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Partial Conjugate Gradient Methods for a
Class of Optimal Control Problems

DIMITRI P. BERTSEKAS

Abstract—1In this paper, we examine the computational aspects
of a certain class of discrete-time optimal control problems. We
propose and analyze two partial conjugate gradient algorithms
which operate in cycles of s+ 1 conjugate‘gradient steps (s < n =
state space dimension). The algorithms are motivated by the special
form of the Hessian matrix of the cost functional. The first algorithm
exhibits a linear convergence rate and offers some advantages over
steepest descent in certain cases such as when the system is un-
stable. The second algorithm requires second-order information
with respect to the control variables at the beginning of each cycle
and exhibits s+1 — step superlinear convergence rate. Further-
more, it solves a linear-quadratic problem in s+41 steps as com-
pared with the m-N steps (m = control space dimension, N =
number of stages) required by the ordinary conjugate gradient
method. ' R

I. INTRODUCTION

N important class of algorithms for solving uncon-
strained optimal control problems is the class of de-
scent methods which traditionally have been the principal
methods for solving general unconstrained minimization
problems. Prominent within this class are steepest descent,
conjugate gradient, and Newton's method. During the
last fifteen years, these methods have been applied with
success to the solution of unconstrained optimal control
problems [1]-[8]. Furthermore, they form the basis for the
solution of constrained optimal control problems by
means of penalty methods [9]-[11], multiplier methods
[12]-[14], and primal dual methods [15], [16]. The
special structure of the optimal control problem has
allowed for great simplification in the application of
descent methods. First of all, the gradient of the cost
functional with respect to the control variables can be
efficiently calculated by means of the adjoint equation.
Second, the solution of the system of linear equations
involving the Hessian matrix of the cost functional, which
18 necessary at each iteration of Newton’s method, can be
carried out efficiently by solving a related Riccati equa-
tion.

Very little attention has been paid so far to the rate of
convergence aspects of descent algorithms as applied to
optimal control problems. Yet it is to be expected that
the structure of the control problem should have a special
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influence on the convergenece rate and hence the perform-
ance of descent algorithms. For instance, it has been
observed via example in [18] that the performance of
steepest descent can be profoundly influenced by the
stability properties of the system. It is well known that
the convergence rate properties of first-order descent
algorithms are determined by the eigenvalue structure
of the Hessian matrix of the cost functional. Analysis of
this eigenvalue structure can motivate various modifica-
tions, including scaling, of the basic descent algorithms
which can result at substantial acceleration of the speed of
their convergence at little or no computational expense.
In this paper, we carry out such an analysis for a special
class of optimal control problems. The results motivate
two partial conjugate gradient algorithms which operate
in eycles of (s+1) steps (s < state space dimension).
These algorithms are desecribed in Section III of this paper.
In Section IV, it is shown that the first of the two algo-
rithms should be expected to perform better than steepest
descent, particularly when the system tends to be un-
stable. The second algorithm utilizes scaling and requires
exact or approximate second-order information with
respect to the control variables at the beginning of each
cycle. It converges considerably faster than the ordinary
conjugate gradient method and exhibits (s—+1)-step super-
linear convergence rate. In particular, it solves a linear
quadratic problem in at most (s+41) steps as opposed to
the N -m steps (N = number of stages, m = control space
dimension) required by the ordinary conjugate gradient
method. Some computa&,ional results are also presented in
Section V.

IT. A Crass or OprimMal CONTROL PROBLEMS
We shall be concerned with the class of optimal control

problems involving the discrete-time system

Tepr = Ay + filu), kE=01,---N—-1 (1)

where )
Tg: given

and the cost functional

N—1

S (g, -+ ) = Glay) + LZUZ;;(U::)- {2)
In the above equations z, & R"(n-dimensional Euclidean
space) denotes the system state at time k, and w, & R™
denotes the control at time k. We assume that N-m > =n.
The n X n matrices A,, and the functions f,: R® — R”,
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G:R* — R, and I,:R™ — R are given. Furthermore f,, G,
and I, are assumed three times continuously differentiable.!
There are no constraints on either the control or the state
variables.

