Topics in Reinforcement Learning:
Rollout and Approximate Policy Iteration

ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at
http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas
dbertsek@asu.edu

Lecture 2
Stochastic Finite and Infinite Horizon DP

Bertsekas Reinforcement Learning 1/25

Review - Finite Horizon Deterministic Problem
Control ug
=) @ @ O
Cost gi(zk, uk)

Stage k

@ System
Xk+1:fk(Xk,Uk), k:0,1,...,N71

where xi: State, ux: Control chosen from some set Uk (x«)
@ Cost function:

N—1
av(xn) +) g (X, Uk)
k=0

@ For given initial state xo, minimize over control sequences {uo, ..., Un—1}
N—1
J(X0i Uo, - - Un—1) = n(XN) + D Gk(Xe, Ux)
k=0
@ Optimal cost function J*(xp) = min “Keuk(xk) J(Xo; Ug, .-, UN—1)
(=000 —1

Bertsekas Reinforcement Learning 2/25

Review - DP Algorithm for Deterministic Problems

Go backward to compute the optimal costs J; (xx) of the xx-tail subproblems

Start with
JIn(xn) = gn(xn), for all xy,

andfork=0,...,N—1, let

Ji(x) = min [gk(xk., Uk) + it (B (X, uk))], for all x.
Uk € Uy (xk)
Then optimal cost J*(Xo) is obtained at the last step: Jy (xo) = J*(X0).

Go forward to construct optimal control sequence {ug, ..., uy_+}

Start with

uj € arg quJLwa [go(xO,uO)+J1*(fo(xO,uO))], xi = fo(xo, Ug)-

Sequentially, going forward, for k =1,2,...,N — 1, set

ui e arg min g, u) + e (A0 u)) |, X = i,).
u € Uk (xg)

v

Approximation in value space approach: We replace Ji with an approximation Ji.
3/25

Bertsekas Reinforcement Learning

° Stochastic DP Algorithm
e Linear Quadratic Problems - An Important Favorable Special Case

e Infinite Horizon - An Overview of Theory and Algorithms

Bertsekas Reinforcement Learning 4/25

Stochastic DP Problems - Perfect State Observation (We Know x)

Random Transition
The1 = [r(@h, g, wi)

@ O ey O oD
Random Cost

9k (Tk, Uk, W)

@ System xi1 = f(Xk, Uk, W) with random “disturbance" wx (e.g., physical noise,
market uncertainties, demand for inventory, unpredictable breakdowns, etc)

@ Cost function: o
E {QN(XN) + Z Gk (Xk, Uk, Wk)}
k=0

@ Policies ™ = {po, ..., un—1}, where py is a “closed-loop control law" or “feedback
policy"/a function of xx. A “lookup table" for the control ux = u«(xx) to apply at xk.

@ For given initial state xo, minimize over all * = {uo, ..., un—1} the cost

k=0

N—1
J=(x0) = E {QN(XN) 4 Z Ik (X, b (X), Wk)}

@ Optimal cost function: J*(xo) = min, Jx(xo). Optimal policy: J.-(x0) = J*(xo)

Bertsekas Reinforcement Learning 6/25

The Stochastic DP Algorithm

Produces the optimal costs J;(xx) of the tail subproblems that start at xx
Start with Jy(xv) = gnv(xn), and fork =0,...,N —1, let

J;(Xk) = ukéTl]JLTxk) Ewk{gk(xfn Uk, Wk) + J:+1 (fk(Xk, Uk, Wk))}, for all x.

@ The optimal cost J*(xo) is obtained at the last step: Jy(x0) = J*(x0).

@ The optimal policy component ux can be constructed simultaneously with J;, and
consists of the minimizing u; = p(x«) above.

Alternative on-line implementation of the optimal policy, given J;, ..., Jy_;

Sequentially, going forward, for k = 0,1,..., N — 1, observe xx and apply

Uy €arg min EWk{gk(xk,u;ﬂWk)+J,f+1(fk(xk,uk,Wk))}.
Uk € U (Xk)

Issues: Need to know Ji, , compute expectation for each ux, minimize over all ux

4

Approximation in value space: Use Ji in place of J; ; approximate E{-} and miny,. J

Bertsekas Reinforcement Learning 7/25

Approximation in Value Space - The Three Approximations

Simplified minimization

First Step “Future”

-+ >
min F {gk (.Ik. U, wk) —+ Jk'+1 (:L'k+1)} “On-Line Play”
up, /
Expected value approximation Cost-to-go approximation

Important variants: Use multistep lookahead, replace E{-} by limited simulation (e.g., a
“certainty equivalent" of wy), multiagent rollout (for multicomponent control problems)

An example: Truncated rollout with base policy and terminal cost
approximation (however obtained)

Possible States Possible States
Th+1 B Thpm1
Rollout with
Base Policy
A ,».
m-Step Termmgl C<.)st
Truncated Horizon Approximation
e »@ for Stages
Beyond
Truncation
e ».

