Pathologies of Approximate Policy Iteration in Dynamic Programming

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

March 2011

Summary

- We consider policy iteration with cost function approximation
- Used widely but exhibits very complex behavior and a variety of potential pathologies
- Case of the tetris test problem
- Two types of pathologies
 - Deterministic: Due to cost function approximation
 - Stochastic: Due to simulation errors/noise
- We survey the pathologies in
 - Policy evaluation: Due to errors in approximate evaluation of policies
 - Policy improvement: Due to policy improvement mechanism
- Special focus: Policy oscillations and local attractors
- Causes of the problem in TD/projected equation methods:
 - The projection operator may not be monotone
 - The projection norm may depend on the policy evaluated
- We discuss methods that address the difficulty

References

- D. P. Bertsekas, "Pathologies of Temporal Differences Methods in Approximate Dynamic Programming," Proc. 2010 IEEE Conference on Decision and Control, Proc. 2010 IEEE Conference on Decision and Control, Atlanta, GA.
- D. P. Bertsekas, Dynamic Programming and Optimal Control, Vol. II, 2007, Supplementary Chapter on Approximate DP: On-line; a "living chapter."

MDP: Brief Review

- $J^*(i)$ = Optimal cost starting from state i
- $J_{\mu}(i)$ = Cost starting from state *i* using policy μ
- Denote by T and T_{μ} the DP mappings that transform $J \in \mathbb{R}^n$ to the vectors TJ and $T_{\mu}J$ with components

$$(TJ)(i) \stackrel{\text{def}}{=} \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i,u,j) + \alpha J(j)), \qquad i = 1, \ldots, n,$$

$$(T_{\mu}J)(i) \stackrel{\text{def}}{=} \sum_{j=1}^{n} p_{ij}(\mu(i))(g(i,\mu(i),j) + \alpha J(j)), \qquad i=1,\ldots,n$$

 $\alpha<$ 1 for a discounted problem; $\alpha=$ 1 and 0-cost termination state for a stochastic shortest path problem

Bellman's equations have unique solution

$$J^* = TJ^*, \qquad J_\mu = T_\mu J_\mu$$

• μ^* is optimal (i.e., $J^* = J_{\mu^*}$) iff $T_{\mu^*}J^* = TJ^*$

Policy Iteration: Lookup Table Representation

- Policy iteration (exact): Start with any μ
 - Evaluation of policy μ : Find J_{μ}

$$J_{\mu}=T_{\mu}J_{\mu}$$

A linear equation

• Improvement of policy μ : Find $\overline{\mu}$ that attains the min in TJ_{μ} , i.e.,

$$T_{\overline{\mu}}J_{\mu}=TJ_{\mu}$$

Policy iteration converges finitely (if exact)

Illustration of Convergence

Space of cost vectors J

With exact policy evaluation, convergence is finite and monotonic

Policy Iteration: Cost Function Approximation

- An old, time-tested approach for solving large-scale equation problems
- Approximation within subspace $S = \{ \Phi r \mid r \in \Re^s \}$

 $J \approx \Phi r$, Φ is a matrix with basis functions/features as columns

• Instead of J_{μ} , find $\tilde{J}_{\mu} = \Phi r \in S$ by some form of "projection" onto S

$$ilde{J}_{\mu} = WT_{\mu}(ilde{J}_{\mu})$$
 or equivalently $\Phi r_{\mu} = WT_{\mu}(\Phi r_{\mu})$

- Example: A projected equation/Galerkin method: $W = \Pi$ (a Euclidean projection)
- Example: An aggregation method: $W = \Phi D$, where Φ (aggregation matrix) and D (disaggregation matrix) have prob. distributions as rows

Approximate Policy Iteration

- ullet Start with any μ
 - Evaluation of policy μ : Solve for \tilde{J}_{μ} the linear equation

$$ilde{J}_{\mu} = extstyle{WT}_{\mu}(ilde{J}_{\mu})$$

• Improvement of policy μ : Find $\overline{\mu}$ that attains the min in TJ_{μ} , i.e.,

$$T_{\overline{\mu}}\widetilde{J}_{\mu}=T\widetilde{J}_{\mu}$$

- Special twists that originated in Reinforcement Learning/ADP:
 - Policy evaluation can be done by simulation, with low-dimensional linear algebra
 - Matrix inversion method LSTD(λ), or iterative methods such as LSPE(λ), TD(λ), λ-policy iteration, etc
 - Similar aggregation methods