Let p, denote the adjoint variables of the system de-

.__fined for any control-state sequence uq, - - SUN-LEL, TN

by the adjoint equation

P = Ak'pen, k=1, N—1 (3)
ac:

. ? <+

Pw . (zx) 4)

In the above equation and hereafter, prime denotes
transposition. W_e also denote by H, the Hamiltonian
functional '

Hk(xk,uhpu-l) = I.t(uk) + }'Jk+1! [Atl';.- “t‘fx(’h) ],

k=0,---N—1 (3)

The gradient of the cost functional J at a point « =
(ﬂu, e ,uN__l) is giveﬂ b}’ . -
aH,’

VJ(u) = (6 ;...,'L‘ZL"—_‘)

Ug Oty

(6)

where the gradients are evaluated along u and the corre-
sponding state and adjoint variables. The Hessian matrix
of J at a point u can be calculated to have the following
form

o%H oG
VN (u) = — (u) + M) — @) M)  7)
du? 6xN-
where 82H /du*(u) is the block diagonal matrix
-S?HD( ) . =
6u03 £
otH
0 gfﬁu 0
a°H i) = #
ou® - & (8)
a“‘H_n\,-'_[
5 0 Oy (u)_
and M(u)' is the n X N -m matrix
a Oy Ofp—
M) = Ayt B, T Hin ]
Bun &uN_Q a'r'.LN..]_

All partial derivatives in the above expressions are evalu-
ated along the control sequence w and the corresponding
state and adjoint variables. The special form of this
Hessian matrix, which is due to both linearity of the sys-
tem with respect to the state and the lack of intermediate

! Actually for the application and the convergence of the algo-
rithms that we consider, it is sufficient that f and ! are twice con-
tinuously differentiable, and G is once continuously differentiable.
However, the rate of convergence results that we shall be utilizing
{20] require three times differentiability for their proof.
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cost on the state, is the prime motivation for consideration
of the algorithms proposed in this paper.

© Letu® = (14* - -, uy*) be an optimal control sequence
and =% - -, zp¥,p %, - -, py™ be the corresponding state
and adjoint wvariables. The necessary conditions for
optimality are

VS (u®) = 0, V& (u*) > 0(V3(u*): positive semidefinite).

(10)
We shall make the additional assumption that

a*H

S (w*) >0, k=01, N—1 (11)
oy

a!
LG 20 (12)
N \ -

which is actually a strengthened sufficiency condition for
u” 1o be an isolated local minimum.

III. ALGORITHMS FOR SOLUTIQON OF THE
OpriMAL CoNTROL PROBLEM

Both the method of steepest descent and the conjugate
gradient method are applicable for the solution of the
problem described in the previous section. We briefly
describe these methods since we plan to refer to them in
the sequel.

Steepest Descent M ethod

In this method, given the kth iterate u*, the next iterate
is found by

uttl = @ — @, VJ(uF)
where @, minimizes over «
JuF — aVJ (1) ].

The convergence properties of steepest descent are well
known [19], [21], and we shall not dwell on them further.
We shall be more interested in the convergence rate
properties of the method assuming convergence to u*
occurs. It is well known that steepest descent converges

< ( )-

J(ut ) — J(u*)

J@) — J@w*)
where A, X ard the largest and smallest eigenvalues of the
Hessian matrix V2 (u*). It is to be noted that the bound
(A — AA 4+ X)? indicated in (13) is a sharp bound at
least for quadratic problems in the sense that, there exist
starting points »® for which (13) is satisfied with equality.
Thus whenever the ratio A/, (the condition number),
is high, the convergence ratio (A — MA/A + A)? is close to
unity, and the method may converge very slowly. As it
turns out in many optimal control problems, the condition
number A/ is very high. This fact may be attributed to
both the large dimensionality of the problem as well as to
other factors akin to the special structure of the optimal
control problem. As will be explained in the next section,

(13)

lim sup

fe—t o
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the condition number A/ tends to become large if the
system tends to be unstable. For this reason, steepest
descent is often rejected in favor of other methods, despite
its simplicity and robustness.