Bertsekas Reinforcement Learning 8/25

DP Algorithm and Value Space Approximation for Q-Factors

@ Optimal Q-factors are given by
Q;(Xk, Uk) = Ewk {gk(Xk, Uk, Wk) F Jf:+1 (fk(Xk, U, Wk))}
They define optimal cost-to-go functions and optimal policies by

Je() = min Qi(Xk,uk), pi(x) €arg min Qk (X, Ug)
Uk € Uk (xk) Uk € Uk (xk)

@ DP algorithm can be written in terms of Q-factors

Qk (X, Uk) = Ewk{gk(xk, Uk, Wi) + min Qg1 (e (X, Ui, W), Uk+1)}

Uk+1

@ Approximately optimal Q-factors Qx(x«, Ux), define suboptimal cost-to-go functions
and suboptimal policies by

Jik(Xk) = min ék(Xk, Uk), ik(Xk) € arg min ék(Xk, Uk)
Uk € Uk (xk) Uk € Uk (xk)

@ There are many methods to compute C)k(xk, Ux), including NN training

@ Q or J? An important tradeoff: On-line min simplification vs on-line replanning

Bertsekas Reinforcement Learning 9/25

A Very Favorable Case: Linear-Quadratic Problems

An example of a linear-quadratic problem
@ Keep car velocity constant (like oversimplified cruise control): xx1 = Xk + bux + wi
@ Uy is unconstrained; w, has 0-mean and variance o?

@ Here xx = vk — V is the deviation between the vehicle’s velocity vk at time k from
desired level v, and b is given

@ Cost over N stages: x§ + > 4o (X¢ + ru?), where r > 0 is given
@ DP algorithm:
JR(xXw) = xR,

Ji () = min Ew {XE + rug + Jivs (X + bug + wi)}, k=0,....,N—1
k

@ DP algorithm can be carried out in closed form to yield
Ji (%) = Kixf + const, uj(xk) = Lkxk: Kk and Lk can be explicitly computed

@ The solution does not depend on the distribution of wy as long as it has 0 mean:
Certainty Equivalence (a common approximation idea for other problems)

Bertsekas Reinforcement Learning 11/25

Derivation

J;\k/,1(XN_1) = Lrlnin E{XE,,1 + I'U,ZV,1 + JK,(XN_1 + bun—_1 + WN_1)}
IN—1
= min E{xN_1 + ruf_1 + (Xn—1 + bun—1 + wn_1)?}
N—1

= min [XN—1 + MUN—1 + (Xn—1 + bUN—1)° + 2E{Wn_1}(Xn—1 + bun—1) + E{wx_1}]

UN—1

= Xh_1+ Eﬂin [fU/2\1_1 + (Xn—1 + bUN—1)2] +0?
N—1

Minimize by setting to zero the derivative: 0 = 2ruy_1 + 2b(xn—1 + bun—1), to obtain

PN—1(XN=1) = XN—1 = Ln—1Xn—1

Crtp?

and by substitution, Jj_{(xn_1) = Pyv_1X§_1 + 0, where Py_4 = = +1

Similarly, going backwards, we obtain for all k:

N—1
JK(XK) = Pexg+0% > Py, pk(%) = LiX, P =

m=k

Py 1
r+ b?Py.

bPy 1

1, Lk=——"F15—
+1, Lk r+ PPy

Bertsekas Reinforcement Learning 12/25

Linear-Quadratic Problems in General

Observations and generalizations

@ The solution does not depend on the distribution of wy, only on the mean, i.e., we
have certainty equivalence

@ Generalization to multidimensional problems, nonzero mean disturbances, etc

@ Generalization to problems where the state is observed partially through linear
measurements: Optimal policy involves an extended form of certainty equivalence

Lk E{xx | measurements}

where E{xx | measurements} is provided by an estimator (e.g., Kalman filter)
@ Linear systems and quadratic cost are a starting point for other lines of
investigations and approximations:
Problems with safety/state constraints [Model Predictive Control (MPC)]

Problems with control constraints (MPC)
Unknown or changing system parameters (adaptive control)

Bertsekas Reinforcement Learning 13/25

Infinite Horizon Problems

Random Transition
Thr1 = f(Tr, ug, wi) Infinite Horizon

Random Cost

akg(@r, uk, wi)

Infinite number of stages, and stationary system and cost
@ System xx.1 = f(Xk, Uk, wx) with state, control, and random disturbance
@ Policies m = {po, p1, - . .} with ux(x) € U(x) for all x and k
@ Cost of stage k: o g (X, pu(X«), wk)
@ Cost of a policy m = {0, i1, - . .}: The limit as N — oo of the N-stage costs

N—1
JTV(XO) = Nlﬂ;noo EWk {kzo akg(xfﬁ :Ll’k(xk)7 Wk)}
@ 0 < a < 1 isthe discount factor. If & < 1 the problem is called discounted
@ Optimal cost function J*(xo) = min, J-(xo)

@ Problems with a = 1 typically include a special cost-free termination state f. The
objective is to reach (or approach) t at minimum expected cost.

