Topics in Reinforcement Learning: Rollout and Approximate Policy Iteration

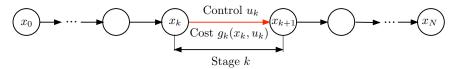
ASU, CSE 691, Spring 2021

Links to Class Notes, Videolectures, and Slides at http://web.mit.edu/dimitrib/www/RLbook.html

Dimitri P. Bertsekas dbertsek@asu.edu

Lecture 2
Stochastic Finite and Infinite Horizon DP

Review - Finite Horizon Deterministic Problem



System

$$x_{k+1} = f_k(x_k, u_k), \qquad k = 0, 1, \dots, N-1$$

where x_k : State, u_k : Control chosen from some set $U_k(x_k)$

Cost function:

$$g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

• For given initial state x_0 , minimize over control sequences $\{u_0, \dots, u_{N-1}\}$

$$J(x_0; u_0, \ldots, u_{N-1}) = g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, u_k)$$

• Optimal cost function $J^*(x_0) = \min_{\substack{u_k \in U_k(x_k) \\ k=0,\dots,N-1}} J(x_0; u_0,\dots,u_{N-1})$

Review - DP Algorithm for Deterministic Problems

Go backward to compute the optimal costs $J_k^*(x_k)$ of the x_k -tail subproblems

Start with

$$J_N^*(x_N) = g_N(x_N), \quad \text{for all } x_N,$$

and for $k = 0, \dots, N-1$, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} \left[g_k(x_k, u_k) + J_{k+1}^*(f_k(x_k, u_k)) \right], \quad \text{for all } x_k.$$

Then optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.

Go forward to construct optimal control sequence $\{u_0^*, \dots, u_{N-1}^*\}$

Start with

$$u_0^* \in \arg\min_{u_0 \in U_0(x_0)} \left[g_0(x_0, u_0) + J_1^* \left(f_0(x_0, u_0) \right) \right], \qquad x_1^* = f_0(x_0, u_0^*).$$

Sequentially, going forward, for k = 1, 2, ..., N - 1, set

$$u_k^* \in \arg\min_{u_k \in U_k(x_k^*)} \left[g_k(x_k^*, u_k) + J_{k+1}^* \big(f_k(x_k^*, u_k) \big) \right], \qquad x_{k+1}^* = f_k(x_k^*, u_k^*).$$

Approximation in value space approach: We replace J_k^* with an approximation \tilde{J}_k .

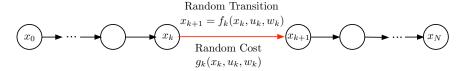
Outline

Stochastic DP Algorithm

Linear Quadratic Problems - An Important Favorable Special Case

3 Infinite Horizon - An Overview of Theory and Algorithms

Stochastic DP Problems - Perfect State Observation (We Know x_k)



- System $x_{k+1} = f_k(x_k, u_k, w_k)$ with random "disturbance" w_k (e.g., physical noise, market uncertainties, demand for inventory, unpredictable breakdowns, etc)
- Cost function:

$$E\left\{g_N(x_N)+\sum_{k=0}^{N-1}g_k(x_k,u_k,w_k)\right\}$$

- Policies $\pi = \{\mu_0, \dots, \mu_{N-1}\}$, where μ_k is a "closed-loop control law" or "feedback policy"/a function of x_k . A "lookup table" for the control $u_k = \mu_k(x_k)$ to apply at x_k .
- For given initial state x_0 , minimize over all $\pi = \{\mu_0, \dots, \mu_{N-1}\}$ the cost

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

• Optimal cost function: $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$. Optimal policy: $J_{\pi^*}(x_0) = J^*(x_0)$

The Stochastic DP Algorithm

Produces the optimal costs $J_k^*(x_k)$ of the tail subproblems that start at x_k

Start with $J_N^*(x_N) = g_N(x_N)$, and for k = 0, ..., N - 1, let

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} E_{w_k} \Big\{ g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k) \big) \Big\}, \quad \text{for all } x_k.$$

- The optimal cost $J^*(x_0)$ is obtained at the last step: $J_0^*(x_0) = J^*(x_0)$.
- The optimal policy component μ_k^* can be constructed simultaneously with J_k^* , and consists of the minimizing $u_k^* = \mu_k^*(x_k)$ above.