One of the best and certainly most popular methods for
solving optimal control problems is Newton’s method [4],
[6], [8]. Not only does it converge fast, but also it can be
efficiently implemented via the solution of the Riceati
equation which necessitates low-order matrix inversion.
Newton’s method, however, requires accurate second-
order information which may be unavailable. Further-
more, it is not guaranteed to converge except if the starting
point is close to the minimum. Various devices which can
be used to overcome this shortcoming detract considerably
from both the efficiency and the simplicity of the method.
For this reason, the conjugate gradient method first pro-
posed for optimal control problems by Lasdon, Mitter,
and Warren [2] is considered to be an important alterna-
tive to both steepest descent and Newton’s method.

Congugate Gradient Method

We deseribe below the Fletcher-Reeves [19] implemen-
tation of the method although other implementations such
as the one proposed independently by Polak and Ribiere
[21], Polyak [22], and Sorenson [17], may also be used.

In this method, given w*, the next iterate is determined
according to

whtl = uf 4+ aud,, k=0,---Nm—1 (14)
where a, minimizes over «
J (v 4+ ady)
and d, is determined recursively according to
dk = ""vJ(‘Hk) + .Bk_‘]dk_],, fi= 1,' % -,N-m (15)
vy
) 4 i k=1.---N-m. 16
ﬁk 1 HVJ('L&*_I)”E, 1: ? m ( )
The initial direction "d;”ia\\
dy = —VJ ()

and after N-m iterations, the method is restarted by
setting

dvm = —VJ (@)

and by setting k = N-m + k in equations (14), (15), and
(16).

The convergence properties of the conjugate gradient
method are well known. For a linear quadratic problem it
converges in & finite number of iterations {at most N -m).
Furthermore, its associated stepwise convergence ratio is
less or equal to that of steepest descent at every step [24],
[19].

Nonetheless, the conjugate gradient method is not
without its disadvantages when applied to nonguadratic
problems. The efficient convergence of the method de-
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pends crucially on the conjugacy of the directions gener-
ated. This conjugacy tends to be destroyed by nonquad-
ratic terms in the cost functional, and indeed, for problems
with many variables (and hence a cvcle with many iter-
ations), the method may start to generate nonsensical and
inefficient directions of search after a few steps in cach
cyele. This difficulty is compounded by inaccuracies in the
minimization along the line of search which tends to
destroy conjugacy even further. However, the convergence
ratio of steepest descent is often so bad that conjugate
gradient methods are generally considered superior to
steepest descent for optimal control problems.

A class of methods which are intermediate between
steepest descent and conjugate gradient are the so called
‘“‘partial conjugate gradient methods.” In these methods,
the successive directions of search are determined by the
same rule (15) and (16), as in the ordinary conjugate
gradient. However, the cycle is shortened so that only
(s+41) steps (s < dimension of the problem) are taken be-
fore the method is restarted. The motivation for shortening
the cycle has been described in detail by Luenberger [19],
[20]. It stems from the fact that oftentimes illconditioning
in ‘the problem (large separation between largest and
smallest eigenvalues of the Hessian) is caused by a few
large eigenvalues. On the other hand, every step of the
conjugate gradient method can be interpreted as removing
the effect of a single large eigenvalue. Thus if only a small
number, say s, of large eigenvalues are eausing the ill-
conditioning, the application of (s+1) steps of the con-
jugate gradient method already brings about a sub-
stantial reduction of the value of the cost functional. A
further continuation of the conjugate gradient cycle may
be inefficient if conjugacy of generated directions is pro-
gressively lost due to honquadratic terms and inaccurate
line searches. In short, the partial conjugate gradient
method, when applied to problems with few troublesome
eigenvalues, combines the efficient convergence rate of the
conjugate gradient method with the use of relatively short
eveles which avoid loss of conjugacy of the generated
directions. The partial conjugate gradient idea may also
be combined with efficient scaling of the problem to
yield a method with excellent and even superlinear cycle
convergence rate.

