Polyhedral Approximations in Convex Optimization

Dimitri P. Bertsekas

Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology

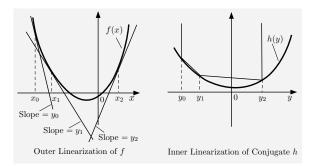
Tsinghua University, 2009

Convex Optimization Algorithms: Generalities

- Primary methodology for large scale problems.
- Arise in the context of duality, network optimization, machine learning.
- Principal methods date to the 60s ... but have been used in new ways recently.
- Descent methods (e.g., subgradient).
- Polyhedral approximation (e.g., cutting plane).
- Proximal (regularization) methods possibly in combination with polyhedral approximation.

Our Focus in this Talk

- A unifying framework for polyhedral approximation methods.
- Includes classical methods:
 - Cutting plane/Outer linearization Simplicial decomposition/Inner linearization
- Includes new methods, and new versions/extensions of old methods.
- Based on a convex conjugacy framework and outer/inner linearization duality.



Vehicle for Unification

Extended monotropic programming (EMP)

$$\min_{(x_1,\ldots,x_m)\in S} \quad \sum_{i=1}^m f_i(x_i)$$

where $f_i: \Re^{n_i} \mapsto (-\infty, \infty]$ is a convex function and S is a subspace.

The dual EMP is

$$\min_{(y_1,\ldots,y_m)\in\mathcal{S}^\perp}\sum_{i=1}^m h_i(y_i)$$

where h_i is the convex conjugate function of f_i .

• Algorithmic Ideas:

Outer or inner linearization for some of the f_i Refinement of linearization using duality

Features of outer or inner linearization use:

They are combined in the same algorithm
Their roles are reversed in the dual problem
Become two (mathematically equivalent dual) faces of the same coin

Advantage over Classical Polyhedral Approximation Methods

- The refinement process is much faster.
 - Reason: At each iteration we add multiple cutting planes/break points (as many as one per function f_i).
 - By contrast a single cutting plane/break point is added in classical methods.
- The refinement process may be more convenient.
 - For example, when f_i is a scalar function, adding a cutting plane/break point to the polyhedral approximation of f_i can be very simple.
 - By contrast, adding a cutting plane/break point may require solving a complicated differentiation/optimization process in classical methods.

References

- D. P. Bertsekas, "Extended Monotropic Programming and Duality," JOTA, 2008, Vol. 139, pp. 209-225.
- D. P. Bertsekas, "Convex Optimization Theory," 2009, www-based "living chapter" on algorithms.
- Related work that applies dual simplicial decomposition in a machine learning context:
 - H. Yu, D. P. Bertsekas, and J. Rousu, "An Efficient Discriminative Training Method for Generative Models," Tech. Report.

$$\min_{x \in \mathbb{R}^n} \quad r(x) + \sum_{i=1}^m f_i(x)$$

- $f_i(x)$: Complicated polyhedral function; corresponds to *i*th data batch
- r(x): Regularization term

Outline

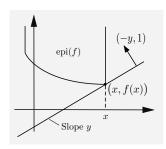
- Polyhedral Approximation
 - Review of Existing Methodology
 - Cutting Plane and Simplicial Decomposition Methods
- Extended Monotropic Programming
 - Duality Theory
 - General Approximation Algorithm
- Special Cases
 - Cutting Plane Methods
 - Simplicial Decomposition for $\min_{x \in C} f(x)$

Subgradients

- Let $f: \Re^n \mapsto (-\infty, \infty]$ be a convex function.
- A vector $y \in \Re^n$ is a *subgradient* of f at a point $x \in dom(f)$ if

$$f(z) \geq f(x) + y'(z - x), \quad \forall z \in \Re^n$$

- The set $\partial f(x)$ of all subgradients of f at x is the subdifferential of f at x
- A subgradient can be identified with a nonvertical supporting hyperplane to the epigraph of f at (x, f(x))



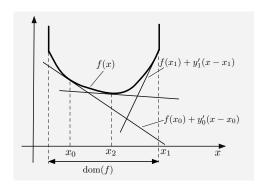
Outer Linearization - Epigraph Approximation by Halfspaces

- Given a convex function $f: \Re^n \mapsto (-\infty, \infty]$.
- Approximation using subgradients:

$$\max \{f(x_0) + y_0'(x - x_0), \dots, f(x_k) + y_k'(x - x_k)\}$$

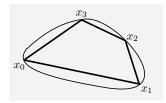
where

$$y_i \in \partial f(x_i), \qquad i = 0, \ldots, k$$

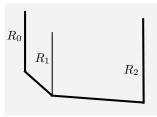


Convex Hulls

Convex hull of a finite set of points x_i



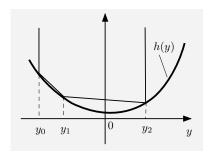
• Convex hull of a union of a finite number of rays R_i