Alternative on-line implementation of the optimal policy, given J_1^*, \dots, J_{N-1}^*

Sequentially, going forward, for k = 0, 1, ..., N - 1, observe x_k and apply

$$u_k^* \in \arg\min_{u_k \in U_k(x_k)} E_{w_k} \Big\{ g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k) \big) \Big\}.$$

Issues: Need to know J_{k+1}^* , compute expectation for each u_k , minimize over all u_k

Approximation in value space: Use \tilde{J}_k in place of J_k^* ; approximate $E\{\cdot\}$ and \min_{u_k} .

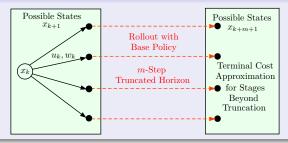
Approximation in Value Space - The Three Approximations

Simplified minimization

First Step "Future"
$$\min_{u_k} E\left\{g_k(x_k, u_k, w_k) + \tilde{J}_{k+1}(x_{k+1})\right\} \quad \text{"On-Line Play"}$$
Expected value approximation Cost-to-go approximation

Important variants: Use multistep lookahead, replace $E\{\cdot\}$ by limited simulation (e.g., a "certainty equivalent" of w_k), multiagent rollout (for multicomponent control problems)

An example: Truncated rollout with base policy and terminal cost approximation (however obtained)



Bertsekas Reinforcement Learning 8 / 25

DP Algorithm and Value Space Approximation for Q-Factors

Optimal Q-factors are given by

$$Q_k^*(x_k, u_k) = E_{w_k} \Big\{ g_k(x_k, u_k, w_k) + J_{k+1}^* \big(f_k(x_k, u_k, w_k) \big) \Big\}$$

They define optimal cost-to-go functions and optimal policies by

$$J_k^*(x_k) = \min_{u_k \in U_k(x_k)} Q_k^*(x_k, u_k), \qquad \mu_k^*(x_k) \in \arg\min_{u_k \in U_k(x_k)} Q_k^*(x_k, u_k)$$

DP algorithm can be written in terms of Q-factors

$$Q_k^*(x_k, u_k) = E_{w_k} \left\{ g_k(x_k, u_k, w_k) + \min_{u_{k+1}} Q_{k+1}^*(f_k(x_k, u_k, w_k), u_{k+1}) \right\}$$

• Approximately optimal Q-factors $\tilde{Q}_k(x_k, u_k)$, define suboptimal cost-to-go functions and suboptimal policies by

$$\tilde{J}_k(x_k) = \min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k), \qquad \tilde{\mu}_k(x_k) \in \arg\min_{u_k \in U_k(x_k)} \tilde{Q}_k(x_k, u_k)$$

- There are many methods to compute $\tilde{Q}_k(x_k, u_k)$, including NN training
- \tilde{Q}_k or \tilde{J}_k ? An important tradeoff: On-line min simplification vs on-line replanning

Bertsekas Reinforcement Learning 9 / 25

A Very Favorable Case: Linear-Quadratic Problems

An example of a linear-quadratic problem

- Keep car velocity constant (like oversimplified cruise control): $x_{k+1} = x_k + bu_k + w_k$
- u_k is unconstrained; w_k has 0-mean and variance σ^2
- Here $x_k = v_k \bar{v}$ is the deviation between the vehicle's velocity v_k at time k from desired level \bar{v} , and b is given
- Cost over N stages: $x_N^2 + \sum_{k=0}^{N-1} (x_k^2 + ru_k^2)$, where $r \ge 0$ is given
- DP algorithm:

$$J_N^*(x_N) = x_N^2,$$

$$J_k^*(x_k) = \min_{u_k} E_{w_k} \{ x_k^2 + ru_k^2 + J_{k+1}^*(x_k + bu_k + w_k) \}, \quad k = 0, \dots, N-1$$

- DP algorithm can be carried out in closed form to yield $J_k^*(x_k) = K_k x_k^2 + \text{const}, \ \mu_k^*(x_k) = L_k x_k$: K_k and L_k can be explicitly computed
- The solution does not depend on the distribution of w_k as long as it has 0 mean: Certainty Equivalence (a common approximation idea for other problems)