Tetris Case Study

- Classical and challenging test problem with huge number of states
- Initial policy iteration work (VanRoy MS Thesis, under J. Tsitsiklis, 1993)
 - a 10x20 board, 3 basis functions, average score of \approx 40 points
- Most studies have used a 10x20 board, and a set of "standard" 22 basis functions introduced by Bertsekas and Ioffe (1996)
- Approximate policy iteration [B+I (1996), Lagoudakis and Parr (2003)]
- Policy gradient method [Kakade (2002)]
- Approximate LP [Farias+VanRoy (2006), Desai+Farias+Moallemi (2009)]
- All of the above achieved average scores in the range 3,000-6,000
- BUT with a random search method Szita and Lorenz (2006), and Thierry and Sherrer (2009) achieved scores 600,000-900,000

Potential Pathologies

- General issue:
 - Good cost approximation ⇒ good performance of generated policies??
- Policy evaluation issues (both can be quantified to some extent)
 - Bias
 - Simulation error/noise

- Policy iteration issues (hard to quantify and understand)
 - Oscillations of policies (local attractors; like local minima)
 - Exploration (simulation must ensure that all parts of the state space are adequately sampled/explored)

Policy Evaluation - Bias Issues - An Example

- Stochastic shortest path problem with 0: termination state (from Bertsekas 1995; Neural Computation, Vol. 7)
- Consider a linear approximation of the form

$$\tilde{J}_{\mu}(i) = i r$$

Policy Evaluation - Bias Issues - An Example

Consider a linear approximation of the form

$$\tilde{J}_{\mu}(i) = i r$$

- A strange twist: Introduce an ϵ -probability reverse decision at state n-1
 - Policy iteration/TD(0) yields the optimal policy
 - Policy iteration/TD(1) does not

Policy Evaluation - Sensitivity to Simulation Noise

- Consider the evaluation equation $\Phi r = WT_{\mu}(\Phi r)$
- It is equivalent to a linear equation Cr = d with C a positive definite (nonsymmetric) matrix
- ullet In popular approaches, we compute by simulation $ilde{C} pprox C$ and $ilde{d} pprox d$
- The solution $\Phi \tilde{r} = \Phi \tilde{C}^{-1} \tilde{d}$ may be highly sensitive to simulation error

- This necessitates lots of sampling ... confidence interval/convergence rate analysis needed (Konda Ph.D. Thesis 2002)
- Can happen even without subspace approximation/lookup table representation ($S = \Re^n$)
- Regularization methods may be used, but they introduce additional bias ... need to quantify

Policy Improvement - Oscillations

- ullet Consider the space of weights r (policy μ is evaluated as $ilde{J}_{\mu}=\Phi r_{\mu}$)
- R_{μ} = set of r for which μ is greedy: $T_{\mu}(\Phi r) = T(\Phi r)$ (Greedy Partition)
- μ improves to $\overline{\mu}$ iff $r_{\mu} \in R_{\overline{\mu}}$

• The algorithm ends up repeating a cycle of policies $\mu^k, \mu^{k+1}, \dots, \mu^{k+m}$:

$$\textit{r}_{\mu^k} \in \textit{R}_{\mu^{k+1}}, \, \textit{r}_{\mu^{k+1}} \in \textit{R}_{\mu^{k+2}}, \ldots, \textit{r}_{\mu^{k+m-1}} \in \textit{R}_{\mu^{k+m}}, \, \textit{r}_{\mu^{k+m}} \in \textit{R}_{\mu^k}$$

 \bullet The greedy partition depends only on Φ - is independent of the policy evaluation method used

Back to Tetris

- 10x20 board, set of "standard" 22 basis functions
- Approximate policy iteration [Bertsekas and loffe (1996), Lagoudakis and Parr (2003)]
- Approximate LP [Farias+VanRoy (2006), Desai+Farias+Moallemi (2009)]
- Policy gradient method [Kakade (2002)]
- All of the above achieved average scores in the range 3,000-6,000
- BUT with a random search method Szita and Lorenz (2006), and Thierry and Sherrer (2009) achieved scores 600,000-900,000

What's Going on in Tetris?