As will be explained in subsequent sections, the optimal
control problem that we are considering lends itself very
well to the application of partial conjugate gradient
methods. In particular, when sealing is used, the cycle
convergence rate s superlinear. We propose below two
such methods.

Let s be any integer such that

o

9%
rank ( (“) <s<n forallzy & R".
aI,\'z

We would like to take s as small as possible, and hence, if,
for example, G depends explicitly on only a few coordinates
of the final state, we take s to be the number of those
coordinates.
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Puortial Conjugate Gradient Method Scaled Partial Conjugate Gradient Method
In this method, given u*, the next iterate is determined In this method, given u*, the next iterate is determined
according to : according to
uk-f—l = uk + akdkl k’ = 091)' ) ',3 (l?) 'u-k+l = uk + atdks ' k’ = 0,1,‘ te,8 (21)
where a, minimizes over o where o, minimizes over «
J@t + ady) . J{uF + ody).
and dy is determined recursively according to The direction d, is determined recursively according to
d = =VI@) + faths, k=1 5+ 1 (18) o = =VIE) B (22)
where now V.J (u*) is a scaled gradient of J given by
B = Tom i (19)
[ (=2 P a2H =i
W) = (G @) v ©23)
The initial direction dj is ou -
do = —VJ(u0) and
and_ after (s+41) iterations, the method is restarted by : VJ ()’ (a-ff (uo))—l VJ (i)
setting Br = 24
ERR -1 = 5 T (24)
dyp1 = —VJ () Vo ()’ ( o (u")) Vo (u—1)
and by setting £ = (s + 1) + k in (17}, (18), and (19). . s . .
Thus this method is identical to the conjugate gradient le? & II_III BATx (a.?Hf ou*(u?)) ~'is the inverse of the Hessian
except that the length of the cycle is (s + 1) rather than © the Hamiltonian
N.m. [9°H i
. L
The convergence rate aspects of this method have been Sty (u?) 0
examined by a number of authors (see e.g., [24], [25]). The
result of most interest to us is the one due to Luenberger o . . -
(19], [20]. It states that if the (N-m — s) smallest eigen- 2 M = ' .29
values of V2/ (1*) lie in an interval [e,4 ], then the sequence ’
wheHl ko= 1,2,---, of last points in each (s41)-step 0 PHya,
cycle satisfies | Atepr—r? (u )“
T~ JuErReEn ] — Jy*) < (A — ﬂf)2 (20) Accordingly, we may write (23) and (24), as
t—w Jute 0] — J(u®) A+ o/
v = (B [
In other words, the method viewed in cycles of (s-+1) 28 e | due? A
steps converges with a steepest descent-like convergence aH a2 ;
ratio where the largest eigenvalues are eliminated. The = (k) |: = ( 0)] ) (26)
estimate (20) has been proved in [20] for an implementa- Oty OUn—
tion of the conjugate gradient method which is different N-1g H{ aH, oH
from the Fletcher-Reeves implementation. Luenberger 2 o [ (u“)] — (
[20] states that the result holds also for any other imple- g, = _‘l"° . @n
mentation. We note that the bound (4 — a/4 + «)? on Z oH, (F 1)’ \: H‘ (u? ):I_l aH ( 1—1)
the convergence ratio is not tight, and a sharper bound is i=0n aug
iven by .
£ d The initial direction dj is
. Ju*A0 e+ ] — J(y*) L e
o SR L ] — () o= TV
A . s e — g\ After (s+1) iterations, the method is restarted b) re-
( — a) : ( 5 a) placing ;
A+ a/ p=Nw-st+1 Ax
#H, . Hya
where My, &k = Nm — s + 1,- - -, Nm are the s largest eigen- e’ (W), y_s® ()

values of V2/(u*). This bound can be shown to hold by a
simple modification of the proof of (20) in [19], [20]. by the corresponding Hessian matrices evaluated at u*+!
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9°H, 6 HN 1
841 541
o ), ? w )
and by setting
dop1 = —VJ (@)

and k = (s + 1) 4+ kin (22), (26), and (27).

