SIAM J. CONTRDL AND OPTIMIZATION © 1990 Society for Industrial and Applied Mathematics
Yol. 28, No. 3, pp{ 678-710, May 1990 012

RTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS
| FOR NETWORK FLOW AND OTHER PROBLEMS*

P. TSENG#+, D. P. BERTSEKASt, AND J. N. TSITSIKLISt

Abstract. | The problem of computing a fixed point of a nonexpansive function f is considered. Sufficient
conditions ar¢ provided under which a parallel, partially asynchronous implementation of the iteration
x = f(x) converges. These results are then applied to (i) quadratic programming subject to box constraints,
(i) strictly convex cost network flow optimization, (iii) an agreement and a Markov chain problem, (iv)
neural network optimization, and (v) finding the least element of a polyhedral set determined by a weakly
diagonally dominant, Leontief system. Finally, simulation results illustrating the attainable speedup and the
effects of asyrﬁchronism are presented.

Key words. parallel algorithms, asynchronous a]gorithins, nonexpansive functions, network flows, neural
networks, agreement, Markov chains, Leontief systems

AMS(MQS) subject classifications. 49, 90

1. Introduction. In this paper we consider the computation of a fixed point of a
nonexpansive function f using parallel, partially asynchronous iterative algorithms of
the form x = f(x). We give sufficient conditions under which such algorithms converge,
we show that some known methods satisfy these conditions, and we propose some
new algorithms. The convergence behavior of our methods is qualitatively different
from the convergence behavior of most asynchronous algorithms that have been studied
in the past by many authors [1}-[3], [5], [8], [27]-[30].

We consider a fixed point problem in the n-dimensional Euclidean space R". We
are given fynctions f;:R" >R, i=1, -+, n, and we wish to find a point x*e R" such
that

x*=f(x*),

where f: T > R" is defined by f(x) = (fi(x), " * *, fo(x)).

We consider a network of processors endowed with local memories, which com-
municate by message passing, and which do not have access to a global clock. We
assume that there are exactly n processors, each of which maintains its own estimate
of a fixed point, and that the ith processor is responsible for updating x;, the ith
component| of x. (If the number of processors is smaller than n, we may let each
processor update several components; the mathematical description of the algorithm
does not change and our results apply to this case as well.) We assume that processor
component by occasionally applying f; to its current estimate, say x, and
itting (possibly with some delay) the computed value fi(x) to.all other
processors,|which use this value to update the ith component of their own estimates
(see Fig. 1.1).

We use a nonnegative integer variable ¢ to index the events of interest (e.g.,
processor updates). We will refer to ¢ as time, although ¢ need not correspond to the
time of a global clock. We use the following notations:

* Receive(i by the editors November 14, 1988; accepted for publication (in revised form) July 21, 1989.
T Laboratpry for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139. This work was supported by National Science Foundation grants NSF-ECS-8519058
and NSF-ECS-8552419, with matching funds from Bellcore and Du Pont, and by Army Research Office
grant DAAL03-86-K-0171.

678

EVASION GAME ON A FINITE TREE 677

Ay B,

A, B;
Ay B,
A, B,
Ag| As By Bs
FiG. 2

individual case, jt would not, per se, show the general influence of graph structure on
the value. For instance, when the graph is not a tree, the components of the value may
not all be equal.| In illustrating some of these points we shall restrict our attention to
games where the evader must move.

For the graph in Fig. 1 it is easy to show that the value v is given by v,=v,=1,
v;=3, and v; = } otherwise. Now consider the graph in Fig. 2 where it is considerably
more difficult to| establish that the value v ={(v"* v®) is given by vi=vf=1, v3
(5-V7)/6, vt =} otherwise, and v;* = v? for all i. It appears from these two examples
that a comprehensive structure theory relating the value of a graph to the value of its

“constituent parts” in unlikely.

[1] V.J. BAsTON A
pp. 1099-11
[2] P. BERNHARD,
stochastic fa
[3] B. BOLLOBAS, |
Verlag, New
[4] J. L. BURROW,

REFERENCES

ND F. A. BOSTOCK, An evasion game with barriers, SIAM J. Control Optim., 26 (1988),

Ds.

A.-L. COLOMB, AND G. P. PAPAVASSILOPOULOS, Rabbit and hunter game: two discrete
rmulations, Comput. Math. Appl., 13 (1987), pp. 205-225.

Graph Theory. An Introductory Course, Graduate Texts in Mathematics 63, Springer-
York, 1979.

A multistage game with incomplete information requiring an infinite memory, J. Optim.

Theory Appl., 24 (1978), pp. 337-360.

[5] L. E. DuBINS, A discrete evasion game, in Ann. Math. Stud. 39, Princeton University Press, Princeton,
NJ, 1957, pp. 231-255. .

[6] H. EVERETT, Recursive games, in Ann. Math. Stud. 39, Princeton University Press, Princeton, NJ,
1957, pp. 47-78.

[7] T. FERGUSON, On discrete evasion games with a two-move information lag, in Proc. 5th Berkeley Symp.
Math. Stat. Probability Vol. 1, 1967, pp. 453-462.

[8] R.IsAAcs, The
[9] S. KARLIN, An

Princeton, N

[10] P. R. KUMAR,

(1980), pp- 1
[11] K. T. LEE, A fi)
, An evay

[12]-
[13] D. MATULA, 11
[14] H. E. SCARF Al

University K

problem of aiming and evasion, Naval Research Logistics Quarterly, 2 (1955), pp. 47-67.
infinite move game with a lag, in Ann. Math. Stud. 39, Princeton University Press,
\J, 1957, pp. 257-272.

Optimal mixed strategies in a dynamic game, 1EEE Trans. Automat. Control, AC-25
[43-749.

ing game with time lag, J. Optim. Theory Appl., 41 (1983), pp. 547-558.

tion game with a destination, J. Optim. Theory Appl., 46 (1985), pp. 359-372.

00 and other embedded sequence games, Mimeographed Notes, Berkeley, CA, 1964.
ND L. S. SHAPLEY, Games with partial information, in Ann. Math. Stud. 39, Princeton
¥ress, Princeton, NJ, 1957, pp. 213-229.

PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 679

-

(a)

new\

%1
(b)
FI1G. 1.1. (a) Processor i computes new estimate of the rth component of a fixed point. (b) Processor i
‘transmits new estimate to other processors.

x;(2) = ith component of the solution estimate stored by processor i at time ¢.
J,; = an infinite set of times at which processor i updates x;.
7;(t)=a time at which the jth component of the solution estimate stored by
procéssor i at time t was stored in the local memory of processor j
(j=1,---,n; teJ;). (Naturally, 7;,(2)=1t)

In accordance with the above definitions, we postulate that the variables x;(¢) evolve
according to:

fia(7ia(2), - - -, Xa(7in(2))) if te T,
x;(1) otherwise.

(1.1) _ ‘ (t+1)={

The initial conditions x;(0) are given, and for notational convenience we assume
that x;(t) = x;(0) for =0, so that the asynchronous iteration (1.1) is well defined for
7;(1)=0. We may view the difference t—7;(t) as a “communication delay” between
the current time t|and the time 7;(¢) at which the value of the jth coordinate, used by
processor i at time t, was generated at processor j.

Asynchronous computation models may be divided into totaIIy asynchronous and
partially asynchronous. In the totally asynchronous model {1]-[3], [8], [30], the *‘delays™
t—7;(t) can become unbounded as ¢ increases. This is the main difference with the
partially asynchronous model, where the amounts — 7,(t) are assumed bounded; in
particular, the following assumption holds. :

Assumptzon . (Partial Asynchronism). There exists a positive mteger B such
that, for each i and each te 7, there holds:

(a) 0=t—r1y(t)=B—1,forall je{l,---,n}.

(b) There exists t'e€ I; for which 1Sr'—t=B.

(c) ma()=1

s

680 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

Parts (a) and (b) of Assumption A state that both the communication delays and
the processor idle periods are bounded and can be expected to hold in most practical
cases; for example, (b) holds if each processor uses a local clock, if the ratio of the
speeds of different local clocks is bounded, and if each processor computes periodically
according to its own local clock (see [7], p. 484). Part (c) of Assumption A states that
a processor | always uses the most recent value of its own component x;. This assumption
typically halds in practice, but it is interesting to note that, while it is necessary for
our results (see the proof of Lemma 2.3(a)), it is not needed in the convergence analysis
of totally asynchronous algorithms.
asynchronous iterations have already been studied in the context of
gradient optimization algorithms, for which it was shown that convergence’is obtained
provided that the bound B of Assumption A is sufficiently small [27]1-[29]. Our results
concern a fundamentally different class of partially asynchronous methods which are
convergent for every value of the bound B. At least two interesting examples of such
methods ar¢ known: the agreement algorithm of [29] and the Markov chain algorithm
of [20]. However, it appears that these methods have not been recognized earlier as
a class. Their convergence behavior is somewhat surprising because their totally
asynchronous versions do not converge in general; for a counterexample, see [7,p. 484].

In this paper we focus on the convergence issues of partially asynchronous methods
with arbitratily large values of the asynchronism bound B. Our main result (Proposition
2.1) is the first general convergence result for these methods. In §§ 3-7, we show that
Proposition 2.1 applies to a variety of methods for several important problems, including
the agreement and Markov chain algorithms mentioned earlier. Some of our conver-
are new, even when they are specialized to the case of synchronous
algorithms; for example, the convergence of Jacobi relaxation methods for strictly
convex cost|network flow problems in § 4.

2. A general convergence theorem. Throughout this paper, we let X*=
{xeR"|f(x)=x} be the set of fixed points of f and, for each xe R", we let ||x| =
max,.;,... » |X;| denote the maximum norm of x. For any x € R", we denote by p(x) the
distance of x from X*, defined by

p(x)=inf,cx« l|x—y|.

Finally, given any x e R” and x* e X* welet I(x; x*) be the set of indices of coordinates
of x that ar¢ farthest away from x*, that is,

. ; (s x*) ={i [} — x| = | x — x*},
and we also| denote
(x; x*)={yeR"|y,=x, for all ie I(x; x*),
’J N and |y, —x¥ <||x—x*| for all ig I(x; x*)}.

Loosely speaaking, U(x; x*) is the set of all vectors y with ||y —x*|| = ||x —x*|| that
agree with x in the components that are farthest away from x* (see Fig. 2.1).

Our main assumption on the structure of f is the following.

Assumption B.

(a) f i3 continuous.

(b). The set of fixed points X* is convex and nonempty.

P#RTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 681

4

w x = (1,1)

U(x;x*)

\/

U (v#ix*) —>

(-1,-1)

FI1G. 2.1. Illustration of the sets I(-; x*) and U(-; x*). Let n =2 and suppose that x* = (0,0)e X*. For
the indicated points x, v, and w, we have I(x; x*}={1, 2}, I(v; x*)={1}, I(w; x*) = {2}. The set U(v; x*) is
the set of all vectors of| the form (-1, c), where c satisfies —1< ¢ <1, which is the segment joining the points
(—1,-1) and (—1,1),| the endpoints excluded. Similarly, U(w; x*)={(c,1)|-1<c<1}. Finally, we have
U(x; x*)={x}.