Bertsekas Reinforcement Learning 11 / 25

Derivation

$$J_{N-1}^{*}(x_{N-1}) = \min_{u_{N-1}} E\{x_{N-1}^{2} + ru_{N-1}^{2} + J_{N}^{*}(x_{N-1} + bu_{N-1} + w_{N-1})\}$$

$$= \min_{u_{N-1}} E\{x_{N-1}^{2} + ru_{N-1}^{2} + (x_{N-1} + bu_{N-1} + w_{N-1})^{2}\}$$

$$= \min_{u_{N-1}} [x_{N-1}^{2} + ru_{N-1}^{2} + (x_{N-1} + bu_{N-1})^{2} + 2E\{w_{N-1}\}(x_{N-1} + bu_{N-1}) + E\{w_{N-1}^{2}\}]$$

$$= x_{N-1}^{2} + \min_{u_{N-1}} [ru_{N-1}^{2} + (x_{N-1} + bu_{N-1})^{2}] + \sigma^{2}$$

Minimize by setting to zero the derivative: $0 = 2ru_{N-1} + 2b(x_{N-1} + bu_{N-1})$, to obtain

$$\mu_{N-1}^*(x_{N-1}) = -\frac{b}{r+b^2} x_{N-1} = L_{N-1} x_{N-1}$$

and by substitution, $J_{N-1}^*(x_{N-1}) = P_{N-1}x_{N-1}^2 + \sigma^2$, where $P_{N-1} = \frac{r}{r+b^2} + 1$

Similarly, going backwards, we obtain for all k:

$$J_k^*(x_k) = P_k x_k^2 + \sigma^2 \sum_{m=k}^{N-1} P_{m+1}, \ \mu_k^*(x_k) = L_k x_k, \ P_k = \frac{r P_{k+1}}{r + b^2 P_{k+1}} + 1, \ L_k = -\frac{b P_{k+1}}{r + b^2 P_{k+1}}$$

Linear-Quadratic Problems in General

Observations and generalizations

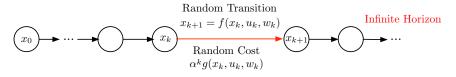
- The solution does not depend on the distribution of w_k , only on the mean, i.e., we have certainty equivalence
- Generalization to multidimensional problems, nonzero mean disturbances, etc
- Generalization to problems where the state is observed partially through linear measurements: Optimal policy involves an extended form of certainty equivalence

$$L_k E\{x_k \mid \text{measurements}\}$$

where $E\{x_k \mid \text{measurements}\}\)$ is provided by an estimator (e.g., Kalman filter)

- Linear systems and quadratic cost are a starting point for other lines of investigations and approximations:
 - Problems with safety/state constraints [Model Predictive Control (MPC)]
 - Problems with control constraints (MPC)
 - Unknown or changing system parameters (adaptive control)

Infinite Horizon Problems



Infinite number of stages, and stationary system and cost

- System $x_{k+1} = f(x_k, u_k, w_k)$ with state, control, and random disturbance
- Policies $\pi = \{\mu_0, \mu_1, \ldots\}$ with $\mu_k(x) \in U(x)$ for all x and k
- Cost of stage k: $\alpha^k g(x_k, \mu_k(x_k), w_k)$
- Cost of a policy $\pi = \{\mu_0, \mu_1, \ldots\}$: The limit as $N \to \infty$ of the N-stage costs

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{w_k} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

- $0 < \alpha \le 1$ is the discount factor. If $\alpha < 1$ the problem is called discounted
- Optimal cost function $J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$
- Problems with $\alpha = 1$ typically include a special cost-free termination state t. The objective is to reach (or approach) t at minimum expected cost.

15 / 25

Infinite Horizon Problems - The Three Theorems

Finite horizon opt. costs -> Infinite horizon opt. cost: Consider the *N*-stages problem, with terminal cost 0

• Apply DP, let $V_{N-k}(x)$ be the optimal cost-to-go starting at x with k stages to go:

$$V_{N-k}(x) = \min_{u \in U(x)} E_w \Big\{ \alpha^{N-k} g(x, u, w) + V_{N-k+1} \big(f(x, u, w) \big) \Big\}, \quad V_N(x) \equiv 0$$

• Define $J_k(x) = V_{N-k}(x)/\alpha^{N-k}$, i.e., reverse the time index and divide with α^{N-k} :

$$J_k(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J_{k-1} \big(f(x, u, w) \big) \Big\}, \quad J_0(x) \equiv 0$$
 (VI)

- $J_N(x)$ is equal to $V_0(x)$, the N-stages optimal cost starting from x
- So for any k, $J_k(x) = k$ -stages optimal cost starting from x. Intuitively:

$$J^*(x) = \lim_{k \to \infty} J_k(x),$$
 for all states x (??)

