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Summary

We consider policy iteration with cost function approximation

Used widely but exhibits very complex behavior and a variety of potential
pathologies

Case of the tetris test problem

Two types of pathologies

o Deterministic: Due to cost function approximation
@ Stochastic: Due to simulation errors/noise

We survey the pathologies in
e Policy evaluation: Due to errors in approximate evaluation of policies
@ Policy improvement: Due to policy improvement mechanism

Special focus: Policy oscillations and local attractors

Causes of the problem in TD/projected equation methods:
e The projection operator may not be monotone
o The projection norm may depend on the policy evaluated

@ We discuss methods that address the difficulty
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MDP: Brief Review

@ J*(i) = Optimal cost starting from state i

@ J, (/) = Cost starting from state i using policy p

@ Denote by T and T, the DP mappings that transform J € " to the
vectors TJ and T,J with components

(TN E min > pi(u)(glis uf) +ad()),  i=1.....n,

(Tu)() S > pi(u(i) (90, (i), ) + (), i=1,....n

=

a < 1 for a discounted problem; « = 1 and 0-cost termination state for a
stochastic shortest path problem

@ Bellman’s equations have unique solution

S =TS = Tud,

o p*isoptimal (i.e., J* = Jux) iff TyxJ* = TJ*



Policy lteration: Lookup Table Representation

@ Policy iteration (exact): Start with any p
o Evaluation of policy p: Find J,,
Ju = Tudy
A linear equation
e Improvement of policy p: Find & that attains the minin TJ,,, i.e.,
Tadu = Td,

@ Policy iteration converges finitely (if exact)



lllustration of Convergence

Space of cost vectors J

With exact policy evaluation, convergence is finite and monotonic



Policy Iteration: Cost Function Approximation

@ An old, time-tested approach for solving large-scale equation problems
@ Approximation within subspace S = {®r | r € ®°}

J = or, ® is a matrix with basis functions/features as columns
JM
j,t = or,

Subspace S = {®r | r € Rs}

@ Instead of J,, find J,, = ®r € S by some form of “projection” onto S

Jup = WT,(J,) orequivalently  &r, = WT,(®r,)
@ Example: A projected equation/Galerkin method: W = I (a Euclidean
projection)
@ Example: An aggregation method: W = ®D, where ¢ (aggregation
matrix) and D (disaggregation matrix) have prob. distributions as rows



Approximate Policy lteration

@ Start with any
o Evaluation of policy u: Solve for J,, the linear equation

ju = WTu(ju)

e Improvement of policy p: Find &z that attains the minin TJ,,, i.e.,

THJH = TJH

@ Special twists that originated in Reinforcement Learning/ADP:

e Policy evaluation can be done by simulation, with low-dimensional linear

algebra
o Matrix inversion method LSTD()), or iterative methods such as LSPE()),

TD(M), A-policy iteration, etc
o Similar aggregation methods



Tetris Case Study

@ Classical and challenging test problem with huge number of states
@ Initial policy iteration work (VanRoy MS Thesis, under J. Tsitsiklis, 1993)

- a 10x20 board, 3 basis functions, average score of ~ 40 points

Most studies have used a 10x20 board, and a set of “standard" 22 basis
functions introduced by Bertsekas and loffe (1996)

Approximate policy iteration [B+I (1996), Lagoudakis and Parr (2003)]
Policy gradient method [Kakade (2002)]

Approximate LP [Farias+VanRoy (2006), Desai+Farias+Moallemi (2009)]
All of the above achieved average scores in the range 3,000-6,000

BUT with a random search method Szita and Lorenz (2006), and Thierry
and Sherrer (2009) achieved scores 600,000-900,000



Potential Pathologies

@ General issue:
e Good cost approximation —> good performance of generated policies??
e Bad cost approximation —> bad performance of generated policies??
(Can add a constant to the cost of all states without affecting the next
generated policy)

@ Policy evaluation issues (both can be quantified to some extent)

o Bias
@ Simulation error/noise

Ju - -
Solution of J,, = WT,(J,)
X TD(0)

ILJ,

TD(1)\ y

T\ Simulation error

Subspace S = {®r | r € Rs}

@ Policy iteration issues (hard to quantify and understand)

@ Oscillations of policies (local attractors; like local minima)
o Exploration (simulation must ensure that all parts of the state space are
adequately sampled/explored)



Policy Evaluation - Bias Issues - An Example

Cost,

Cost,

Cost

Cost,
1

@ Stochastic shortest path problem with 0: termination state (from
Bertsekas 1995; Neural Computation, Vol. 7)

@ Consider a linear approximation of the form

Ju(y=ir
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Policy Evaluation - Bias Issues - An Example

Cost, Cost, Cost Cost, Cost,

Cost,
1 1 —(n—1)
(DO - ~O——
“Prob. ¢

@ Consider a linear approximation of the form
J.(i)y=ir

Cost function J(i

25.04

TD(1) Approximation
0.0

TD(0) Approximation
-25.0 4

-50.0 T T T T
0 10 20 30 40 50
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@ A strange twist: Introduce an e-probability reverse decision at state n — 1
@ Policy iteration/TD(0) yields the optimal policy
o Policy iteration/TD(1) does not