(c) | A(x)—x*| = ||x—x*|, for all xe R", for all x*e X*.

point and will be referred to as the pseudo-nonexpansive property. This is slightly
weaker than requiring that f be nonexpansive (that is, || f(x)—f(»)|| = ||x—y]| for all
x and y in R") and in certain cases is easier to verify (see § 4). We interpret part (d)
as follows: Consider some x& X*. Then f(x)# x, and there exists some i such that
Jfi(x) # x;. Assumption B(d) imposes the additional requirement that such an i can be
found among the set of worst indices, that is, i belongs to the set I(x; x*) of indices
corresponding to components farthest away from a closest element of X *. Furthermore,
if we change somd of the other components of x to obtain another vector y € U(x; x*),
we still retain the|property fi(y) # y,, for this particular i. This part of Assumption B
is usually the most difficult to verify in specific applications.

Unfortunately, the following simple example shows that Assumptions A and B
alone are not sufficient for convergence of even the synchronous version of iteration
(1.1): Suppose that f(x,, x,) = (x,, x,) (which can be verified to satisfy Assumption B
with X*={(A, A)]A € R}). Then the sequence {x(¢)} generated by the synchronous
iteration x(¢+1) = f(x(t)) (which is a special case of (1.1)), with x(0) = (1, 0), oscillates
between (1, 0) and (0, 1).

The difficulty|in this example is that, at each iteration, while the worst coordinate
ie I(x; x*) is changed from 1 to 0, the other coordinate is increased from 0 to 1, and
the distance p(x)|from X* is not changed. The following assumption is designed to
prevent such behavior.

Assumption €. For any i, xe R", and x*e X*, if fi(x)#x, then |fi(x)—x¥|<
llxe = x*[I. |

682 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

An important fact, shown below, is that any mapping satisfying Assumption B
odified by introducing a relaxation parameter, so that it satisfies Assumption

LEMMA 2.1. Leth:R" > R" be a function satisfying Assumption B. Then the mapping
" whose ith component is

filx)=(1- ¥i)x: + vihi(x),

)", ¥ are scalars in (0, 1), has the same set of fixed points as h and satisfies
both Assymptions B and C.

Proof. 1t is easily seen that f is continuous and has the same set of fixed points
as h, so it satisfies parts (a) and (b) of Assumption B. Since f(x) # x; if and only if
hi(x) # x;; we see that f satisfies part (d) of Assumption B. Since h is pseudo-
nonexpansive, for all i, xe " and x*e X *, both x; and h;(x) belong to the interval

[xF =l = x|, x¥+ lx — x*|].

Therefore, f(x), which is a convex combination of x; and h;(x), must also belong to
this intervpl, proving that f is pseudo-nonexpansive, (cf. part (c) of Assumption B).
Furthermare, if h,(x) # x;, then the convex combination fi(x) must belong to the interior
of this int¢rval, showing that f satisfies Assumption C. O

We now prove our main convergence result, showing that Assumptions A, B, and
C are sufficient for the sequence {x(¢)} generated by the asynchronous iteration (1.1)
to converge to an element of X*. To motivate our proof, consider the synchronous
iteration x{t+1) = f(x(¢)). Under Assumptions B and C, either (i) p(x(t+1)) < p(x(1))
or (i) p(x(t+1))=p(x(t)) and x(t+1) has a smaller number of components at a
distance p(x(¢)) from X* than x(t). Thus, case (ii) can occur for at most n successive
iterations before case (i) occurs. This argument can be extended for the asynchronous
iteration (1}1), but because of communication and computation delays (each bounded
by B, due tg Assumption A), the number of time steps until the distance to X* decreases
is upper bounded by roughly 2nB (see part (c) of Lemma 2.3).

PROPOSITION 2.1. ‘Suppose that f:R" >R" satisfies Assumptions B and C, and
suppose that Assumption A (partial asynchronism) holds. Then the sequence {x(t)}
generated by the asynchronous iteration (1.1) converges to some element of X*. :

Proof. For each integer ¢t =0 denote ’

2() = (x(t=B+1), -+, x(1)),
d(2(0)= min {max {|x(1= B+1)=x*], - -, |x() = x*[}.

is closed (as|a consequence of the continuity of f). For each 1=0, we fix an element
x*(t) of X*{attaining the minimum ‘
|

2.1) x*(1) = arg min {max {[lx(t—=B+1)—x*|,- - -, |x(t)— x*||}}.

Notice that The minimum in the definition of d(z(t)) is attained because the set X*

As part pf the proof of Proposition 2.1, we prove some preliminary facts in the
following twp lemmas, which show that the distance d (z(#)) cannot increase at any
iteration while it decreases strictly “every few” iterations.

LEMMA R.2. d(z(t+1))=d(z(t)), for all z(t)eR"E, for all t=0.

Proof. We will prove by induction that

Ix(r)—x*(1)||=d(2(t)), Vrzt-B+1,

P;r.RTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 683

which implies the\result. From (2.1) and the definition of d(z(t)), this inequality holds
for re{t—B+1,1- -, t}. Suppose that it holds for all re{t—B+1, -, r}, where r
is some integer greater than or equal to r. We will show that it holds for r'+1. By
(1.1), for each i, either x,(r'+1) = x,(r") or x,(r) = fi(x1 (12 (r)), - - -, X (7 (7). In the
former case, we |lhave lx,»(r'+1)-—x:-"(t)]=|x;(r’)—x§"(t)|§d(z(t)) by the induction
hypothesis. In the latter case, we have by Assumption A(a), ' ~-B+1= (r)=r, so
by the induction hypothesis, |x;(7;(r")) - x*(¢)| = d(z(t)) for all J. Using the pseudo-
nonexpansive pro;erty of Assumption B(c), we obtain

% (r+1)—x¥(1)| = max | (7;(r') = x}(1)| = d(2(1)).

Thus, in either case we have |x;(r'+1)—x¥*(1)| = d(z(t)), and this is true for every
index i Therefore, |x(r'+1)—x*(1)|| = d(z(1)), completing the induction.]
LEMMA 2.3. Fix some t=0 for which d(z(t))>0 and denote

J(r)y={illx(r)—x¥)]|=d(z(1))}, Vrzt

(@) If x(r+1)# xi(r) for some r=t, then ig J(r+1).
(2.3) (b) J(r+1}<cJ(r), forallr=1

(c) d(z(tH2nB+ B—1)) <d(z(t)).

Proof. For copvenience, we will use the notation
B=d(z(1)), x*=x*(1).
(a) If x;(r+1) # x;(r), we have re J;. Furthermore,
Jilxef(7ia(r)), - -+, %0 (7in(r))) = xi(r +1) # x:(r) = x(7:(7)),

where the last equality follows from Assumption A(c). Using Assumption C, we obtain

|x:(r+1) — x| <max |x;(7;(r)) - x}| = B,

where the last inequality follows from r—B+1= 7;(r) =r (cf. Assumption A(a)) and
Lemma 2.2 (cf., (2.2)). Thus, ig J(r+1).

(b) If ie J(r}1), then part (a) shows that x,(r)=x,(r+1), which implies that
ieJ(r).

(c) We first show by contradiction that, for all r=1¢,

2.4) d(z(r+2B))=B8=J(r+2B) # J(r).

Suppose that, for fome r= ¢, we have d(z(r+2B))=8 and J(r)=J(r+2B). By part
(b), J(r)=J(r+1}=---=J(r+2B). Denote J =J(r). Then, by part (a),

(2.5) x(r)=x(r+1)=-+-=x,(r+2B),

and by the definition of J,
(2.6) x(r)—xf|<B, -, |x(r+2B)-x¥<B, Vigl

Now, from the definition of J, x* and B we have that |x;(r) — x¥|= B for all i€ J; hence
(2.6) implies

(2.7) lx(r)—x*l=B, J=I(x(r); x*).

684 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

Also by
that r; €
(2.8)

Let us derote

issumption A(b), for each i€ J, there exists r,e{r+B,- -, r+2B—1} such
and the iteration (1.1) yields '

xi(r+1)=fi(x(ra(r)), - - -, Xa(7ia (1)), Vied

x'= (X (ra (1)), + -, Xu(7in(R))), Vied
By Assumption A(c), 7,;(r;) = r; for all i € J, which together with (2.5) implies that
x(ri+1)=x;(r:(r))), Viel
Therefore,| (2.8) can be written as

(2.9) xi=f(x"), Viel
Furthermore, by Assumption A(a), r=7,(r;)=r+2B for all ieJ and all j, which
| xj=x,(r), VielJ, Vjel,

together with (2.5)-(2.6) implies that
Ixj—xH<pB, VielJ, Vjegl.

Therefore from (2.7) we also have

(2.10) x' e U(x(r); x*), Viel.

1t now follows that

B = [Ix(r) =x*||> p(x(r)),

since if [|x(r) —x*|| = p(x(r)), then in view of the fact I(x(r); x*)=J (cf. (2.7)) and
(2.9)-(2.10), Assumption B(d) would be violated.
Thus, we conclude that there exist y* € X* and 0 € [0, 8) such that || x(r) —y*||=6.

. e =max {|x;(m)—x*||i¢J, m=r+B,---,r+2B~1},
M =max {|x;(m)-y¥|igJ, m=r+B,---,r+2B—-1}

(see Fig. 2.2). Since X* is convex, we have that, for any w € (0, 1), z*=(1-w)x*+wy*

- —‘§ ,,,,,,,,,, .:‘ ,,,,,,,, :.‘?.’ -
é ‘-.i:.&
| S
M B B 0\r°\?‘
R
: € i)
?{* ¥ 9| x(r+B)
P .é‘%" '
¥ v 1 |

FiG. 2.2

rARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 685

is in X* and, for m=r+B-.. r+2B-1,

|x:(m) = z¥| = |x,(r) - 2|
=(1-0)x()-xf+olx()-yH
=(1-w)B+wb, Viel,

le(m)_zﬂé(l—w)lxi(m)—xﬂ+w|xi(m)_yﬂ
=(1-w)e+wM, Vigl.

Since £ <p and |0 < B, we have that, for © sufficiently small,

Ix(m)~z*||<B, Vm=r+B,- - r+2B-1.

This implies thaf d(z(r+2B—1)) <8, a contradiction.

Since by Lemma 2.2, d(z(r)) is nonincreasing, either d(z(t+2nB-1))<8g, in
which case the result is proved, or d(z(t+2nB—-1)) = B. In the latter case, by (2.3)
and (2.4), J(t+2nB)=---=J(t+2nB+B~-1)=(, and

d(z(t+2nB+ B—1)) =max {Ix(¢+2nB)~x*|,- - -, Ix(t+2nB+B—1)—x*||} <B.
8]

We now complete the proof of Proposition 2.1.]