Inner Linearization - Epigraph Approximation by Convex Hulls

• Given a convex function $h: \Re^n \mapsto (-\infty, \infty]$ and a finite set of points $y_0, \dots, y_k \in \text{dom}(h)$

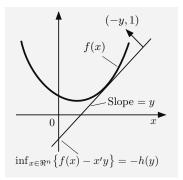
• Epigraph approximation by convex hull of rays
$$\{(y_i, w) \mid w \geq h(y_i)\}$$



Conjugacy

- Consider convex function $f: \Re^n \mapsto (-\infty, \infty]$
- The conjugate function of f is

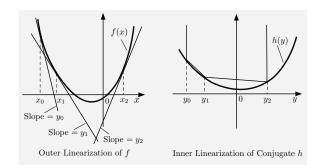
$$h(y) = \sup_{x \in \Re^n} \{x'y - f(x)\}, \qquad y \in \Re^n$$



- Conjugacy theorem: The conjugate of h is f (under very weak conditions)
- Subgradient duality: $y \in \partial f(x)$ iff $x \in \partial h(y)$

Conjugacy of Outer/Inner Linearization

- Given a function $f: \Re^n \mapsto (-\infty, \infty]$ and its conjugate h.
- The conjugate of an outer linearization of *f* is an inner linearization of *h*.



• Subgradients in outer lin. <==> Break points in inner lin.

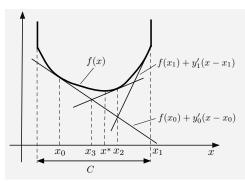
Cutting Plane Method for $\min_{x \in C} f(x)$

• Given $y_i \in \partial f(x_i)$ for $i = 0, \dots, k$, form

$$F_k(x) = \max \{f(x_0) + y'_0(x - x_0), \dots, f(x_k) + y'_k(x - x_k)\}$$

and let

$$x_{k+1} \in \arg\min_{x \in C} F_k(x)$$



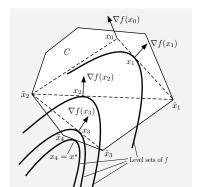
Simplicial Decomposition Method for $\min_{x \in C} f(x)$ (f is Differentiable)

- At the typical iteration we have x_k and $X_k = \{x_0, \tilde{x}_1, \dots, \tilde{x}_k\}$, where $\tilde{x}_1, \dots, \tilde{x}_k$ are extreme points of C.
- Generate

$$\tilde{x}_{k+1} \in \arg\min_{x \in X} \{ \nabla f(x_k)'(x - x_k) \}$$

• Set $X_{k+1} = {\tilde{x}_{k+1}} \cup X_k$, and generate x_{k+1} as

$$x_{k+1} \in \arg\min_{x \in \operatorname{conv}(X_{k+1})} f(x)$$



Comparison: Cutting Plane - Simplicial Decomposition

- Cutting plane aims to use LP with same dimension and smaller number of constraints.
- Most useful when problem has small dimension and:

There are many linear constraints, or

The cost function is nonlinear and linear versions of the problem are much simpler

- Simplicial decomposition aims to use NLP over a simplex of small dimension [i.e., conv(X_κ)].
- Most useful when problem has large dimension and:

Cost is nonlinear, and Solving linear versions of the (large-dimension)

Solving linear versions of the (large-dimensional) problem is much simpler (possibly due to decomposition)

- The two methods appear very different, with unclear connection, despite the general conjugacy relation between outer and inner linearization.
- We will see that they are special cases of two methods that are dual (and mathematically equivalent) to each other.

Extended Monotropic Programming (EMP)

$$\min_{(x_1,\ldots,x_m)\in\mathcal{S}} \quad \sum_{i=1}^m f_i(x_i)$$

where $f_i: \Re^{n_i} \mapsto (-\infty, \infty]$ is a closed proper convex, S is subspace.