J* satisfies Bellman's equation: Take the limit in Eq. (VI)

$$J^*(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J^* \big(f(x, u, w) \big) \Big\}, \qquad \text{for all states } x \quad (??)$$

Optimality condition: Let $\mu^*(x)$ attain the min in the Bellman equation for all x

The policy $\{\mu^*, \mu^*, \ldots\}$ is optimal (??). (This type of policy is called stationary.)

Infinite Horizon Problems - Algorithms

Value iteration (VI): Generates finite horizon opt. cost function sequence $\{J_k\}$

$$J_k(x) = \min_{u \in U(x)} E_w \Big\{ g(x,u,w) + \alpha J_{k-1} \big(f(x,u,w) \big) \Big\}, \qquad \textit{J}_0 \text{ is "arbitrary" (??)}$$

Policy Iteration (PI): Generates sequences of policies $\{\mu^k\}$ and their cost functions $\{J_{\mu^k}\}$; μ^0 is "arbitrary"

The typical iteration starts with a policy μ and generates a new policy $\tilde{\mu}$ in two steps:

- ullet Policy evaluation step, which computes the cost function J_{μ}
- ullet Policy improvement step, which computes the improved rollout policy $ilde{\mu}$ using the one-step lookahead minimization

$$ilde{\mu}(x) \in \arg\min_{u \in U(x)} E_w \Big\{ g(x,u,w) + lpha J_\mu ig(f(x,u,w) ig) \Big\}$$

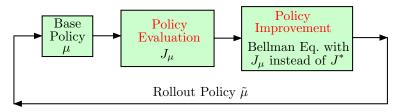
There are several options for policy evaluation to compute J_{μ}

- Solve Bellman's equation for μ [$J_{\mu}(x) = E\{g(x, \mu(x), w) + \alpha J_{\mu}(f(x, \mu(x), w))\}]$ by using VI or other method (it is linear in J_{μ})
- Use simulation (on-line Monte-Carlo, Temporal Difference (TD) methods)

Bertsekas Reinforcement Learning

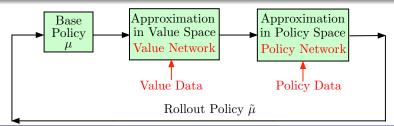
17 / 25

Exact and Approximate Policy Iteration



Important facts (to be discussed later):

- PI yields in the limit an optimal policy (??)
- PI is faster than VI; can be viewed as Newton's method for solving Bellman's Eq.
- PI can be implemented approximately, with a value and (perhaps) a policy network



Bertsekas Reinforcement Learning

18 / 25

Example - Linear Quadratic Problem for Infinite Horizon

• System $x_{k+1} = x_k + bu_k + w_k$ and cost function

$$\lim_{N\to\infty} E\left\{\sum_{k=0}^{N-1} \alpha^k (x_k^2 + ru_k^2)\right\}$$

• The VI algorithm is

$$J_{k+1}(x) = \min_{u} E_{w} \{ x^{2} + ru^{2} + \alpha J_{k}(x + bu + w) \}$$

• Similar to the finite horizon case, the value iterates J_k are quadratic:

$$J_0(x) = 0$$
, $J_{k+1}(x) = K_k x^2 + \text{constant} \cdot \sigma^2$,

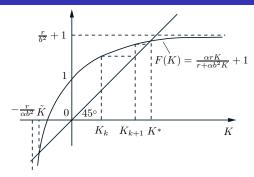
where $\{K_k\}$ is generated by

$$K_0 = 1,$$
 $K_{k+1} = \frac{\alpha r K_k}{r + \alpha b^2 K_k} + 1$

- It can be shown that $\{K_k\}$ converges to a limit K^* for any $K_0 \ge 0$; see the next slide
- The function $J^*(x) = K^*x^2 + \text{constant}$ is the solution of Bellman's equation
- The optimal policy is a linear function of x, $\mu^*(x) = Lx$, and is obtained from

$$\mu^*(x) \in \arg\min_{u} E_w \{ x^2 + ru^2 + \alpha K^* (x + bu + w)^2 \}$$

Linear Quadratic Problem Solution - Geometric Interpretation



• The Bellman equation (neglecting the constant, i.e. $w \equiv 0$) is written as

$$K^*x^2 = \min_{u} [x^2 + ru^2 + \alpha K^*(x + bu)^2] = F(K^*)x^2,$$

where

$$F(K) = \frac{\alpha r K}{r + \alpha b^2 K} + 1$$

- So $K^* = F(K^*)$, i.e., K^* is a fixed point of the function F
- VI algorithm is $J_{k+1}(x) = K_{k+1}x^2 = F(K_k)x^2$
- Cancelling x^2 , VI is equivalent to the fixed point iteration $K_{k+1} = F(K_k)$