By (2.2), the sequence {z()} is bounded and, by Lemma (2.3)(c), d(z(t))
monotonically decreases to some limit 8. If 8 =0, then Lemma 2.2 and (2.2) imply
that {x(r)} has a ynique limit point, which is in X *, and our proofis complete. Suppose,
to obtain a contradiction, that 8 > 0. Let
" At=2nB+B-1.

Since, by (2.2), {z(#)} is bounded, there exist some z*eR"2, z2**c R"® and a sub-
sequence T of {0, 1, - - -} such that .

(211) | {z(D}ier>2*, {z(t+AD} 7> 2**.

Note that since ‘d (z(t))>pB and d is a continuous function, (2.11) implies that

d(z*)=d(z**)=8.
From (1.1), Assumption A and the definition of z(t), we see that we can express

z(t+At) as a continuous function of z(t). In particular, we can write

(2.12) z(t+At) = g(z(1); T(1)),

where I'(¢) = (Fy(}), - - -, I',(¢)) and T';(¢) denotes the set

(2'13) r,(t) {(r_tn Til(r)—t’.",Tin(r)_t)lreg.in{ts.",t+At}}’

and g(-; T(#)):R"® > R"® is some continuous function that depends on f and I'(t)
only. (Note that g(-; I'(¢)) is the composition of the f’s in an order determined by
I'(¢) and is continuous because f is continuous.) Since (cf. (2.13) and Assumption A)
I'(¢) takes values from a finite set, by further passing into a subsequence, if necessary,
we can assume that I'(¢) is the same set for all te T. Let I'=(T,, - - -, T',) denote this
set. Then from (2{12) we obtain that .

z(t+At)=g(z(1);), VteT.

Since g(-; I') is cpntinuous, this, together with (2.11), implies that z** = g(z*; I) or,
equivalently, z(At) = z** if z(0)=z* and

{(r, Tl'l(’)» T ‘rin(r))lre g’ln{()’ Tt ’At}}=rh Vi'

Since d(z*)=p>0, this, together with Lemma 2.3(c), implies that d(z**)<d(z*),
contradicting the hypothesis d(z**)=g. a

686 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

The convexity of X* is sometimes hard to verify. For this reason we will consider
another assymption that is stronger than Assumption B but is easier to verify.

Assumption B'.

(a) f i3 continuous.

(b) The set of fixed points X* is nonempty.

©) Iflx)—x*[=]x—x*|, for all xeR", for all x*e X*.

(d) Forevery x# X* and x* e X*, there exists some i € I(x; x*) such that f;(y) # y
for all y € Y(x; x*) such that y ¢ X*.

Compared to Assumption B, part (d) of the new assumption is stronger but part
(b) is weaker because convexity is not assumed. We have the following result.

LEMMA 2.4. Assumption B’ implies Assumption B.

Proof. It can be seen that Assumption B’(d) implies Assumption B(d), so we only
need to show that X * is convex. Suppose the contrary. Since X* is closed, then there
exist x* € X* and y*e X* such that (x*+y*)/2¢ X*. Let x=(x*+y*)/2. It can be.
seen that ||x—x*||=|x—y*|>0, x¢ X*, and I(x; x*)=I(x; y*) (see Fig. 2.3). By
Assumption B'(d), there exists i € I(x; x*) such that f;(x)# x,. Suppose that x;> y¥.
Then if fi{x)>x;,, we obtain | f(x)—y*|z=fi(x)=y¥>x—yF=|x—y*| and if
fi(x) < x;, we similarly obtain || f(x) - x*l] > [|x —x*||. In either case Assumption B'(c)
is contradicted. The case where x; < y¥ is treated analogously. n]

Assumption B will be used in § 4, while Assumption B’ will be used in §§3, 6,
and 7.

3. Nonexpansive mappings on a box. Let g: 0" > R" be a continuously differenti-
able function satisfying the following assumption:

Assumption D.

(a) Foreach i}, _, lagi(x)/ax;| =1, for all xeR".

(b) For each i and j, either ag,(x)/ax, 0, for all xeR", or ag;(x)/ax; # 0, for all
xeR™ \

* *
Ix-y

I(x;x* = I(x;y") = {2}. I(x;x*) = I(x;y") = {1,2}.
F1G. 2.3. Two configurations of x* and y*.

(c) Thegraphwithnodeset{l,- - -, n}andarcset{(i, j)|ag:(x)/ax; # 0} is strongly
connected. »
Let C be a box (possibly unbounded) in K", i.e.,

C={xeR"|l=x;=c, Vi},

for some schlars I, and ¢; satisfying I, = ¢; (we allow [, = —0 or ¢; = +00). Let also [x]*

PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 687

denote the orthogonal projection.of x onto C, i.e.,
[_]+ = (max {Ila min {C]; xl}}’ * 0, max {In’ min {C,,, xn}})"

We use the notation x” to denote the transpose of a column vector x. The following
is the main resylt of this section.
. 'PROPOSITION 3.1. Letg:R">R" satisfy Assumption D. If either g has a fixed point

or if C is bounded, then the function h:R" > R" defined by
(3.1) h(x)=[g(x)I"
satisfies Assumption B’.

Proof. Sincg both g and [-]* are continuous functions, so is their composition,
and part (a) of Assumption B’ holds.

By the Mean Value Theorem, for any xeR”, ye R", and index i, there exists
£€ R such that
(3.2)

This implies tha

g(y)—gi(x)=(Vg(&) (y —x).
l&:i(y)— gi(x)| §Z |agi(§)/3xj| |y: = x|

=(Z s @ros1) -1

=|x-yl,
where the last infequality follows from Assumption D(a). Since the choice of i was
arbitrary, g is npnexpansive with respect to the maximum norm. Since projection
onto a box can be easily seen as nonexpansive with respect to the maximum norm, it
follows from (3.1) that ||h(x)—h(y)||=|lg(x) ~g(»)|l. Thus, h is nonexpansive with
respect to the maximum norm, and part (c) of Assumption B’ is satisfied.

We now show that h has a fixed point. Suppose first that g has a fixed point y*.
Choose 8 sufficiently large so that the set Y ={xeR"|||x —y*||= 8} N C is nonempty.
Then for every xg Y we have, for all i,

yi-Bsg(x)=yr+p,

and
either [=g(x)=¢ or g(x)<L=y¥+B or yf-Bg=c<gi(x).
Since h;(x)=max {l, min {c;, g;(x)}}, this implies that h(x)€ Y (see Fig. 3.1 below).

688 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

Since h is also continuous and Y is convex and compact, a theorem of Brouwer ([11],
p. 17) shows that h has a fixed point. Now suppose C is bounded. Since h(x)e C for
all xe C and C is convex and compact, the same theorem of Brouwer shows that h
has a fixed |point. Thus, part (b) of Assumption B’ is satisfied.

We finally show that Assumption B'(d) holds. Suppose the contrary. Then
there existy some x¢ X* and some x*e X*, such that for every ie I(x; x*) there
is an x* € U(x; x*) with x' ¢ X* and h,(x’) =x}. Let J=I(x; x*), B =||x — x*| and fix
some i€ J. By the Mean Value Theorem, there exists some &€ R" such that g,(x’) —
&(x*) = (VE(£€))"(x' = x*). Let a;=0g:(¢)/9x;. Then

B =|xi—x¥|=|h(x") — hi(x*)|
= |gi(xi) —gi(X*)I

p) a;(x;—x})

\ l | g('Z:J lajl)B+('§J |aj”x}_x}!|)
o =g+ 3 lalx-x/1-p),

where the first inequality follows from the fact that the projection onto [}, ¢] is
nonexpansive and the last inequality follows from the fact (cf. Assumption D(a)) that
Y;lal=1. $ince |x;—x}|< B for all j£J, the above inequality implies that a;=0 for
all j ¢ J. Sirjce the choice of i € J was arbitrary, we obtain from Assumption D(b) that
3gi(£)/ax; =0 for all £eR”, ieJ, j¢J. By Assumption D(c), we must have that
J={1,--+,n}. In that case, U(x; x*) is a singleton and all the vectors x' are equal.
It then follpws from the equalities h;(x’) = xi, for all i, that each x' is a fixed point of
h, a contradiction of the hypothesis x'2 X*. 0O
Since Assumption B’ is satisfied, the partially asynchronous iteration

x=(1-y)x+y[g(x)]"

(with 0< y|<1) converges (cf. Lemmas 2.1, 2.4, and Proposition 2.1).
An important special case is obtained if C=R", g(x) = Ax+b, where A is an
n X n matrix and b is a given vector in R". Thus, the problem is to solve the linear system

x=Ax+b,

and Assumption D amounts to the requirement that A =[a;] is irreducible (see [22]
for a definition of irreducibility) and ¥, |a;| =1, for all i. Then, provided that the system
x = Ax + b has a solution (not necessarily unique), the partially asynchronous iteration

x=(1—-7y)x+y(Ax+Db)

(with 0< y/< 1) will converge to such a solution.
As a special case of our results, we obtain convergence of the synchronous iteration

x(t+1)=(1-y)x(£)+ y(Ax(t) +b).

This seemg to be a new result under our assumptions. Previous convergence results
[17], [22] have made the stronger assumption that either: (a) A is irreducible and
¥, laz| =1, ffor all i, with strict inequality for at least one i, or (b) ¥, layl <1, for all i
Two other important special cases are studied below.

3.1. Quadratic costs subject to box constraints. Consider the following problem.

ITARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 689

(33) Minimize x"Qx/2+p"x
’ Subjectto xeC,

where Q =[g;] i$ a symmetric, irreducible, nonnegative definite matrix of dimension
n x n satisfying the weak diagonal dominance condition

(3.4) : Z qul =¢i, 9:;>0, Vi

J*i

Let D denotg the diagonal matrix whose ith diagonal entryis g;. Let A= I - D7'Q
and b=—D7"p. We have the following result.

PropPosiTION 3.2. The function g:R"->R" defined by g(x)=Ax+b satisfies
Assumption D. ‘

Proof. g is| clearly continuously differentiable and (cf. (34)) ¥ ; lay| =
¥, «:la5l/ g =1 for all i. Since agi(x)/ox; = a; for all x e R" and A is irreducible, g satis-
fies Assumption . 0

It can be seen (by using the Kuhn-Tucker optimality conditions [23]) that each
optimal solution jof (3.3) is a fixed point of [Ax+b]* and vice versa, where (-1
denotes the orthqggonal projection onto C. Hence, if (3.3) has an optimal solution,
then (cf. Lemma 2.1, 2.4, and Propositions 2.1, 3.1, 3.2) the partially asynchronous
iteration \

(3.5) x:=(1-y)x+y[Ax+b]*

p is an element 3:".%”, and C is, as before, a box in R".