It can be observed that the method above is similar with
the previous one. The difference is that at the beginning of
- each (s+1)-step cyecle, the inverses of 82H,/oue® - -,
02H y_1/0ux—1* are computed (a relatively geasy task for
problems with small control space dlmenslon), and they
are used to scale the gradient of the cost functional
throughout the cycle. Notice that the scaling matrices are
not updated during the cycle since any updating could
destroy the conjugacy of the generated directions.

In order for the method to be well posed and to con-
verge, it is necessary that the inverses [62H,/du,?]? exist
and are positive definite. This is guaranteed by our assump-
tions in a neighborhood of the optimal point «*. If, how-
ever, during the course of the algorithm any nonpositive
definite matrices 82H,/dw;® are encountered, these ma-
trices should be replaced by some positive definite matrix
such as the identity. Otherwise, a |procedure similar to
those used for stabilization of Newton’s method may be
used [19].

As will be indicated in Section IV, the method when
viewed in eyeles of (s+1) steps converges superlinearly,
ie.,

J uE0EHn] — J@*)
J[e0]) — J@*)

lim sup

k=t

Furthermore, in the case of a linear guadratic problem,
where the matrices 8°H/0u,* are constant, it converges
in at most (s-1) steps.

We mention that it is possible to use finite difference
approximations to the matrices 82H,/du,* if the second-
order information required is unavailable.

convergence rate, the-approximation errors are not com-
pounded by propagation through the Riccati equation as
they would be in any finite difference approximation
version of Newton’s method.

Finally, we note that it is a routine matter to prove
various convergence properties of the partial conjugate
gradient methods presented in this section. The proofs are
based on the general convergence theory of Zangwill [23],
and in particular, on the so-called Spacer Step Theorem
([23], [19]). They rest on the fact that at every step, the
value of the cost funetional is not increased and a pure or
scaled steepest descent step is taken periodically. Thus
if the starting point «° is sufficiently close to u*, con-
vergence to u* is guaranteed by our positive definiteness
assumptions (11) and (12). For an arbitrary starting point
u® we have that every limit point @* of the sequence
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{uts+V4 satisfies V.J(@*) = 0 provided {«*} is a bounded
sequence. To guarantee this last fact for the scaled method,
it may be necessary to introduce a test and a subprocedure
at the beginning of each cycle which ensures that the
gradient and the direction of descent are bounded away
from orthogonality.

IV. MoTivaTioN FOR PARTIAL CONJUGATE
GrapieNnT METHODS

Consider the Hessian matrix (7) evaluated at u*

viJ (u®) =

)+ Mt 2 m oy, @29

Let

0<}\ )\]<ho_ ‘Sle=A

denote the eigenvalues of V&/(u*). As mentioned earlier, a

large value of the ratio A/\ increases the convergence

ratio of steepest descent thus resulting in slow convergence.
Let also

0<a=ay L oy < - K

Opym = A
denote the eigenvalues of 82H /ou?(u™).

Now the matrix M(u™*)a*G/oxzy(zy™) M(u*)’ has at
least. (N-m — ) eigenvalues equal to zero (r = rank of

0*G/dzx*(zx™*)). The remaining r eigenvalues are denoted
by €, -, = E where

0<a<es -

We have the following easily proved proposition.
Proposition 1: The eigenvalues of V2J(u*) satisfy:
A aSA=ME ML - S Aymr £ 4;

b) A S h1\-"1':':---14—1 S T S R.Nm = A-
)a+E<A<A+E

Progf: Since 8*G/dzx*(xxy™*) has rank 7, the matrix

M (u*)eG/ axh-z(:zy*) M(u*)’ can be written as

While the _
approximation involved will deteriorate somewhat the

M (u *) o (x;.*) M@*)' = 2 aq/

i=1

where ay, - - -,a, are suitable column N -m-vectors. Parts a)
and b) follow now by repeated application of Loewner’s
interlocking eigenvalues lemma ([19], Sec. 9.5). To prove
part ¢), let I be the eigenvector of V%J(u*) corresponding

to A. We have

o P ey
e '
U'vrju®)i ous

) - 1l

I'M(u *) (I,\ )M (u*)']