- Monotropic programming (Rockafellar, Minty), where f_i : scalar functions.
- Single commodity network flow (S: circulation subspace of a graph).
- Block separable problems with linear constraints.
- Fenchel duality framework: Let m=2 and $S=\{(x,x)\mid x\in\Re^n\}$. Then the problem

$$\min_{(x_1,x_2)\in S} f_1(x_1) + f_2(x_2)$$

can be written in the Fenchel format

$$\min_{x \in \Re^n} f_1(x) + f_2(x)$$

- Conic programs (second order, semidefinite special case of Fenchel).
- Sum of functions (e.g., machine learning): For $S = \{(x, ..., x) \mid x \in \Re^n\}$, we obtain

$$\min_{x\in\Re^n}\sum_{i=1}^m f_i(x)$$

Dual EMP

• Derivation: Introduce $z_i \in \Re^{n_i}$ and convert EMP to the equivalent form

$$\min_{\substack{z_i=x_i,\ i=1,\ldots,m,\\(x_1,\ldots,x_m)\in\mathcal{S}}}\sum_{i=1}^m f_i(z_i)$$

• Assign multiplier $y_i \in \Re^{n_i}$ to constraint $z_i = x_i$, and form the Lagrangian

$$L(x, z, y) = \sum_{i=1}^{m} f_i(z_i) + y'_i(x_i - z_i)$$

where $y = (y_1, ..., y_m)$.

The dual problem is to maximize the dual function

$$q(y) = \inf_{(x_1,\ldots,x_m)\in S,\ z_i\in\Re^{n_i}} L(x,z,y)$$

• Exploiting the separability of L(x, z, y) and changing sign to convert maximization to minimization, we obtain the dual EMP in symmetric form

$$\min_{(y_1,\ldots,y_m)\in\mathcal{S}^{\perp}}\sum_{i=1}^m h_i(y_i)$$

where h_i is the convex conjugate function of f_i .

Optimality Conditions

- There are powerful conditions for strong duality $q^* = f^*$ (Bertsekas 2008, generalizing classical monotropic programming results):
 - Vector Sum Condition for Strong Duality: Assume that for all feasible x, the set

$$S^{\perp} + \partial_{\epsilon}(f_1 + \cdots + f_m)(x)$$

is closed for all $\epsilon > 0$. Then $q^* = f^*$.

- Special Case: Assume each f_i is finite, or is polyhedral, or is essentially one-dimensional, or is domain one-dimensional. Then $q^* = f^*$.
- By considering the dual EMP, "finite" may be replaced by "co-finite" in the above statement.
- Optimality conditions, assuming $-\infty < q^* = f^* < \infty$:
 - (x^*, y^*) is an optimal primal and dual solution pair if and only if

$$x^* \in S$$
, $y^* \in S^{\perp}$, $y_i^* \in \partial f_i(x_i^*)$, $i = 1, \ldots, m$

Symmetric conditions involving the dual EMP:

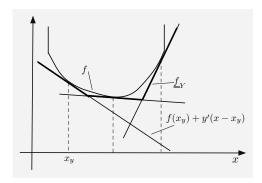
$$x^* \in S$$
, $y^* \in S^{\perp}$, $x_i^* \in \partial h_i(y_i^*)$, $i = 1, ..., m$

Outer Linearization of a Convex Function: Definition

- Let $f: \Re^n \mapsto (-\infty, \infty]$ be closed proper convex.
- Given a finite set $Y \subset dom(h)$, we define the outer linearization of f

$$\underline{f}_{Y}(x) = \max_{y \in Y} \left\{ f(x_y) + y'(x - x_y) \right\}$$

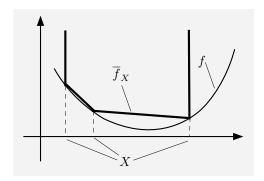
where x_y is such that $y \in \partial f(x_y)$.



Inner Linearization of a Convex Function: Definition

- Let $f: \Re^n \mapsto (-\infty, \infty]$ be closed proper convex.
- Given a finite set $X \subset \text{dom}(f)$, we define the inner linearization of f as the function \bar{f}_X whose epigraph is the convex hull of the rays $\{(x, w) \mid w \geq f(x), x \in X\}$:

$$\bar{f}_X(z) = \begin{cases} \min_{\substack{\sum_{x \in X} \alpha_x x = z, \\ \sum_{x \in X} \alpha_x = 1, \ \alpha_x \geq 0, \ x \in X}} \sum_{x \in X} \alpha_z f(z) & \text{if } z \in \text{conv}(X) \\ \infty & \text{otherwise} \end{cases}$$



Polyhedral Approximation Algorithm

• Let $f_i: \Re^{n_i} \mapsto (-\infty, \infty]$ be closed proper convex, with conjugates h_i . Consider the EMP

$$\min_{(x_1,\ldots,x_m)\in\mathcal{S}}\sum_{i=1}^m f_i(x_i)$$

Introduce a fixed partition of the index set:

$$\{1,\ldots,m\}=I\cup\underline{I}\cup\overline{I},\qquad\underline{I}: \text{Outer indices},\ \overline{I}: \text{Inner indices}$$

 Typical Iteration: We have finite subsets Y_i ⊂ dom(h_i) for each i ∈ I, and X_i ⊂ dom(f_i) for each i ∈ I.