(with 0< y<1) converges to such a solution. Note that for y =1, the iteration (3.5)
takes the form x =[x — D™'(Qx+p)]* whichisa diagonally scaled gradient projection
iteration. However, this iteration need not be convergent in the absence of additional
assumptions.

3.2, Separablr quadratic costs with sparse 0, +1, —1 matrix. Consider the following

problem.
(3.6) Minimize ~ w'Dw/2+8"w
] Subjectto Ew=d,

where D is an m X m positive definite diagonal matrix, 8 is an element of R™ dis
an element of m"ind E =[eu] is an n X m matrix having at most two nonzero entries

per column, and each nonzero entry is either —1 or 1. Furthermore, we assume that
the undirected graph ¢ with node set {1, - - -, n} and arc set {(j, Nlex#0and e #0
for some k} is connected.

Consider the following Lagrangian dual [23] of (3.6).

Minimize x"Qx/2+p"x
Subjectto x=0,

where Q= ED™'E “', p=—d—ED™'B. We show below that this is a special case of the
problem considered in the previous subsection.

ProPOsITION [3.3. Q is symmetric, irreducible, nonnegative definite and weakly
diagonally dominant (cf. (3.4)).

Proof. Since ID is symmetric and positive definite, Q is symmetric and nonnegative
definite. To see that Q satisfies (3.4), let a; denote the kth diagonal entry of D (a, > 0),
let O(i) denote the|set of indices k such that e, # 0, and let g; denote the (i, j)th entry

690

P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

of Q. Then

gyl =

% eik(ak)_lejk

= Z : (ak)—ly
ke O(i)NOLj))

with equality holding if i =j. Hence, for each i,

where the¢
then k£ (
is connec

and ¢, #

An e

where K
constrain

Ylgl=% X (o)™

i =i ke O(HNOG)

=) (‘Yk)~l
ke O(i)
= Qii,
b second inequality follows from the fact that if ke O(i) N O(j) for some j,
D(i)N O(j") for all j' not equal to i or j. Finally, Q is irreducible because ¢
ted and g; =0 for i#j if and only if there exists some k such that e; #0
0. 1] :
xample of constraints Ew = d satisfying our conditions on E is
Lw=1 and Y w,z=0 forr=1,2,---,R,
k kekK,
» K3, -, Kgp are some mutually disjoint subsets of {1,2,--:, m}. Such
s often arise in resource allocation problems.

4. Strictly convex cost network flow problems. Consider a connected, directed graph

(network

with the set of nodes #={1,-- -, n} and the set of arcs A< ¥ xN. We

assume that i#j for every arc (i, j) and that at most one arc connects any ordered
pair of nddes, so that the arc (i, j) has unambiguous meaning. (These restrictions can
be easily lemoved.) For each node i € &, denote by @ (i) the set of downstream neighbors

of i (thatiis, D(i) ={j|(i, j) € #}) and by (i) the set of upstream neighbors of i (that
is, U(i)4{j|(J, i}e #}). Consider the following problem:
(4.1) Minimize Y a(fy)

(et
(4.2) Subject to Y fim Y fi=s, Viel,

JjeD(i) jeu(i)
where ea¢h a;;: R > (—00, +00] is a strictly convéx, lower semicontinuous function and
each s; is|a real number. We interpret f; as the flow on the arc (i, j), s; as the supply
(or demand if 5; <0) at node i, and a;(f;) as the cost of sending a flow of f; on arc

(i, /). The goal is then to find a set of arc flows that minimizes the total cost while
satisfying| the flow conservation constraints (4.2) (see Fig. 4.1). Note that capacity
constraints of the form

Ql(i)<

34y

i
! v
QT

Y

3

?ART]ALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 691

where by, ¢; are given scalars, can be incorporated into the cost function a; by letting
a;(f;) = +oo for f; € [by, c;].

The above network flow problem is an important optimization problem, with
applications to data networks, traffic assignment, matrix balancing, etc. The interested
reader is referred to [7, Chap. 5] for a detailed discussion of this problem. (Also see
[51, [6], [9], (12}, [21], [24], [31]-[33].)

Denote by g;: R > (—o0, +0] the conjugate function ([23, § 12]; [24, p. 330]) of

a;, ie.,

(4.3) ‘ gi(n)= gug {¢n—a;(D)}.

Each g; is convex and, by assigning a Lagrange multiplier p, (also called a price) to
the ith constraint|of (4.2), we can formulate the dual problem ([24, § 8G]) of (4.1) as
the following convex minimization problem.

Minimize q(p)= Y gi(pi—p)— L psi
(4.4) G,jest ieN

Subjectto peR”".

We make the following assumption.

Assumption E.

(a) Each conjugate function g; is real valued.

(b) The set P* of optimal solutions of the dual problem (4.4) is nonempty.
Assumption E implies (cf. [24, § 11D]) that the original problem (4.1) has an optimal
solution, and the gptimal objective value for (4.1) and (4.4) sum to zero. Furthermore,
the strict convexity of the a;’s implies that (4.1) has a unique optimal solution, which
we denote by f*={-- -, f¥,- - -)jjex, and that every g; is continuously differentiable
([23, pp. 218, 253]]). Hence g given by (4.4) is also continuously differentiable. Its
partial derivative dq(p)/ap;, to be denoted by d;(p), is given by

(4.5) d(d)= %a(p) =3 Vgij(Pi —Pj) -z ngi(pj -pi)—s;.
0P jea jeu

Given a pricevector peR", we consider an iteration whereby the dual objective
function ¢ is minimized with respect to the ith coordinate p;, while the remaining
coordinates are held fixed. In view of the convexity and the differentiability of g, this
is equivalent to solving the equation d;(p;, - -, pi-1, 8, Pi+1, - = * , P») = 0 with respect
to the scalar 6. This,equation can have several solutions and we will consider a mapping
which chooses the solution that is nearest to the original price p;. Accordingly, we
define a function H:R" > NR" whose ith coordinate is given by '

(4-6) hr(P)=' argmin {lo_'Pul |di(p17 * s Pi-is 01 Divys 0"y pn)=0}'

We will show later|in Lemma 4.1 that the set in (4.6) is nonempty and the minimum
in (4.6) is attained, so that h is well defined. Notice that h(p)=p if and only if
aq(p)/op; = d;(p) =0 for every i It follows that P* is the set of fixed points of h.

Since q is conyex, the set P* is convex (P* is also nonempty by assumption).
Also from Propositjon 2.3 in [6] we have that, for any pe R" and any p*e P*,

m n{p,-—p}*}éhi(p)—p:"ér}ieggx {pi—pf}, Vieh,

and hence h has thT pseudo-nonexpansive property
Ik(p)—p*lI=lp—p*|

692

Furthermo
of Proposi
Therefore,
defined an
LEMM
Proof.
of the pro
(a) F
convex.)
(b) d]
when the
convex an
(c) A
Vey(pf-p

exists 9, su
To see this,

Since Vg

P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

e, by using Proposition 1 in [5] and an argument analogous to the proof
on 2.5 in Chapter 7.2 of [7], we can show that the mapping h is continuous.
h satisfies parts (a)-(c) of Assumption B. We show below that h is well
also satisfies part (d) of Assumption B.
4.1. The mapping h is well defined and satisfies Assumption B(d).
We start by mentioning certain facts that will be freely used in the course
f.
r any (i, j) € &, the function Vg; is nondecreasing. (This is because gy is

R" >R is a nondecreasing function of the ith coordinate of its argument
ther coordinates are held fixed. (This is because the dual functional q is
d;=aq/9p:.)

vector p*eR" belongs to P* if and only if, for every arc (i, j), we have
)=f5. (This is a direct consequence of the Network Equilibrium Theorem
91.)

t show that h is well defined. Fix any pe ®" and any i. We claim that there
ch that d;(p+6,e’) =0, where e’ denotes the ith coordinate vector in R”".
let p* be any element of P* and let 6, be any scalar sufficiently large so that

pi—pit6, gP:"‘—P;k, Vje 2(i),
p—pi—6=pf-pf, Vieu(.

is nondecreasing for all (k, I) € &, this implies that
Vei(pi—pi+0)= Vg (pF—p)=1F, Vie2(i),
Vei(p—pi—0)=Vgu(pf—pH=fF, Vieu(.

Upon summing the above inequalities, we obtain that

where the
conservati

di(p-'—olei): 2z Vegi(p—pi+0)— ¥ Vglp—pi—0)—s
je@(i) Jeu(i
= Z f;k_ Z f;:':"s,-
jea() jeu)
=0,
last equality follows because the flows f}f and f must satisfy the flow
n equation (4.2). Similarly, we can show that there exists 6, such that

d,(p+ 0,e')=0. Since d;(p+ 0e’) is a continuous function of 6, this implies that there
exists some 0 between 6, and 8, such that d;(p+ 6e’) = 0. Therefore the set in (4.6) is
nonempty. Since this set is also convex (due to the convexity of q) and closed (due
to the continuity of d;), the minimum in (4.6) is attained. Hence h is well defined.
Now we show that h satisfies Assumption B(d). We will argue by contradiction.

Suppose th
such that ||
such that h

B=p(p), J

t h does not satisfy Assumption B(d). Then for some p £ P* and p*¢ P*
p—p*]l = p(p)> 0 there exists, for every i € I(p; p*), a vector p'€ U(p; p*)
:(p') =pi. (p(p) denotes the maximum norm distance of p from P*.) Let
=1(p; p*), e =B —max{|pi —p¥|lieJ keJ}, and

J™={i|p;—pt=-8},
J*={i|p;—p¥ =B}

Then ¢ >0 J=J"UJ" and, for all ic J,

4.7) pf-B+esp;=pf+B-¢ Vj£J
(4.8a) | pi=pf—B, VjeJ,

(4.8b) 3 pi=pFf+p, VjeJ

*PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS

Fix any i€ J™. The relations (4.7), (4.8a) imply that
pi—p;=(pF-B)—(p}-B)=p}-pf, Vied(i),
pi—piz(pf-B)—(pf-B)=p}-p}, Vieu(i),

and, since Vg, is nondecreasing for all (k,) € &,

(4.92) | Veu(pi-p)=Vey(p¥—p})=f}, Vied(),

(4.9b) Veu(pi—p)ZVeu(pf—pP) =1}, Vje ().

