will start a more in-depth discussion of rollout

HOMEWORK 2 (DUE IN ONE WEEK) TO BE ANNOUNCED)

WATCH VIDEOLECTURE 3 OF THE 2019 OFFERING OF THE COURSE)

Bertsekas Reinforcement Learning 31/31

	Review
	Problem Formulations and Examples
	Problems with Terminal State
	Reformulations
	Partial State Observation Problems
	Multiagent Problems
	Unknown Problem Parameters: Adaptive Control

