Pathologies of Approximate Policy Iteration in Dynamic
Programming

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

March 2011

Summary

We consider policy iteration with cost function approximation

Used widely but exhibits very complex behavior and a variety of potential
pathologies

Case of the tetris test problem

Two types of pathologies

o Deterministic: Due to cost function approximation
@ Stochastic: Due to simulation errors/noise

We survey the pathologies in
e Policy evaluation: Due to errors in approximate evaluation of policies
@ Policy improvement: Due to policy improvement mechanism

Special focus: Policy oscillations and local attractors

Causes of the problem in TD/projected equation methods:
e The projection operator may not be monotone
o The projection norm may depend on the policy evaluated

@ We discuss methods that address the difficulty

References

@ D. P. Bertsekas, “Pathologies of Temporal Differences Methods in
Approximate Dynamic Programming," Proc. 2010 IEEE Conference on
Decision and Control, Proc. 2010 IEEE Conference on Decision and
Control, Atlanta, GA.

@ D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II,
2007, Supplementary Chapter on Approximate DP: On-line; a “living
chapter."

MDP: Brief Review

@ J*(i) = Optimal cost starting from state i

@ J, (/) = Cost starting from state i using policy p

@ Denote by T and T, the DP mappings that transform J € " to the
vectors TJ and T,J with components

(TN E min > pi(u)(glis uf) +ad()), i=1.....n,

(Tu)() S > pi(u(i) (90, (i),) + (), i=1,....n

=

a < 1 for a discounted problem; « = 1 and 0-cost termination state for a
stochastic shortest path problem

@ Bellman’s equations have unique solution

S =TS = Tud,

o p*isoptimal (i.e., J* = Jux) iff TyxJ* = TJ*

Policy lteration: Lookup Table Representation

@ Policy iteration (exact): Start with any p
o Evaluation of policy p: Find J,,
Ju = Tudy
A linear equation
e Improvement of policy p: Find & that attains the minin TJ,,, i.e.,
Tadu = Td,

@ Policy iteration converges finitely (if exact)

lllustration of Convergence

Space of cost vectors J

With exact policy evaluation, convergence is finite and monotonic

Policy Iteration: Cost Function Approximation

@ An old, time-tested approach for solving large-scale equation problems
@ Approximation within subspace S = {®r | r € ®°}

J = or, ® is a matrix with basis functions/features as columns
JM
j,t = or,

Subspace S = {®r | r € Rs}

@ Instead of J,, find J,, = ®r € S by some form of “projection” onto S

Jup = WT,(J,) orequivalently &r, = WT,(®r,)
@ Example: A projected equation/Galerkin method: W = I (a Euclidean
projection)
@ Example: An aggregation method: W = ®D, where ¢ (aggregation
matrix) and D (disaggregation matrix) have prob. distributions as rows

Approximate Policy lteration

@ Start with any
o Evaluation of policy u: Solve for J,, the linear equation

ju = WTu(ju)

e Improvement of policy p: Find &z that attains the minin TJ,,, i.e.,

THJH = TJH

@ Special twists that originated in Reinforcement Learning/ADP:

e Policy evaluation can be done by simulation, with low-dimensional linear

algebra
o Matrix inversion method LSTD()), or iterative methods such as LSPE()),

TD(M), A-policy iteration, etc
o Similar aggregation methods

Tetris Case Study

@ Classical and challenging test problem with huge number of states
@ Initial policy iteration work (VanRoy MS Thesis, under J. Tsitsiklis, 1993)

- a 10x20 board, 3 basis functions, average score of ~ 40 points

Most studies have used a 10x20 board, and a set of “standard" 22 basis
functions introduced by Bertsekas and loffe (1996)

Approximate policy iteration [B+I (1996), Lagoudakis and Parr (2003)]
Policy gradient method [Kakade (2002)]

Approximate LP [Farias+VanRoy (2006), Desai+Farias+Moallemi (2009)]
All of the above achieved average scores in the range 3,000-6,000

BUT with a random search method Szita and Lorenz (2006), and Thierry
and Sherrer (2009) achieved scores 600,000-900,000

Potential Pathologies

@ General issue:
e Good cost approximation —> good performance of generated policies??
e Bad cost approximation —> bad performance of generated policies??
(Can add a constant to the cost of all states without affecting the next
generated policy)

@ Policy evaluation issues (both can be quantified to some extent)

o Bias
@ Simulation error/noise

Ju - -
Solution of J,, = WT,(J,)
X TD(0)

ILJ,

TD(1)\ y

T\ Simulation error

Subspace S = {®r | r € Rs}

@ Policy iteration issues (hard to quantify and understand)

@ Oscillations of policies (local attractors; like local minima)
o Exploration (simulation must ensure that all parts of the state space are
adequately sampled/explored)

Policy Evaluation - Bias Issues - An Example

Cost,

Cost,

Cost

Cost,
1

@ Stochastic shortest path problem with 0: termination state (from
Bertsekas 1995; Neural Computation, Vol. 7)

@ Consider a linear approximation of the form

Ju(y=ir

25.0

0.0<_.

-25.0 4

Cost function J(i)

TD(1) Approximation

TD(0) Approximation

-50.0 r

30 40 50
State i

Cost, Cost,

1. —(n=1) .