Bertsekas Reinforcement Learning 15/25

Infinite Horizon Problems - The Three Theorems

Finite horizon opt. costs — Infinite horizon opt. cost: Consider the N-stages
problem, with terminal cost 0

@ Apply DP, let Viy_«(x) be the optimal cost-to-go starting at x with k stages to go:
Vn_k(X) = min EW{aN_kg(x, u, w) + Vn_iet (F(x, u, W))}, Wn(x)=0
ueU(x)

@ Define Ji(x) = Vi_«(x)/a"~¥, i.e., reverse the time index and divide with oV =:
Jelx) = min. Ew{g(x, u, w) + a1 (F(x, u, w)) } h(X)=0 (VI)

@ Jn(x) is equal to Vo(x), the N-stages optimal cost starting from x
@ So for any k, Jk(x) = k-stages optimal cost starting from x. Intuitively:
J*(x) = klim Jk(x), for all states x (7?)
—00

J* satisfies Bellman’s equation: Take the limit in Eq. (VI)

* — i * ?7?
J5(x) UrEnJQ()EW{g(X,u, w) + aJ” (f(x, u, w))}, for all states x (??)

”

Optimality condition: Let p*(x) attain the min in the Bellman equation for all x

The policy {p*, u*, ...} is optimal (??). (This type of policy is called stationary.)

Bertsekas Reinforcement Learning 16/25

Infinite Horizon Problems - Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence {Jx}

Je(x) = min Ew{g X, U, w) + a1 (F(x, U, w))} Jo is “arbitrary” (??)

Policy Iteration (P1): Generates sequences of policies {14} and their cost

functions {J,«}; u° is “arbitrary”

The typical iteration starts with a policy . and generates a new policy /i in two steps:
@ Policy evaluation step, which computes the cost function J,,

@ Policy improvement step, which computes the improved rollout policy /i using the
one-step lookahead minimization

fx) € arg min Ew{g(x, u.w) + ad, (F(x.u. w)) |

There are several options for policy evaluation to compute J,

@ Solve Bellman’s equation for p [J.(x) = E{g(x, u(x), w) + ad.(f(x, u(x), w))}]
by using VI or other method (it is linear in J,.)

@ Use simulation (on-line Monte-Carlo, Temporal Difference (TD) methods)

Bertsekas Reinforcement Learning 17/25

Exact and Approximate Policy lteration

] Policy
Base | Policy Improvement
> Policy > Evaluation > . -
7 J Bellman Eq. with
H J,, instead of J*

Rollout Policy f

<
<%

Important facts (to be discussed later):
@ Pl yields in the limit an optimal policy (??)
@ Pl is faster than VI; can be viewed as Newton’s method for solving Bellman’s Eq.
@ Pl can be implemented approximately, with a value and (perhaps) a policy network

Base Approximation Approximation
»| Policy »| in Value Space »{in Policy Space >
H Value Network Policy Network
Value Data Policy Data
Rollout Policy i

Bertsekas Reinforcement Learning 18/25

Example - Linear Quadratic Problem for Infinite Horizon

@ System xx.1 = Xk + bux + wi and cost function
N—1
: kr,2 2
Nll—>moo E { kzo o (Xg + ruk)}

@ The VI algorithm is
Jiex1(x) = min Ew{X® + 1 + ade(x + bu + w)}

@ Similar to the finite horizon case, the value iterates Jix are quadratic:

Jo(x) =0, Jkp1(x) = Kix® + constant - 0%,
where {Kx} is generated by
N o Ochk
l’(()717 Kk+1—m+1

@ It can be shown that {Ki} converges to a limit K* for any K, > 0; see the next slide
@ The function J*(x) = K*x? + constant is the solution of Bellman’s equation
@ The optimal policy is a linear function of x, 1" (x) = Lx, and is obtained from