Find primal-dual optimal pair $\hat{x} = (\hat{x}_1, \dots, \hat{x}_m)$, and $\hat{y} = (\hat{y}_1, \dots, \hat{y}_m)$ of the approximate EMP

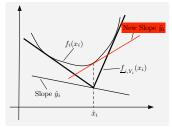
$$\min_{(x_1,\ldots,x_m)\in\mathcal{S}} \quad \sum_{i\in I} f_i(x_i) + \sum_{i\in \underline{I}} \underline{f}_{i,Y_i}(x_i) + \sum_{i\in \overline{I}} \overline{f}_{i,X_i}(x_i)$$

Enlarge Y_i and X_i by differentiation:

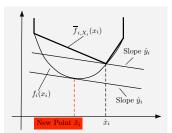
- For each $i \in I$, add \tilde{y}_i to Y_i where $\tilde{y}_i \in \partial f_i(\hat{x}_i)$
- For each $i \in \overline{I}$, add \tilde{x}_i to X_i where $\tilde{x}_i \in \partial h_i(\hat{y}_i)$.

Enlargement Step for *i*th Component Function

• Outer: For each $i \in \underline{I}$, add \tilde{y}_i to Y_i where $\tilde{y}_i \in \partial f_i(\hat{x}_i)$.



• Inner: For each $i \in \overline{I}$, add \tilde{x}_i to X_i where $\tilde{x}_i \in \partial h_i(\hat{y}_i)$.



Mathematically Equivalent Dual Algorithm

Instead of solving the primal approximate EMP

$$\min_{(x_1,\ldots,x_m)\in\mathcal{S}} \quad \sum_{i\in I} f_i(x_i) + \sum_{i\in \underline{I}} \underline{f}_{i,Y_i}(x_i) + \sum_{i\in \overline{I}} \overline{f}_{i,X_i}(x_i)$$

we may solve its dual

$$\min_{(y_1,\ldots,y_m)\in\mathcal{S}^{\perp}}\quad \sum_{i\in I}h_i(y_i)+\sum_{i\in\underline{I}}\underline{h}_{i,Y_i}(y_i)+\sum_{i\in\overline{I}}\overline{h}_{i,X_i}(x_i)$$

where \underline{h}_{i,Y_i} and \overline{h}_{i,X_i} are the conjugates of \underline{f}_{i,Y_i} and \overline{f}_{i,X_i} .

- Note that \underline{h}_{i,Y_i} is an inner linearization, and \overline{h}_{i,X_i} is an outer linearization (roles of inner/outer have been reversed).
- The choice of primal or dual is a matter of computational convenience, but does not affect the primal-dual sequences produced.

Comments on Polyhedral Approximation Algorithm

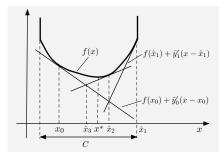
- In some cases we may use an algorithm that solves simultaneously the primal and the dual.
 - **Example:** Monotropic programming, where x_i is one-dimensional.
 - Special case: Convex separable network flow, where x_i is the one-dimensional flow of a directed arc of a graph, S is the circulation subspace of the graph.
- In other cases, it may be preferable to focus on solution of either the primal or the dual approximate EMP.
- After solving the primal, the refinement of the approximation $(\tilde{y_i} \text{ for } i \in \underline{I}, \text{ and } \tilde{x_i} \text{ for } i \in \overline{I})$ may be found later by differentiation and/or some special procedure/optimization.
 - This may be easy, e.g., in the cutting plane method, or
 - This may be nontrivial, e.g., in the simplicial decomposition method.
- Subgradient duality $[y \in \partial f(x)]$ iff $x \in \partial h(y)$ may be useful.

Cutting Plane Method for $\min_{x \in C} f(x)$

- EMP equivalent: $\min_{x_1=x_2} f(x_1) + \delta(x_2 \mid C)$, where $\delta(x_2 \mid C)$ is the indicator function of C.
- Classical cutting plane algorithm: Outer linearize f only, and solve the primal approximate EMP. It has the form

$$\min_{x \in C} \underline{f}_{Y}(x)$$

where Y is the set of subgradients of f obtained so far. If \hat{x} is the solution, add to Y a subgradient $\tilde{y} \in \partial f(\hat{x})$.