Bertsekas Reinforcement Learning 20 / 25

Example - Policy Iteration for the Linear Quadratic Problem

Starts with linear policy $\mu^0(x) = L_0 x$, generates sequence of linear policies $\mu^k(x) = L_k x$ (see class notes for details)

Policy evaluation:

$$J_{\mu^k}(x) = K_k x^2 + \text{constant}$$

where

$$K_k = \frac{1 + rL_k^2}{1 - \alpha(1 + bL_k)^2}$$

Policy improvement:

$$\mu^{k+1}(x) = L_{k+1}x$$

where

$$L_{k+1} = -\frac{\alpha b K_k}{r + \alpha b^2 K_k}$$

Can be viewed as Newton's method for solving the Riccati equation

$$K = \frac{\alpha r K}{r + \alpha b^2 K} + 1$$

Rollout is a single Newton iteration

A More Abstract View of VI and PI

Bellman's equation, VI, and PI can be written using Bellman operators

Recall Bellman's equation

$$J^*(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J^* \big(f(x, u, w) \big) \Big\}, \qquad \text{for all states } x$$

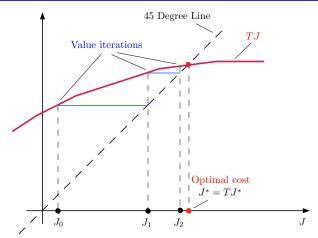
It can be written as a fixed point equation: $J^*(x) = (TJ^*)(x)$, where T is the Bellman operator that transforms a function $J(\cdot)$ into a function $(TJ)(\cdot)$

$$(TJ)(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J \big(f(x, u, w) \big) \Big\}, \qquad \text{for all states } x$$

Shorthand theory using Bellman operators:

- VI is the fixed point iteration $J_{k+1} = TJ_k$
- There is a Bellman operator T_{μ} for any policy μ and corresponding Bellman Eq. $J_{\mu}(x) = (T_{\mu}J_{\mu})(x) = E\{g(x, \mu(x), w) + \alpha J_{\mu}(f(x, \mu(x), w))\}$
- PI is written compactly as $J_{\mu^k} = T_{\mu^k} J_{\mu^k}$ (policy evaluation) and $T_{\mu^{k+1}} J_{\mu^k} = T J_{\mu^k}$ (policy improvement)
- The PI sequence $\{J_{\mu^k}\}$ is the result of Newton's method for solving J=TJ

Value Iteration - Geometric Interpretation (Spend Time to Understand)



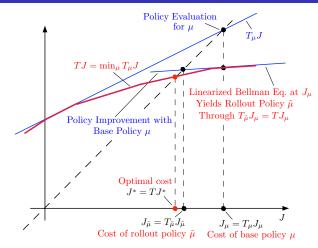
Value iteration:

$$J_{k+1}(x) = (TJ_k)(x) = \min_{u \in U(x)} E_w \Big\{ g(x, u, w) + \alpha J_k \big(f(x, u, w) \big) \Big\}$$

where T is the Bellman operator that maps functions $J(\cdot)$ to functions $(TJ)(\cdot)$

Bertsekas Reinforcement Learning 23 / 25

Policy Iteration - Geometric Interpretation (Spend Time to Understand)



Given the current policy μ :

- The rollout policy is obtained by $J_{\mu}=T_{\mu}J_{\mu}$ (policy evaluation) and $T_{\tilde{\mu}}J_{\mu}=TJ_{\mu}$ (policy improvement)
- The rollout algorithm is a single iteration of PI/Newton's method

Bertsekas Reinforcement Learning 24 / 25

About the Next Lecture

We will cover problem formulations and reformulations

- How do we formulate DP models for practical problems?
- Problems involving a terminal state (stochastic shortest path problems)
- Problem reformulation by state augmentation (dealing with delays, correlations, forecasts, etc)
- Problems involving imperfect state observation (POMDP or Partial Observation MDP)
- Multiagent problems Nonclassical information patterns
- Systems with unknown or changing parameters Adaptive control

PLEASE READ AS MUCH OF SECTION 1.4 OF THE CLASS NOTES AS YOU CAN

1ST HOMEWORK (DUE IN ONE WEEK) TO BE ANNOUNCED ON-LINE