693

Since ie J~, we have h,(p’) = p} or, equivalently, d;(p’) = 0. Then (4.5) and (4.92)-(4.9b)

imply that

0=di(Pi)

= Y Vgi(pi—p)—
€D(i)

J

x ngi(P;': _‘P::) —S;
cu(i)

J

= X f:;-) f;-!:_si

Jje@(i) jeu)

=0,

where the last ejuality follows because the flows f¥ and fj}f r...t satisfy the flow

conservation equ.
equalities and

(4.10a) Ve(pi-p)=r¥, Vied(i),
(4.10b) Vegi(pj—p)=rF, Vieu(i.

tion (4.2). It follows that the inequalities in (4.9a)-(4.9b) are actually

Since the choice of ie J~ was arbitrary, (4.10a)-(4.10b) hold for all ieJ™. By an
analogous argumept (using (4.8b) in place of (4.8a)) we can show that (4.10a)-(4.10b)

hold for all i€ J* jas well.
Let me R" be‘ the vector whose ith component is

e ifiel*,
(4.11) m={¥-¢ ifiel,
F ifigl.
We claim that
(4.12) Vegy(m—m)=fF, V(,jled
To see this, we first note from the definition of # (cf. (4.11)) that

m—m=pF-pf, ifigl) jel orifielJ', jeJ* orifielJ , jel .

Also, from (4.7), (4.8a)-(4.8b), (4.11) and the fact ¢ =8 we have that
pi—pi=(p¥+B)~(pf-B)=m—mzpt-pf, ifiel*, jeJ,
pi-pi=(p¥-B)—(p}+B)=m—m=pl-pf, ifiel,jel",
pi-piz(pF+B)—(pf+B—e)=m—m=z=pf-p;, fiel’, jel,
P::_P;§(é?"3)—(l’f-3+6)=w;—mép}"—p}", ifiel , jeJ,
P';“P;§(‘?'he‘5)—(P;"‘+B)=7r,~—1rj§p?‘—p}", ifiel jeJ,
pi—piz(pF-B+e)—(pf-B)=m—mzpr-pF, ifiel jel .

694 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

Consider any (i, j) € A. The preceding inequalities show that &, — 7; is always between
pi—pj and pf— pF. The monotonicity of Vg; and the equalities Vg, (p¥—pf)=fF=
Vg,(pi—p}) (cf. (4.10a)-(4.10b)) imply that Vg, (m; — m;) = fi¥ . This completes the proof

of (4.12).
Equation (4.12) implies that =< P*. Since (cf. (4.11) and the definitions of J~
and J*) || p— || <|lp — p*|, this contradicts the hypothesis that p(p) = ||p—-p*|. O

Since|h has been shown to satisfy Assumption B, we conclude from Lemma 2.1
and Propgsition 2.1 that the partially asynchronous iteration

p=QQ-v)p+yh(p)

(with 0 < y <1) converges to an optimal price vector p*. The optimal flows are obtained
as a byproduct, using the relation Vg;(p¥* — p¥) = f. Notice that the iteration for each
coordinate p; consists of minimization along the ith coordinate direction (to obtain
h,(p)) followed by the use of the relaxation parameter y to obtain the new value
(1 —v)p;Hyh(p). As a special case, we have that the synchronous Jacobi algorithm

p(t+1)=Q1-y)p(t) +yh(p(1))

vergent, which is a new result.

A related result can be found in [5] where totally asynchronous convergence is
established even if y =1, provided that a particular coordinate of p is never iterated
upon and that when this coordinate is fixed, the optimal price vector is unique. An
experimental comparison of the two methods will be presented in § 8. We remark that
the results in this section also extend to the case where each arc has a gain of either
+1 or —1 {i.e., each f; term in (4.2) is multiplied by either +1 or —1).

|

5. Agreement and Markov chain algorithms. In this section we consider two prob-
lems: a problem of agreement and the computation of the invariant distribution of a
Markov chain. These problems are the only ones for which partially asynchronous
algorithmg that converge for every value of the asynchronism bound B of Assumption
A are available [20], [27], [29] (in fact, these algorithms have been shown to converge
at a geometric rate). We show that these results can also be obtained by applying our
general convergence theorem (Proposition 2.1).

5.1. The agreement algorithm. We consider here a set of n processors, numbered
from 1 to n, that try to reach agreement on a common value by exchanging tentative
values and forming convex combinations of their own values with the values received
from other processors. This algorithm has been used in [28]-[29] in the context of
asynchronous stochastic gradient methods with the purpose of averaging noisy measure-
ments of the same variable by different processors.

We npw formally describe the agreement algorithm. Each processor i has a set
of nonnegative coefficients {a;,, ' -+, a:.} satisfying a; >0, Zj a; =1, and at time ¢ it
possesses an estimate x;(t) which is updated according to (cf. (1.1))

(5.1a) x(t+1)= jg,) a;x;(7;(1)) ifte T,

_x,~(t) otherwise.
(5.1b) x(1-B)=---=x(0)=x,

where J; land 7;(¢) are as in § 1 and X; is the initial value of processor i. Let A be
the nxn !matrix whose (i, j)th entry is a; and let ye(0,1) be such that 0<y=
min{a,;,1* ", @..}. By using the results from §§ 1 to 3 we obtain the following.

RARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 695

PrROPOSITION 5.1. If A is irreducible and Assumption A holds, then {x;(t)}~> y for
all i, where y is some scalar between min; {%;} and max, {x}.
Proof. It can be seen that (5.1a) is a special case of (1.1) with f(x) = Ax. Let

D=(A-yD)/(1-1).
Then
(5.2) A=vyI+(1-v)D,
and D =[d;] can|be seen to satisfy ¥, |d;| = 1. Moreover, since A is irreducible, so is
D. Hence the fungtion h: R” > R" defined by h(x) = Dx satisfies Assumption D in § 3.
Since h has a fixed point (the zero vector), this, together with Proposition 3.1 and
Lemma 2.4, implies that h satisfies Assumption B. Since (cf. (5.2)) f(x)=
¥x +(1—y)h(x), this, together with Lemma 2.1, shows that f satisfies Assumption C.
Then by Proposition 2.1, the sequence {x(¢)} generated by (5.1a)-(5.1b) converges to
some point x* satisfying Ax®=x". Since A is irreducible and stochastic, x must be
of the form (y,'|-+,y) for some yeR. It can be seen from (5.1b) that, for re
{]—B"..’O}’ ‘

(5.3) x,-(r)gmjax {x}, Vi

Suppose that (5.3) holds for all re{1—B,- - -, t}, for some t=0. Then by (5.1a) and
the property of the a;’s,

x(t+1)= Z a;x;(7;(1))
§Z_', a; max {X;}
=max {%},

for all i such that te 9, and x,(t+1)=x;(t) =max; {X;} for all other i Hence, by
induction, (5.3) holdsforall re {1—B,2— B, - - - }. Since x;(r) - y for each i, this implies
that y =max; {X;}.|A symmetrical argument shows y =min; {%;}. O

It can be shown [7], [29] that Proposition 5.1 remains valid if a; is positive for
at least one (but not all) i and, furthermore, convergence takes place at the rate of a
geometric progression. The proof, however, is more complex. Similar results can be
found in [29] for more general versions of the agreement algorithm.

5.2. Invariant ldistribution of Markov chains. Let P be an irreducible stochastic
matrix of dimension n x n. We denote by p; the (i, j)th entry of P and we assume that
pi: >0 for all i wish to compute a row vector w*=(#¥, -, #¥) of invariant
probabilities for the corresponding Markov chain, ie., #¥20, ¥, 7¥=1, #*=n*P.
(We actually have|#¥>0, for all i, due to the irreducibility of P [14].) As in § 5.1,
suppose that we have a network of n processors and that the ith processor generates
a sequence of estimates {;(f)} using the following partially asynchronous version of
the classical serial blgorithm 7= 7P (cf. (5.1a)-(5.1b)):

Y pim(ri(1)) if ted;,
s=1
mi(t) otherwise.

m(1=B)=- - -=m(0),

where J,; and 7;(t) are as in § 1 and m,(0) is any positive scalar. This asynchronous
algorithm was intrgduced in [20], where geometric convergence was established. We
show below that convergence also follows from our general results.

P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

ProrasITION 5.2. If Assumption A holds, then there exists a positive number ¢ such
that w(t) > cm*.
Proof. | We will show that (5.4) is a special case of (5.1a). Let

(5.5) xi(t)=m(1)/n¥, a;=mafpi/m¥.

Then the matrix A=[a;] is nonnegative and irreducible, has positive diagonal entries,
and

Z_as,-=Z_ ”"'}kPji/”T:'k
Jj J

=a¥/w¥
= 1’

where the second equality follows from #* = 7*P. Furthermore, it can be seen from
(5.4) and (5.5) that x;(t) evolves according to the iteration (5.1a). Therefore, by
Proposition 5.1 and the initial positivity conditions, {x;(¢)}-> ¢ for all i, where c is
some positive scalar. It follows from (5.5) that () > ca¥ for all i 0

Upon obtaining cir*, the desired solution #* can be recovered by normalizing c7r*.

6. Neural networks. Consider a connected, directed network with node set /' =
{1,---,n}|and arc set < N XN. Let us, for each i€ N, denote by (i) the set
{jl(j, i) € A} of upstream neighbors of i. Let o, - -, 0, be a set of given scalars and
let {A;} (e« be a set of nonzero scalars satisfying ¥;_q,(;, |A5/ =1 for all i. We wish to
find scalars x,, - ' -, x, such that

(6.1) xi=¢i(Z Aljxj+al)’ Vl’
Jjeu(i)
where ¢;: R >R is a continuous nondecreasing function satisfying
(6.2) lim ¢,(¢)=-1, lim $(§)=1,
&> —00 £—->+00

(see Fig. 6,1). Notice that the function ¢; maps the box [—1,1]" into itself and, by
Brouwer’s fixed point theorem ([11, p. 17]), the system (6.1) is guaranteed to have a
solution.

If we think of each node i as a neuron, (6.1) and (6.2) imply that this neuron is
turned on (i.e., x;=~1) if the majority of its inputs are also turned on. Thus, x; gives
the state (‘“‘on” or “off’) of the ith neuron for a given set of connections (specified by
&) and a given external excitation (specified by o;) (see Fig. 6.2.). Indeed, (6.1) and
(6.2) describe a class of neural networks that have been applied to solving a number
of problems in combinatorial optimization, pattern recognition, and artificial intel-
ligence [15]-[16], [19], [25]).

F1G. 6.1. The function ¢,.

PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 697

Ay yxy

FIG. 6.2

Let f:R" 4 R" be the function whose ith component is

-

(6.3) . N, ﬁ(x)=¢i() Aijxj"""i), Vi
Jjeu(i)
Then solving (6.1) is equivalent to finding a fixed point of £ In what follows, we
consider a special form for ¢; and show that it gives rise, in a natural way, to a
nonexpansive function f that satisfies Assumptions B’ and C of § 2. To the best of our
knowledge, as;'lchronous convergence of neural networks has not been explored
before. In some sense, asynchronous neural networks are quite natural since biological
neural connections may experience long propagation delay [25].
Let ¢ denote the right derivative of ¢;, i.e.,

$7(¢) =lim (¢ +e) - ¢i(£))/e, VEeR.

The following result shows that, if ¢; is sufficiently small for all i, then f given by
(6.3) satisfies Assumption B’.