Simplicial Decomposition Method for $\min_{x \in C} f(x)$

- EMP equivalent: $\min_{x_1=x_2} f(x_1) + \delta(x_2 \mid C)$, where $\delta(x_2 \mid C)$ is the indicator function of C.
- Generalized Simplicial Decomposition: Inner linearize C only, and solve the primal approximate EMP. In has the form

$$\min_{x\in \bar{C}_X} f(x)$$

where \bar{C}_X is an inner approximation to C.

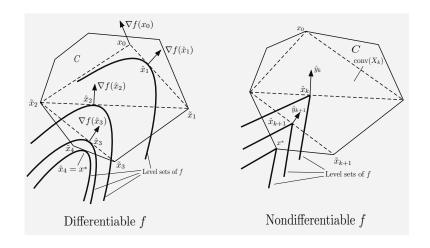
- Assume that \hat{x} is the solution of the approximate EMP.
 - Dual approximate EMP solutions:

$$\{(\hat{y}, -\hat{y}) \mid \hat{y} \in \partial f(\hat{x}), -\hat{y} \in (\text{normal cone of } \bar{C}_X \text{ at } \hat{x})\}$$

- In the classical case where f is differentiable, $\hat{y} = \nabla f(\hat{x})$.
- Add to X a point \tilde{x} such that

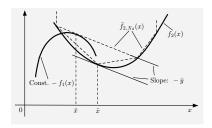
$$\tilde{x} \in \arg\min_{x \in C} \hat{y}'x$$

Illustration of Simplicial Decomposition for $\min_{x \in C} f(x)$

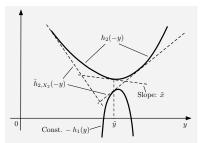


Dual Views for $\min_{x \in \Re^n} \{f_1(x) + f_2(x)\}$

• Inner linearize f2



Dual view: Outer linearize h₂



Convergence - Polyhedral Case

- Assume that
 - All outer linearized functions f_i are finite polyhedral
 - All inner linearized functions f_i are co-finite polyhedral
 - The vectors \tilde{y}_i and \tilde{x}_i added to the polyhedral approximations are elements of the finite representations of the corresponding f_i
- Finite convergence: The algorithm terminates with an optimal primal-dual pair.
- Proof sketch: At each iteration two possibilities:
 - Either (\hat{x}, \hat{y}) is an optimal primal-dual pair for the original problem
 - Or the approximation of one of the f_i , $i \in \underline{I} \cup \overline{I}$, will be refined/improved
- By assumption there can be only a finite number of refinements.

Convergence - Pure Cases

- Asymptotic convergence results also available in other special cases, where nonpolyhedral functions f_i are outer/inner linearized.
- Examples are the classical cutting plane and simplicial decomposition methods, and related algorithms.
- Convergence, pure outer linearization (\bar{l} : Empty). Assume that the sequence $\{\tilde{y}_i^k\}$ is bounded for every $i \in \underline{l}$. Then every limit point of $\{\hat{x}^k\}$ is primal optimal.
- Proof sketch: For all k, $m \le k 1$, and $x \in S$, we have

$$\sum_{i\notin\underline{l}}f_i(\hat{x}_i^k)+\sum_{i\in\underline{l}}\left(f_i(\hat{x}_i^m)+(\hat{x}_i^k-\hat{x}_i^m)'\tilde{y}_i^m\right)\leq\sum_{i\notin\underline{l}}f_i(\hat{x}_i^k)+\sum_{i\in\underline{l}}f_{i,Y_i^{k-1}}(\hat{x}_i^k)\leq\sum_{i=1}^mf_i(x_i)$$

- Let $\{\hat{x}^k\}_{\mathcal{K}} \to \bar{x}$ and take limit as $m \to \infty$, $k \in \mathcal{K}$, $m \in \mathcal{K}$, m < k.
- Exchanging roles of primal and dual, we obtain a convergence result for pure inner linearization case.
- Convergence, pure inner linearization (\underline{I} : Empty). Assume that the sequence $\{\tilde{x}_i^k\}$ is bounded for every $i \in \overline{I}$. Then every limit point of $\{\hat{y}^k\}$ is dual optimal.

Concluding Remarks

- A unifying framework for polyhedral approximations based on EMP.
- Dual and symmetric roles for outer and inner approximations.
- There is option to solve the approximation using a primal method or a dual mathematical equivalent - whichever is more convenient/efficient.
- Several classical methods and some new methods are special cases.
- Proximal/bundle-like versions:
 - Convex proximal terms can be easily incorporated for stabilization and for improvement of rate of convergence.
 - Outer/inner approximations can be carried from one proximal iteration to the next.
- Convergence theory so far inspires confidence in the validity of the method.
- More work on complexity/rate of convergence theory is needed.