- Based on tests with a smaller board: Oscillations occur often in "bad parts of the weight space". Not clear if oscillations are the problem
- Random search and well-designed aggregation methods achieve a score very close to the exact optimal
- The basis functions are very powerful (approx. optimal ≈ exact optimal)
- Starting from an excellent weight vector, approximate policy iteration drifts off to cycle around a significantly inferior weight vector
- Starting from a bad weight vector, approximate policy iteration drifts off to cycle around a better but not good weight vector

Search for Remedies

- Consider again approximation within subspace $S = \{ \Phi r \mid r \in \Re^s \}$
- Problem with oscillations: Projection is not monotone (also depends on μ)
- Remedy: Replace projection by a constant monotone operator W with range S
- ullet Policy evaluation using an approximate Bellman equation: Find $ilde{J}_{\mu}$ with

$$ilde{J}_{\mu} = extit{WT}_{\mu}(ilde{J}_{\mu}) \qquad ext{instead of} \qquad ilde{J}_{\mu} = \Pi extit{T}_{\mu}(ilde{J}_{\mu})$$

- Policy iteration (approximate): Start with any μ
 - Evaluation of policy μ : Solve for \tilde{J}_{μ} the equation

$$ilde{J}_{\mu} = extstyle{WT}_{\mu}(ilde{J}_{\mu})$$

• Improvement of policy μ : Find $\overline{\mu}$ that attains the min in TJ_{μ} , i.e.,

$$T_{\overline{\mu}}\widetilde{J}_{\mu}=T\widetilde{J}_{\mu}$$

Conditions for Convergence

- Convergence Result: Assume the following:
 - (a) W is monotone: $WJ \leq WJ'$ for any two $J, J' \in \Re^n$ with $J \leq J'$
 - (b) For each μ , WT_{μ} is a contraction
 - (c) Termination when $\overline{\mu}$ is obtained such that $T_{\overline{\mu}}\widetilde{J}_{\overline{\mu}}=T\widetilde{J}_{\overline{\mu}}$

Then the method terminates in a finite number of iterations, and the cost vector obtained upon termination is a fixed point of WT.

- Proof is similar to classical proof of convergence of exact policy iteration
- Contraction assumption can be weakened: For all J such that $(WT_{\mu})(J) \leq J$, we must have

$$ilde{J}_{\mu} = \lim_{k o \infty} (WT_{\mu})^k (J)$$

More general DP models can be accommodated.

Convergence within the Approximation Subspace

Cost Approximation Subspace

Convergence is finite and monotonic ... but how good is the limit?

Methods for Selecting W

- Aggregation: W = ΦD with rows of Φ and D being probability distributions (this is a serious restriction)
- Hard aggregation is an interesting special case: Then W is also a projection
- Another approach: No restriction on Φ (advantage when we have a desirable Φ)
 - "Double" the number of columns so that $\Phi \geq 0$ (separate + and parts of the columns)
 - Let W = ΦD. Choose W by some optimization criterion subject to D ≥ 0 and W (sup-norm) nonexpansive, i.e.,

$$\phi(i)'\zeta < 1, \forall \text{ states } i,$$

where $\phi(i)'$ is the *i*th row of Φ , and ζ is the vector of row sums of D.

• A special possibility: Start with $\Phi \ge 0$, and use

$$W = \gamma \Phi M^{-1} \Phi' \Xi,$$

where $\gamma \approx$ 1 and M is a (constant) positive definite diagonal replacement of $\Phi' \equiv \Phi$ in the projection formula

$$\Pi = \Phi(\Phi'\Xi\Phi)^{-1}\Phi'\Xi$$

Some Perspective

- There are several pathologies in approximate PI ... How bad is that?
- Other methods have pathologies, e.g., gradient methods that may be attracted to local minima.
- This does not mean that they are not useful ...
- ... BUT in approximate PI the pathologies are many and diverse
- ... makes it hard to know what went wrong
- Other approximate DP methods also have their own pathologies
- Need better understanding of the pathologies, how to fix them and how to detect them
- What's going on in tetris?