PROPOSITION 6.1. If G is strongly connected and each ¢, is continuous, satisfies (6.2)
and

(6.4) 0=¢7(§)=1, VéeRR,

then f given by (6.3) satisfies Assumption B’

Proof. We have seen earlier that f has a fixed point. Since each ¢, is continuous,
f is also continubus. Now we will show that f is nonexpansive. Fix any i€ ¥. Since
(cf. (6.4)) the sloPe of ¢; is bounded inside the interval [0, 1], we have

|#i(b)—d(a)|=|b—a|, VaeR, beR.
Hence, for any xle R” and ye R",

U;(V) —f;(x)l = |¢; (gl:(.))tij.}’j+0'i) — ¢ (.Egl:“) A.;ixj"‘a’i) |
(6.5) b = T A405-x%)
g Jjeu(i)

= T Islly -l

Jjeu

Since ¥, a ;) [Asl £1, (6.5) implies that
() —fil=llx =yl
Since the choice ¢f i was arbitrary, this in turn implies that
I -fMl=lx-yl, VxeR", yeR™

Therefore f is nonexpansive.

P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

It remains to show that f satisfies Assumption B’(d). Suppose the contrary. Then
for some x# X* and some x*e X*, where X* is the set of fixed points of f, there
exists, for every ie I(x; x*), an ;c' € U(x; x*) such that

x'gX* and fi(x')=xi.
Let J = I(x; x*) (J # X since x' ¢ X* for all i J) and 8 = ||x —x*|. Fix any ie J. By
(6.5) and the fact x*=f(x*), we obtain that

Ixi=xH=IA(x)=£CM= T Igllx—xF
jeu()
Hence

B= T IAllxj—x
je@()

T B+ T gl(xi-xH-8)

jeu jeau(i),jgJ

=B+ ¥ INl(x—xF-B).
. jeu(i),jet)
Since |x} —x¥ < B and A; # 0 for all je U(i), j £ J, this implies that %(i) < J. Since the
choice of ile J was arbitrary, it follows that U(i)< J for all ieJ. Hence ¥ is not
strongly connected, a contradiction of our hypothesis. 0

It folk;tvs from Lemmas 2.1, 2.4 and Propositions 2.1, 6.1 that the asynchronous
iteration | ’

e U(i)

(with 0 < y < 1) converges. Two examples of ¢; that satisfy the hypothesis of Proposition
6.1 are -

X; = A=-y)x+ 'Y¢i(

J

$i(§)=2(1+e7*)7"' -1,

#:(§) =max {—1, min {1, £}}.
~ Let us briefly discuss an alternative form for the function ‘¢,. If we assume that
each ¢; is continuously differentiable and its derivative V¢; satisfies 0 < V() <1 for
all £e R, then it can be shown that the restriction of the function f on a compact set
is a contraction. In that case, the asynchronous neural iteration

X = ¢i())‘ijxj'*"fi)
jeu)
can be shown to converge even under the total asynchronism assumption
lim 7;(t)=+, Vi, Vj
t-»+00

(cf. [7, Chap. 6.2, Prop. 2.1]).

7. Least element of weakly diagonally dominant, Leontief systems. Let A=[a]be
a given mx'n matrix (with m=n) and b=(b,,- -~ , bn) be an element of R™. We
make the following assumption.

Assumption F.
(a) Each row of A has exactly one positive entry and the index set

1() = {k| a4 > 0}

is nonemptyl for all i (i.e., every column has at least one positive entry).

PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 699

(b) 3, a,‘,.‘go, for all k.
(c) Forany (k,,---,k,)eI(1)x--xI(n), the n X n matrix [as,;] is irreducible.
Since ay;> 0 for all ke I(i), we will, by dividing the kth constraint by a; if

necessary, assyme that a,; =1 for all ke I(i), in which case parts (a) and (b) of
Assumption F are equivalent to

(71) aki=1’ "‘Z akj§l

j=i

and ay;=0, Vj#i
for all ke I(i) and all i
Let X be the polyhedral set
X={xeR"|Ax=b}.
an element 7 of X satisfying
xzn, VxeX

(such an element is called the least element of X in [10] and [13]). Notice that if a
least element exists, then it is unique. Let h:R">NR" be the function whose ith

component is
{bk h Z aijj}.
=i

(7.2)
We wish to fin

(7.3) hi(x)= max

el(i)

It is shown in ||
and only if AT
one positive entr
lemma sharpens

10] that X has a least element for all b such that X is nonempty if
is. Leontief (a matrix E is Leontief if each column of E has at most
'y and there exists y = 0 such that Ey > 0 componentwise). The following
this result by giving a necessary and sufficient condition for X to

18§
have a least elettwnt that is simpler to verify. It also relates the least element of X to
the fixed points of h.
LEMMA 7.1, Suppose that X # & and that Assumption F holds. Then,
(a) X has no least element if and only if

(7.4) z ay; =0, Vk

N

b) Ifnisa least element of X, then it is a fixed point of h.

Proof. We jrst prove (a). Suppose that (7.4) holds and let e R" be the vector
with all coordinates equal to 1. Equation (7.4) says that Ae = 0. Thus, if x is an element
of X, then x

Aee€ X, for all positive scalars A. It follows that X cannot have a least
element. Now si)pose that (7.4) does not hold. We first show that X is bounded from
below (i.e., therd exists some a e R" such that x = a componentwise for all xe X). If
this were not so,| then there would exist some veR" and some x € X such that v; <0
for some i and x t Av € X for all positive scalars A. The latter implies that A(x+Av)= b
for all A >0 and hence Av=0. Fix any scalars (k;,-- -, k,)eI(1)x---xI(n) and
consider an i such that v; =min; {v;}. Then (cf. Av=0)

O§Z ay, v, = (z ak,_j) v+ Z ak‘j(Uj - Ui).
. Jj J J*i

Since v; <0 and ¢, —v; =0 for all j # i, this, together with the facts (cf. (7.1)) ¥; a,,;Z 0
and a,,; =0 for all j # i, implies that ¥, a, ;=0 and v, = v; for all j # i such that a,;#0.
By Assumption F(c), there exists J#t such that ay; #O We then repeat the above
argument with j in place of i In this way, we eventually obtain that v, = =, and
2; a; =0 for all i Since our choice of (k;, -+, k,)€ I(1)x---x I(n) was arb:trary,
(7 4) holds—contradicting our hypothesis. Hence X is bounded from below. Using

700 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

(7.1), it is easily verified that if x’ and x" are two elements of X, then the n-vector x
whose ith domponent is min {x], x{} is also an element of X. Since X is closed and
bounded from below, X has a least element.

We next prove (b). Since 5 € X, we have (cf. (7.1), (7.2))

Z akj'r)j+ nigbk’ Vke I(i), Vi.
J=i
hi(n) = Dax {bk _jéi akj")j} =m, Vi

If n is not a fixed point of h, then the set I = {i| h;(n) <7} is nonempty. Then we have
(7.5) Z a;;M; > bk, Vke I(i), Viel
J

Consider the n-vector 7, defined by 7, =, —¢, if i€ I, and %, = 7;, otherwise. For ¢
positive and small enough, the inequalities (7.5) remain valid. On the other hand, for
all ig I and all ke I(i) we have

Yay=% agmt Y ag(ni—e)=Y agm; = by,
J jeI jel J

where we usged the property a,; = 0 for all j such that k ¢ I(j). Thus, % € X, contradicting
the hypothesis that » is the least element of X. a

Let X*|denote the set of fixed points of h. Suppose that X* is nonempty (Lemma
7.1 gives sufficient conditions for X* to be nonempty). We will show that h satisfies
Assumption| B’. Since (cf. (7.3)) h is continuous, it suffices to show that parts (c) and
(d) of Assumption B’ hold.

LeMMA 7.2. |th(x)—h(¥)|| = ||x —y|| for any xeR" and any y c R".

Proof. Let z= h(x), w=h(y) and consider any ic {1, - - -, n}. We will show that
|z;—wi| = ||x{—y|l, from which our claim follows. Since z;=h,(x) and w; = h,(y), it
follows from (7.3) that, for some k in I(i),

(763) s Z ak,-x,-+z,-§bk,
R ji

(1.6b) .} T ayy;+ w; = by.
JEi

Subtracting |(7.6b) from (7.6a), we obtain
>z akj(xj '}’j) +(z;—w)=0.

Jj#*i
This together with (7.1) implies that

w,—z= Y akj(xj —y,-)
i

= Z’.‘ lay| |x =yl

=[x -yl

The inequality z, — w; = ||x — y|| is obtained similarly. 0
LemMA 7.3. h satisfies Assumption B'(d).
Proof. Suppose the contrary. Then for some x ¢ X * and some x* € X*, there exists,

for every i I{x; x*), an x' € U(x; x*) such that
x'egX* and h(x)=xi.

PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 701

LetJ =1I(x; x*),J” ={i| x;—~x¥=-B},J* ={i| x, ~x¥=B}and B = lx —x*||. (We must
have J #{1, - - - | n} because otherwise the set U(x; x*) would be a singleton, implying
that the vectors [x*, - - -, x" are all equal, in which case each x' is a fixed point of h,
a contradiction.

Fix any i€ ™. By (7.3) and the hypothesis x* = h(x*), there exists some k;€ I(i)
such that

*
Z Q,; X; —bk'.
J

: i_ i i
Since x; = hy(x')} we then have ¥ a;;x; = by, =Y, @; X}, so

L ai;(x; - xf) 0.
J

This implies (using (7.1) and the facts k; € I(i), i€ J~) that

Oﬁ—ﬂ L a+B T a+ T laglixi—x¥
jeJ zJ

jer* J

B Y ay,;~B ¥ la;|+ ZJ @l 1x;—xF|
je

jel~ jer*

~8(1- 2 laxd) =28 T I+ 3 lakl <11)

jeJ*
Since [x]—x}|<B for all j¢ J, (7.1) implies that

Y ag=-1 and a,;=0, VjgJ"

J=i
Since the choice of i was arbitrary, (7.7) holds forall ie J™. By an analogous argument,
we also obtain tﬁat, for all ie J*,

Y a;=-1 and a,;=0, VjgJ*,

j=i
where each k; is }a scalar in I(#) such that

i
Z Qy; X;= bk;'
J

For each i £ J, let k; be any element of I(i). Since J # {1, - - -, n}, (7.7) and (7.8) imply
that the nxn matrix [a,;];; is not irreducible—a contradiction of Assumption
F(c). a

We may now invoke Lemmas 2.1, 2.4 and Proposition 2.1 to establish that the
partially asynchronous iteration

x=(1-vy)x+vyh(x)

(with 0 <y <1) ¢onverges to a fixed point of h. Unfortunately, such a fixed point is
not necessarily the least element of X. We have, however, the following characterization

of such fixed points.
LeMMmA 7.4. |If X has a least element 7, then, for any fixed point x* of h, there exists
a nonnegative scqlar A such that x*=n+(A, -+,).