Policy Evaluation - Bias Issues - An Example

Cost, Cost, Cost Cost, Cost,

Cost,
1 1 —(n—1)
(DO - ~O——
“Prob. ¢

@ Consider a linear approximation of the form
J.(i)y=ir

Cost function J(i

25.04

TD(1) Approximation
0.0

TD(0) Approximation
-25.0 4

-50.0 T T T T
0 10 20 30 40 50
State i
@ A strange twist: Introduce an e-probability reverse decision at state n — 1
@ Policy iteration/TD(0) yields the optimal policy
o Policy iteration/TD(1) does not

Policy Evaluation - Sensitivity to Simulation Noise

Consider the evaluation equation ®r = WT,(®r)

It is equivalent to a linear equation Cr = d with C a positive definite
(nonsymmetric) matrix

In popular approaches, we compute by simulation C ~ C and d ~ d
The solution ®7 = ®C~"d may be highly sensitive to simulation error

Subspace S = {®r | r € Rs}

This necessitates lots of sampling ... confidence interval/convergence
rate analysis needed (Konda Ph.D. Thesis 2002)

Can happen even without subspace approximation/lookup table
representation (S = R")

Regularization methods may be used, but they introduce additional bias
... heed to quantify

Policy Improvement - Oscillations

@ Consider the space of weights r (policy y is evaluated as Ju =or,)
@ R, = setof r for which u is greedy: T,(®r) = T(®r) (Greedy Partition)
@ pimproves to i iff r, € Rp

Space of
weights r

Ry = {r | Tu(®r) =T(®r)}

@ The algorithm ends up repeating a cycle of policies p, p**', ..., k™

ruk € Rukﬂ, Fuk+1 € Fi'umz, cooy Fykem—1 € Fi'Hk+m, Fukem € Fi'uk

@ The greedy partition depends only on ¢ - is independent of the policy
evaluation method used

Back to Tetris

10x20 board, set of “standard" 22 basis functions

Approximate policy iteration [Bertsekas and loffe (1996), Lagoudakis
and Parr (2003)]

@ Approximate LP [Farias+VanRoy (2006), Desai+Farias+Moallemi (2009)]
@ Policy gradient method [Kakade (2002)]

All of the above achieved average scores in the range 3,000-6,000

BUT with a random search method Szita and Lorenz (2006), and Thierry
and Sherrer (2009) achieved scores 600,000-900,000

What's Going on in Tetris?

Exact Optimal = 7

Random Search 600,000-900,000
[)

Approxigate PI
Approximate LP
Policy gradient

3000-6000
Based on tests with a smaller board: Oscillations occur often in “bad

parts of the weight space”. Not clear if oscillations are the problem

@ Random search and well-designed aggregation methods achieve a
score very close to the exact optimal

The basis functions are very powerful (approx. optimal ~ exact optimal)

Starting from an excellent weight vector, approximate policy iteration
drifts off to cycle around a significantly inferior weight vector

Starting from a bad weight vector, approximate policy iteration drifts off
to cycle around a better but not good weight vector

Search for Remedies

Consider again approximation within subspace S = {¢r | r € R°}

Problem with oscillations: Projection is not monotone (also depends on
1)

Remedy: Replace projection by a constant monotone operator W with
range S

Policy evaluation using an approximate Bellman equation: Find JN with

Ju=WT,(J,) insteadof J,=MNT.(J,)

Policy iteration (approximate): Start with any p
e Evaluation of policy u: Solve for J,L the equation
ju = WTu(ju)

e Improvement of policy x: Find & that attains the minin TJ,,, i.e.,

Tﬁju = ij,

Conditions for Convergence

@ Convergence Result: Assume the following:
(a) W is monotone: WJ < WU’ for any two J, J’ € R" with J < J’
(b) For each n, WT,, is a contraction

(c) Termination when % is obtained such that TJ = TJz
Then the method terminates in a finite number of iterations, and the cost
vector obtained upon termination is a fixed point of WT.
@ Proof is similar to classical proof of convergence of exact policy iteration

@ Contraction assumption can be weakened: For all J such that
(WT,L)(J) < J, we must have

Ju = k'Lmoo(WTu)k(J)

More general DP models can be accommodated.

Convergence within the Approximation Subspace

Cost Approximation Subspace

<I>7“uo

I
Dr*

Convergence is finite and monotonic ... but how good is the limit?

Methods for Selecting W

@ Aggregation: W = & D with rows of ® and D being probability
distributions (this is a serious restriction)

@ Hard aggregation is an interesting special case: Then W is also a
projection

@ Another approach: No restriction on ¢ (advantage when we have a
desirable ®)

o “Double" the number of columns so that ¢ > 0 (separate + and — parts of
the columns)

o Let W = ®D. Choose W by some optimization criterion subjectto D > 0
and W (sup-norm) nonexpansive, i.e.,

o(i)¢ <1, vV states i,
where ¢(/)’ is the ith row of ®, and ¢ is the vector of row sums of D.
@ A special possibility: Start with & > 0, and use
W=yoM o'z,
where v ~ 1 and M is a (constant) positive definite diagonal replacement
of ®'=® in the projection formula

N=o(®'=0)""¢'=

Some Perspective

@ There are several pathologies in approximate Pl ... How bad is that?

Other methods have pathologies, e.g., gradient methods that may be
attracted to local minima.

@ This does not mean that they are not useful ...
@ ... BUT in approximate PI the pathologies are many and diverse

@ ... makes it hard to know what went wrong

Other approximate DP methods also have their own pathologies

@ Need better understanding of the pathologies, how to fix them and how
to detect them

What's going on in tetris?