Policy Evaluation - Sensitivity to Simulation Noise

Consider the evaluation equation ®r = WT,(®r)

It is equivalent to a linear equation Cr = d with C a positive definite
(nonsymmetric) matrix

In popular approaches, we compute by simulation C ~ C and d ~ d
The solution ®7 = ®C~"d may be highly sensitive to simulation error

Subspace S = {®r | r € Rs}

This necessitates lots of sampling ... confidence interval/convergence
rate analysis needed (Konda Ph.D. Thesis 2002)

Can happen even without subspace approximation/lookup table
representation (S = R")

Regularization methods may be used, but they introduce additional bias
... heed to quantify



Policy Improvement - Oscillations

@ Consider the space of weights r (policy y is evaluated as Ju =or,)
@ R, = setof r for which u is greedy: T,(®r) = T(®r) (Greedy Partition)
@ pimproves to i iff r, € Rp

Space of
weights r

Ry = {r | Tu(®r) =T(®r)}

@ The algorithm ends up repeating a cycle of policies p, p**', ..., k™

ruk € Rukﬂ, Fuk+1 € Fi'umz, cooy Fykem—1 € Fi'Hk+m, Fukem € Fi'uk

@ The greedy partition depends only on ¢ - is independent of the policy
evaluation method used



Back to Tetris

10x20 board, set of “standard" 22 basis functions

Approximate policy iteration [Bertsekas and loffe (1996), Lagoudakis
and Parr (2003)]

@ Approximate LP [Farias+VanRoy (2006), Desai+Farias+Moallemi (2009)]
@ Policy gradient method [Kakade (2002)]

All of the above achieved average scores in the range 3,000-6,000

BUT with a random search method Szita and Lorenz (2006), and Thierry
and Sherrer (2009) achieved scores 600,000-900,000



What's Going on in Tetris?

Exact Optimal = 7

Random Search 600,000-900,000
[ )

Approxigate PI
Approximate LP
Policy gradient

3000-6000
Based on tests with a smaller board: Oscillations occur often in “bad

parts of the weight space”. Not clear if oscillations are the problem

@ Random search and well-designed aggregation methods achieve a
score very close to the exact optimal

The basis functions are very powerful (approx. optimal ~ exact optimal)

Starting from an excellent weight vector, approximate policy iteration
drifts off to cycle around a significantly inferior weight vector

Starting from a bad weight vector, approximate policy iteration drifts off
to cycle around a better but not good weight vector



Search for Remedies

Consider again approximation within subspace S = {¢r | r € R°}

Problem with oscillations: Projection is not monotone (also depends on
1)

Remedy: Replace projection by a constant monotone operator W with
range S

Policy evaluation using an approximate Bellman equation: Find JN with

Ju=WT,(J,) insteadof  J,=MNT.(J,)

Policy iteration (approximate): Start with any p
e Evaluation of policy u: Solve for J,L the equation
ju = WTu(ju)

e Improvement of policy x: Find & that attains the minin TJ,,, i.e.,

Tﬁju = ij,



Conditions for Convergence

@ Convergence Result: Assume the following:
(a) W is monotone: WJ < WU’ for any two J, J’ € R" with J < J’
(b) For each n, WT,, is a contraction

(c) Termination when % is obtained such that TJ = TJz
Then the method terminates in a finite number of iterations, and the cost
vector obtained upon termination is a fixed point of WT.
@ Proof is similar to classical proof of convergence of exact policy iteration

@ Contraction assumption can be weakened: For all J such that
(WT,L)(J) < J, we must have

Ju = k'Lmoo( WTu)k(J)

More general DP models can be accommodated.



Convergence within the Approximation Subspace

Cost Approximation Subspace

<I>7“uo

I
Dr*

Convergence is finite and monotonic ... but how good is the limit?



Methods for Selecting W

@ Aggregation: W = & D with rows of ® and D being probability
distributions (this is a serious restriction)

@ Hard aggregation is an interesting special case: Then W is also a
projection

@ Another approach: No restriction on ¢ (advantage when we have a
desirable ®)

o “Double" the number of columns so that ¢ > 0 (separate + and — parts of
the columns)

o Let W = ®D. Choose W by some optimization criterion subjectto D > 0
and W (sup-norm) nonexpansive, i.e.,

o(i)¢ <1, vV states i,
where ¢(/)’ is the ith row of ®, and ¢ is the vector of row sums of D.
@ A special possibility: Start with & > 0, and use
W=yoM o'z,
where v ~ 1 and M is a (constant) positive definite diagonal replacement
of ®'=® in the projection formula

N=o(®'=0)""¢'=



Some Perspective

@ There are several pathologies in approximate Pl ... How bad is that?

Other methods have pathologies, e.g., gradient methods that may be
attracted to local minima.

@ This does not mean that they are not useful ...
@ ... BUT in approximate PI the pathologies are many and diverse

@ ... makes it hard to know what went wrong

Other approximate DP methods also have their own pathologies

@ Need better understanding of the pathologies, how to fix them and how
to detect them

What's going on in tetris?