P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

Proof| Since x* is a fixed point of h, x*e X. Hence x*= 5. We then repeat the
proof of Lemma 7.3, with J~={1,---, n} and x' =5 for all i. This yields that, for
every ie{l,-- -, n}, there exists some k; € I(i) such that xF-m =T, lal(xF —).
Since x*—|n =0, Assumption F(c) and (7.1) imply that the x* — ,’s are equal. |

Lemma 7.4 states. that, given a fixed point x* of h, we can compute the least
element ofl X by a simple line search along the direction (-1, - - -, —1) (the stepsize
A is the largest for which x*—(A,- -+, 1) is in X). An example of X for which the
corresponding h has multiple fixed points is

X ={(x, x2)| X, —x,=0, x, —0.5x,= -1, —x, + x,=0}.

Here h,(x)=max {x;, 0.5x,—1}, hy(x) =x, and both (-1, —1) and (-2, ~2) are fixed
points of A (the least element of X is (-2, —2)).

" Let ug remark that if the inequalities in Assumption F(b) are strict, then the
mapping h is a contraction mapping (the same argument as in Lemma 7.2) and
convergenge under total asynchronism is obtained. We also remark that, if in the
statement of Assumption F(c) we replace “For any” by the weaker “For some,” then
Lemmas 7.1 and 7.2 still hold, but Lemmas 7.3 and 7.4 do not. In fact, it can be shown
that X* is pot necessarily convex in this case.

8. Simulation for network flow problems. In this section we study and compare,
using simylation, the performance of synchronous and partially asynchronous
algorithms |for the network flow problem of § 4. We measure the following: (a) the
effects of the stepsize y (cf. Lemma 2.1), the problem size n, and the asynchrony
measure B on the performance of partially asynchronous algorithms, (b) the efficiency
of different partially asynchronous algorithms relative to each other and also relative
to the corr¢sponding synchronous algorithms.

In our|study, we consider a special case of the network flow problem (4.1)-(4.2)
where each cost function a;(-) is a quadratic on [0, +00], i.e.,

aglfil*+Byfy if 320,
+o otherwise,

@y | ay(fy) ={

where a; is|a given positive scalar and B; is a given scalar. This special case has many
practical applications and has been studied extensively [6], [9], [12], [21], [31]. In
what follows, we will denote by h: " >R" the function given by (4.3), (4.5)-(4.6),
and (8.1). All of the algorithms involved in our study are based on h.

8.1. Test problem generation. In our test, each a; is randomly generated from the
intérval [1,;5] and each B; is randomly generated from the set {1,2,---,100}. The
number of arcs is ten times the number of nodes and the average node supply is 1000,
i.e., |sy)+- +|-+|s,] = 1000n. Half of the nodes are supply nodes and half of the nodes
are demand nodes (we say a node i is a supply (demand) node if 5;> 0 (s; <0)). The
problems dre generated using the linear cost network generator NETGEN [18],
modified to generate quadratic cost coefficients as well.

8.2. The main partially asynchronous algorithm. The main focus of our study is
the partially asynchronous algorithm described in § 4. This algorithm, called PASYN,
generates a sequence {x(t)} using the partially asynchronous iteration (1.1) under
Assumption A, where the algorithmic mapping f is given by i

(8.2) S(x)=(1-vy)x+ yh(x).-

*’AR’I‘IALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 703

In our simulatign, the communication delays t—7;(t) are independently generated
from a uniform distribution on the set {0,1,---, B—1} and, for simplicity, we assume
that 7;={1,2,-t-} for all i. (This models a situation. where the computation delay
is negligible compared to the communication delay.) The components of x(1—-B),
x(2—-B), - - -, x(D) are independently generated from a uniform distribution over the
interval [0, 10] (this is to reflect a lack of coordination among processors) and the
algorithm termingtes at time ¢ if max. ,.c—p,....y | x(7) = x(7')|| =0.001.

600

W
kel

500 +
-
5
n
<
b 400
ﬁ o B=2
E - B=4
. p o B-8
S 300 4 / < B=16
E y
£
-

200 4

100 v T t T T v | p— 5l

0 200 400 600 800 1000 1200
Problem Size (n) L _]

FiG. 8.1(a). Termination time for PASYN (y =0.1), for different values of B and n.

300
aQ
I
z
z
P
@ 200
a
ks — o B=2
g ; - B=4
- = B=8
& < B=15
g 100 4 > e
E /
G a
) f

0 v T L] - LI v L} * L} L

0 200 400 600 800 1000 1200

. Problem Size (n) -
FIG. 8.1(b). Termination time for PASYN (y = 0.5), for different values of B and n.

704 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

30C
a
3
kel
z
a
P 200 7
o
8
[] & B=2
é - Bax4
c o Bax=§
‘_e - B=z16
2 100 7
E
s
& - o
2 .

.4/
a
oo
o ¥ 1) b 1 v L4 v ¥ hd L]
) 200 400 600 800 1000 1200

Problem Size (n)
FI1G. 8.1(c). Termination time for PASYN (y = 0.9), for different values of B and n.

The termination time of PASYN, for different values of v, B, and n, is shown in
Figs. 8.1(a)~(c). In general, the rate of convergence of PASYN is the fastest for y near
1 and for B|small, corroborating our intuition. The termination time grows quite slowly
with the size of the problem n but quite fast with decreasing y. For y near 1, the
termination| time grows roughly linearly with B (but not when 7y is near 0).

8.3. An alternative partially asynchronous algorithm. Consider the function
fO:R">R" whose ith component is given by

(8.3) f?(x) — {hi(x) ifi#1,

X, otherwise.

It is shown in [5] that the algorithm x := f°(x) converges under the total asynchronism
assumption. Hence it is of interest to compare this algorithm with that described in
§ 8.2 (namely PASYN) under the same assumption of partial asynchronism. The
partially asynchronous version of the algorithm x := f°(x), called TASYN, is identical
to PASYN except that the function f in (8.2) is replaced by f°. (Note that TASYN
has the advantage that it uses a unity stepsize.)

The termination time of TASYN, for different values of B and n, is shown in Fig.
8.2. A comparison with Figs. 8.1(a)-(c) shows that TASYN is considerably slower than
PASYN. The speed of TASYN is improved if f in (8.2) is replaced by f° only after a
certain amount of time has elapsed, but the improvement is still not sufficient for it
to compete with PASYN.

8.4. Two synchronous algorithms. In this subsection we consider two types of
synchronous algorithms based on h: the Jacobi algorithm and the Gauss-Seidel
algorithm. In particular, the Gauss-Seidel algorithm has been shown to be efficient
for practical computation (see [6], [9], [21], [31]). Hence, by comparing the asyn-
chronous algorithms with these algorithms, we can better measure the practical
efficiency of the former.

PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 705

30000
=z
> .
2 20000 -
-
S
2 « B=2
£ 1 - B=4
: : - B=8
8 - B=16
2 10000 -
13
O
T4
é:,,a//;
° " L ¥ L]
0 100 200 300
Problem Size (n)

Flp. 8.2. Termination time for TASYN, for different values of B and n.

The Jacobi | algorithm, called SYNJB, is a parallel algorithm that generates a
-sequence {x(1)} according to

x(1+1) = (1-y)x(1) + yh(x(t)),

where ye (0, 1)| The initial estimates x,(0), - - -, x,(0) are independently generated
from a uniform distribution over the interval [0, 10], and the algorithm terminates at
time ¢ if ||x(¢) — x(¢—1)|] =0.001. (SYNIJB can be seen to be a special case of PASYNB
where B =1 and hence {x(t)} converges to a fixed point of h.)

Consider any positive integer b and any function g8:{1,-- -, n}->{1,- -+, b} such
that h;(x) does not depend on x; if B(i) = B(j). We associate with b and B a Gauss-
Seidel algorithm| that generates a sequence {x(t)} according to

hi(x(t)) if t=B(i)—1 (mod b),
x;(1) otherwise.

In our simulation, the initial estimates x,(0), - - -, x,(0) are independently generated
from a uniform distribution over the interval [0, 10] and the algorithm terminates at
time ¢ if

e max |x(7)—x(7)|| =0.001.
St}

7, 7'e{t—-b,--

(Convergence off {x(¢)} to a fixed point of h follows from Proposition 2.4 in [6]. Note
that, similar to TASYN, this algorithm has the advantage of using a unity stepsize.)
We consider both a serial and a parallel version of this algorithm (this is done by
choosing b and |8 appropriately). SYNGSI is the serial version which chooses b=n
and B(i)=i for[all i SYNGS2 is the parallel version which uses a coloring heuristic
to find, for each|problem, a choice of b and B for which b is small.

The términation time for SYNJB, SYNGS1 and SYNGS?2, for different values of
n, are shown in Figs. 8.3(a)-(b). In Fig. 8.3(a), the choice of b obtained by the coloring
heuristic in SYNIGS2 is also shown (in parentheses). In general, SYNJB is considerably

B

706 P. TSENG, D. P. BERTSEKAS, AND.J. N. TSITSIKLIS

faster than efther of the two Gauss-Seidel algorithms SYNGS1 and SYNG? (however
in SYNJB all processors must compute at all times). From Fig. 8.3(b) we see that, as
n increases and the problems become more sparse, SYNGS2 (owing to its high
parallelism) [becomes much faster than the serial algorithm SYNGSI1. (Notice that the
time for SYNGS1 is approximated by the time for SYNGS2 multiplied by n/b, as
expected.) Comparing Fig. 8.3(a) with Fig. 8.1(c), we see that SYNJB is approximately

300 A

-3 2qo]
E
'—
s ; o SYNB (=9)
g -+ SYNGS2
E
e 100 4 11)

1

a—ﬂ"ﬂ o © |
0 T v T Y T i T b T v)
0 200 400 600 800 1000 1200

Problem Size (n)

FI1G. 8.3(a)| Comparing the termination time for the two synchronous, parallel algorithms SYNJB (v =0.9)
and SYNGS2, for different values of n. o

20000 -
@
E
P—
‘_:’ 10000 - & SYNGS1
g -+ SYNGS2
E
G
-

o " I' . 13] v L] v I' 1

200 400 600 800 1000 1200

Problem Size (n)

F1G. 8.3(b)| -Comparing the termination time for the serial algorithm SYNGS1 and. for the synchronous,
parallel algorithin SYNGS?2, for different values of n.

PARTIALLY ASYNCHRONOUS, PARALLEL ALGORITHMS 707

3/2 times faster than PASYN and that PASYN is faster than SYNGS?2, unless PASYN
suffers long delays.