1" (x) € argmin Ey {x* + ri® + aK*(x + bu + w)?}
u

Bertsekas Reinforcement Learning 19/25

Linear Quadratic Problem Solution - Geometric Interpretation

/
Flpmmmmm e
b2
7\ B
1 | :F(K)*TfoczﬂkJrl
1 : Do
y b
—aw K/ o| Ao
| Ky Kpy1 K+ K

PR —— ¢

@ The Bellman equation (neglecting the constant, i.e. w = 0) is written as
K*x? = min [x* + r® + oK™ (x + bu)?] = F(K*)x%,
u

where
arK

FIK) = ok

@ So K" = F(K™), i.e., K* is a fixed point of the function F
@ Vlalgorithm is Jky1(x) = Kiy1x% = F(Ki)x?
@ Cancelling x?, VI is equivalent to the fixed point iteration Ki.1 = F(Kx)

Bertsekas Reinforcement Learning 20/25

Example - Policy Iteration for the Linear Quadratic Problem

Starts with linear policy 1.°(x) = Lox, generates sequence of linear policies
1k (x) = Likx (see class notes for details)

@ Policy evaluation:
J.k(x) = Kix® + constant

where
1+ ri2
Kk=7+——"""—"
1 — a(1 + bLk)?
@ Policy improvement:
P () = Liyax
where
abKi

bt = ok K,
@ Can be viewed as Newton’s method for solving the Riccati equation

7ﬂ+1
T r+ab?K

@ Rollout is a single Newton iteration

Bertsekas Reinforcement Learning

21/25

A More Abstract View of VI and Pl

Bellman’s equation, VI, and PI can be written using Bellman operators
Recall Bellman’s equation

J*(x) = urenJPX) Ew{g(x, u, w) + aJ* (f(x, u,w)) }, for all states x

It can be written as a fixed point equation: J*(x) = (TJ*)(x), where T is the Bellman
operator that transforms a function J(-) into a function (TJ)(-)

(T)(x) = min, Ew{g(x, u, w) + ad (F(x, u, w)) } for all states x

Shorthand theory using Bellman operators:

@ VIl is the fixed point iteration Jx.1 = TJx

@ There is a Bellman operator T, for any policy . and corresponding Bellman Eg.
Ju(X¥) = (Tudu)(X) = E{g(x, u(x), W) + oy (F(X, u(x), w))}

@ Plis written compactly as J « = T «J,« (policy evaluation) and T k1 J,« = TJ «
(policy improvement)

@ The Pl sequence {J,«} is the result of Newton’s method for solving J = TJ

Bertsekas Reinforcement Learning 22/25

Value lteration - Geometric Interpretation (Spend Time to Understand)

45 Degree Line

Val oo
alue iterations /
\\ / /
/
/
/ 4
/

[
[
[
| %
| /
Ny 4 Optimal cost
S Jr=TJ*
¢
e J1 Jo
/s
Value iteration:
Jir1(X) = (Tde)(x) = min Ewq g(x, u, w) + adk (f(x, u, W))}
ueU(x)

where T is the Bellman operator that maps functions J(+) to functions (TJ)(-)

Bertsekas

Reinforcement Learning

23/25

Policy lteration - Geometric Interpretation (Spend Time to Understand)

Policy Evaluation
for p

TJ = min, T,J

Linearized Bellman Eq. at J,
Yields Rollout Policy i
Through Tz J,, =TJ,

|

Policy Improvement with
/ Base Policy p

|
b

L

L

b

F !

F [

F [

L [

L [

L [

oo . >

/
7/
/
/
, Optimal cost
Jr=TJ*
7 \
s - N ,
/ J’l = T[‘Jﬁ Jp =Ty /

Cost of rollout policy fi Cost of base policy p
Given the current policy p:

@ The rollout policy is obtained by J, = T,J,. (policy evaluation) and T;J,, = TJ,
(policy improvement)

@ The rollout algorithm is a single iteration of PI/Newton’s method

Bertsekas Reinforcement Learning 24/25

About the Next Lecture

We will cover problem formulations and reformulations
@ How do we formulate DP models for practical problems?
@ Problems involving a terminal state (stochastic shortest path problems)

@ Problem reformulation by state augmentation (dealing with delays, correlations,
forecasts, etc)

@ Problems involving imperfect state observation (POMDP or Partial Observation
MDP)

@ Multiagent problems - Nonclassical information patterns
@ Systems with unknown or changing parameters - Adaptive control

PLEASE READ AS MUCH OF SECTION 1.4 OF THE CLASS NOTES AS YOU CAN |

1ST HOMEWORK (DUE IN ONE WEEK) TO BE ANNOUNCED ON-LINE)

Bertsekas Reinforcement Learning 25/25

	Stochastic DP Algorithm
	Linear Quadratic Problems - An Important Favorable Special Case
	Infinite Horizon - An Overview of Theory and Algorithms