8.5. Simulation of synchronous algorithms in the face of communication delays. In
this subsection we consider the execution of the synchronous iterations of § 8.4 in an
asynchronous computing environment, that is, in an environment where communication
delays are varidble and unpredictable. The mathematical description of the algorithms
in this subsection is identical to that of the algorithms considered in the preceding
subsection,; for this reason, the number of iterations until termination is also the same.
On the other hand, each processor must wait until it receives the updates of the other
processors befare it can proceed to the next iteration. For this reason, the actual time
until termination is different from - the number of iterations. In our simulation, the
delays are randomly generated but their statistics are the same as in our simulation
of asynchronous algorithms in §§8.2 and 8.3 (uniformly distributed over the set
{0,1, - - -, B—~1}}, where B denotes the maximum delay). This will allow us to determine
whether asynchronous methods are preferable in the face of communication delays.

More precisely, consider any synchronous algorithm and let T denote the number
of iterations at|which this algorithm terminates. With each te {1, - -, T} and each
ie{l,-- -, n}, we associate a positive integer o;(1) to represent the “time’ at which
the update of the ith component at iteration ¢ is performed in the corresponding
asynchronous execution. (Here we distinguish between “iteration” for the synchronous
algorithm and {‘time” for the asynchronous execution.) Then {o;(¢)} is recursively
defined by the following formula:

t) =max {0;(t — 1) + (communication delay from proc. j
to proc. i at time o;(¢—1))}, A

where the maximization is taken over all j such that the jth component influences the
ith component at iteration ¢. The termination time of the asynchronous algorithm is
then taken to b

max {a:(T)}.

The partia]ly asynchronous algorithms that simulate SYNJB, SYNGS1 and
SYNGS?2 are called, respectively, PASYNJIB, PASYNGS1 and PASYNGS?2. The termi-
nation times for these algorithms are shown in Figs. 8.4-8.6 (they are obtained from
the termination times shown in Figs. 8.3(a)-(b) using the procedure described above).
Comparing these figures with Figs. 8.1(a)-(c), we see that PASYNJB is roughly 3/4
as fast as PASYN (when both use the same stepsize y=0.9) while the other two
algorithms PASYNGS1 and PASYNGS2 are considerably slower than PASYN (even
when PASYN uses the most conservative stepsize y =0.1).

To summarjze, we can conclude that PASYN is the fastest algorithm for partially
asynchronous computation and that its synchronous counterpart SYNJB is the fastest
for synchronous| parallel computation. We remark that similar behavior was observed
in other network flow problems that were generated. Furthermore, the asynchronous
algorithm PASYN seems to be preferable to its synchronous counterpart SYNJB in
the face of delays. In practice, the assumption that the delays are independent and
identically distributed might be violated. For example, queucing delays are usually
dependent; also| the distance between a pair of processors who need to communicate
could be variable, in which case the delays are not identically distributed. On the other
hand, such aspects cannot be simulated convincingly without having a particular
parallel computing system in mind.

708 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

400 +
&
n
z
3 300 - /
Z
>
7
< 4
a
S
2 o B=2
E 200 - B=4
: — = B=8
®
£
g 100 4
- / -
1 " o
0 v ¥ ¥ T T] M T L]
0 200 400 600 800 1000 1200
Problem Size (n)
F16. 8.4. Termination time for PASYNJB‘ (y=0.9), for different values of B and n.
8000 -
n x
& 6000
2
>
7
2]
o
5 < B=2
. 4000 < B=4
’L_E o B=8
=] < B=16
K=
®
£
E 2000 -
] /D—”’/G
[+] r T y T T T T T Y T 1
0 200 400 600 800 1000 1200

Problem Size (n)
FiG. 8.5. Termination time for PASYNGSI, for different values of B and n.

9. Condlusion and extemsions. In this paper we have presented a general
framework, based on nonexpansive mappings, for partially asynchronous computation.
The key to this framework is a new class of functions that are nonexpansive with
respect to the maximum norm. We showed that any algorithm whose algorithmic
mapping belongs to this class converges under the partial asynchronism assumption
with an arbitrarily large bound on the delays. While some of the asynchronous
algorithms thus obtained are known, others are quite new. Numerical experimentation

*’ARTIALLY ASY;’NCHRONOUS, PARALLEL ALGORITHMS 709

4000 -
@
i 3000 o
Zz
>
7
<
a
§ =+ B=2
2 2000 - - B=4
e o B=8
E - B=16
a
£
E 1000
= R -
-

s —
O ! T b | T L T T . 1
0 200 400 600 800 1000 1200
Problem Size (n)
F1G.|8.6. Termination time for PASYNGS2, for different values of B and n.

with network flow problems suggests that, for partially asynchronous computation, the

new algorithms
algorithms.

{1] G. M. BAUDET,

pp. 226-244.

[2] D. P. BERTSEK

pp. 610-616.

[3]
[4]

. Distribi
107-120.

, Dynam
NJ, 1987.
[5] D. P. BERTSEK

may be substantially faster than those obtained from synchronous

REFERENCES

Asynchronous iterative methods for multiprocessors, J. Assoc. Comput. Mach., 15 (1978),
s, Distributed dynamic programming, 1IEEE Trans. Automat. Control, AC-27 (1982),
uted asynchronous computation of fixed points, Math. Programming, 27 (1983), pp.
ic Programming: Deterministic and Stochastic Models, Prentice-Hall, Englewood Cliffs,

IAS AND D. Ei BAz, Distributed asynchronous relaxation methods for convex network

flow problems, SIAM J. Control Optim., 25 (1987), pp. 74-85.

[6] D. P. BERTSEK
convex arc ¢
[7] D. P. BERTSEK|

AS, P. HOSEIN, AND P. TSENG, Relaxation methods for network flow problems with
osts, SIAM J. Control Optim., 25 (1987), pp. 1219-1243.
As AND J. N. TsitsikLis, Parallel and Distributed Computation: Numerical Methods,

Prentice-Hali, Englewood Cliffs, NJ, 1989.

[8] D. CHAZAN AN
[9] R. W. COTTLE,
matrix probl

{10] R. W. COTTLE
3 (1972), py

[11] K. DEIMLING,
[12] R. S. DEMBO A
with convex

[13] H. GaBBAY, A
[14] F. R. GANTMA
[15] J. J. HOPFIELD

D W. MIRANKER, Chaotic relaxation, Linear Algebra Appl., 2 (1969), pp. 199-222.
S. G. DuvALL, AND K. ZIKAN, A Lagrangean relaxation algorithm for the constrained
lem, Naval Res. Logist. Quart., 33 (1986), pp. 55-76.

AND A. F. VEINOTT, JR., Polyhedral sets having a least element, Math. Programming,
. 238-249.

Nonlinear Functional Analysis, Springer-Verlag, Berlin, New York, 1985.

ND J. G. KLINCEWICZ, A scaled reduced gradient algorithm for network flow problems
separable costs, Math. Programming Stud., 15 (1981), pp. 125-147.

note on polyhedral sets having a least element, Math. Programming, 11 (1976), pp. 94-96.
CHER, The Theory of Matrices, Vol. 11, Chelsea, New York, 1960.

, Neurons with graded response have collective computational properties like those of

two-state neurons, Proc. Nat. Acad. Sci. US.A., 81 (1984), pp. 3088-3092.

710 P. TSENG, D. P. BERTSEKAS, AND J. N. TSITSIKLIS

(16] 3. J. HoPFiELD AND D. W. TANK, Computing with neural circuits: a model, Science, 233 (1986), pp.
625-633.

[17] K. R. JAMES, Convergence of matrix iterations subject to diagonal dominance, SIAM J. Numer. Anal.,
10 (1973), pp. 478-484.

[18] D. KLINGMAN, A. NAPIER, AND J. STuTZ, NETGEN—A program for generating large scale (un)capaci-
tated gssignment, transportation and minimum cost flow network problems, Management Sci., 20
(1974}, pp. 814-822. ‘

[19] R. P. LiPPMANN, An introduction to computing with neural nets, IEEE ASSP Magazine, (1987), pp.4-22.

[20] B. LUBACHEVSKY AND D. MITRA, A chaotic, asynchronous algorithm for computing the fixed point of
a nonnegative matrix of unit spectral radius, J. Assoc. Comput. Mach., 33 (1986), pp. 130-150.

[21] A.OnucHI AND 1. KAJ1, Lagrangian dual coordinatewise maximization algorithm for network transporta-
tion problems with quadratic costs, Networks, 14 (1984), pp. 515-530.

[22] J. M. ORTEGA AND W. C. RHEINBOLDT, Iterative Solution of Nonlinear Egquations in Several Variables,
Academic Press, New York, 1970.

[23] R. T. ROCKAFELLAR, Convex Analysis, Princeton University Press, Princeton, NJ, 1970.

[24] » Network Flows and Monotropic Optimization, Wiley-Interscience, New York, 1984.

[25] T.J. SEsNgWsK1, Open questions about computation in cerebral cortex, in Parallel Distributed Processing:
Explomtions in the Microstructure of Cognition, Vol. IL, J. L. McClelland, D. E. Rumelhart, and
the PDIP Research Group, eds., MIT Press, Cambridge, MA, 1986, pp. 372-389.

[26] P. TsENG,|Distributed computation for linear programming problems satisfying a certain diagonal domi-
nance condition, Working Paper 1256, Faculty of Commerce and Business Administration, University
of British Columbia, Vancouver, Canada; also LIDS Report, MIT, Cambridge, MA, December
1986; Math. Oper. Res., to appear.

[27] J. N. TsiT$ikLIS AND .D. P. BERTSEKAS, Distributed asynchronous optimal routing in data networks,
IEEE Trans. Automat. Control, AC-31 (1986), pp. 325-332.

[28] J. N. TsiT$IKLIS, D. P. BERTSEKAS, AND M. ATHANS, Distributed asynchronous deterministic and
stochastic gradient optimization algorithms, 1EEE Trans. Automat. Control, AC-31 (1986), pp.
803-812.

[29] J. N. TsI1TSIKLIS, Problems in decentralized decision making and computation, Ph.D. Thesis, Dept. of
Electrical Engineering and Computer Science, MIT, Cambridge, MA, 1984.

, On the stability of asynchronous iterative processes, Mathematical Systems Theory, 20 (1987),
pp- 137-153.

[31] S. A. Zentos AND J. M. MULVEY, Relaxation techniques for strictly convex network problems, Ann.
Oper. Res. 5: Algorithms and Software for Optimization C. L. Monma, ed., Baltzer, Basel,

- Switzerfand, 1986, pp. 517-538.

{32] S. A. ZENIPS AND J. M. MULVEY, A distributed algorithm Jor convex network optimization problems,
Paralle] Comput., 6 (1988), pp. 45-56.

[33] S. A. ZEnips AND R. A. LASKEN, Nonlinear network optimization on a massively parallel connection
maching, in Ann. Oper. Res. 14: Parallel Optimization on Novel Computer Architectures, R. R.
Meyer and S. A. Zenios, eds., Baltzer, Basel, Switzerland (1988), pp. 147-165.

(30