N

i 'l

<A+ E

proving the right-hand side of ¢). Let also e be the eigen-
vector of M (u*)a2G/dzy{zy™) M (u*)’ corresponding to F.
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We have and the cost functional
e . N-—1 I )
(e J(ug," - - una) = Tpt 1+ 2.
. o'V (u¥)e € ul € (uto, Uy-) zN? + L-go ( =1 U
— f = r
ee 24 According to Proposition 1, the eigenvalues of the Hessian
; G arH ix VAL (u* isfv
e’M(u*) 5__2 (xN*) M(u*)’e o ; e matrix V J(‘M ) Satle}
+ el 8 1L LY for b=l N—1
e'e e'e <
+E>a+ E : > a?* < Ay
k=0
thus proving the left-hand side of ¢). Q.E.D. ;3 .
Among other things, the proposition above reveals that The eopdionmiiber i/ sitishes
the magnitude of the eigenvalue £ may have a strong in- % o
fluence on the magnitude of the condition number A/\. A J.--—~Ua .
Indeed, if £ is much larger than 4, the inequality N > 9
‘ N
A 2, +E > E Foro = 2 and N = 100, the inequality- above yields

X< 4 a4

> —
2

A 20
shows that the condition number is also very large. x
Now the magnitude of E depends on the dynamic system. - -
equation, and from the form of the matrix M(u*), one and the steepest descent method may take thousands of
can infer that £ tends to be large as the system tends to be Sierapions e .sxgmh{:ant._ digit. of accuracy to converge,
unstable (some eigenvalues of the matrices 4, are outside r'rh? preceding _analysm, although c_onduci:ed under re-
the unit disk). While it is impossible to muster a complete Smcmf? AsSUmMpLons, nc_metheless, points to the fact th.a.t
and precise argument for the general case, the basic idea instability of the dynamic system may have a substantial
can be conveyed by an analysis of a special case involving adverse influence on the convergence ratio of the steepest

the linear time invariant system descent method. On the ot._her hand, by Propo_sition 1 there
are only few (<s) potentially troublesome eigenvalues of
Ty = Az + Buy (29)  the Hessian V2J (u*), since at least (N -m — s) eigenvalues

lie in the interval [e,A]. If the effect of these eigenvalues
could be eliminated, then the convergence ratio may be
considerably more reasonable. This is precisely what the
{s-+1)-step partial conjugate gradient method achieves.
By using Theorem 5.1 in [20], we have that if {2*¢+V},

We assume that the system is controllable. Then by
direct caleulation, it can be verified that

REE
E = max y'M —; (zv*) M'y
Tl <1 vy

\ k= 0,1, ---, is the sequence of points generated by the
5t ;_(iz (zv*) z (s-+1)-step method at the end of each cycle, then
= ma,_x; __:":_,Né__r_ (30) . J[u““*”(””] - J*(u*) 2 A — a\*
e il_.nl sup Jure) — Jw* T \Ad'+ o/

where the positive definite symmetric matrix Sy is given

by the matrix equation Thus if the ratio A/« is relatively small, the (s+1)-step

method may converge at a much faster rate than steepest

St+l = A Sk A’ + BB’, k = 0,' & ‘,Ar -1 (31) descent,_
Sy =0 Ezample 1(continued): For the example considered
earlier, the sequence generated by the 2-step conjugate

The inverse of Sy exists by the controllability assumption. oo dient satisfies

Assume now that 92G/dzy (zx™) is a full rank matrix,

and ¢ > 0 is its smallest eigenvalue. Then from (30), it J (@) — J () < 1

lim su < -
follows that e P T =T <9
E > o-(maximum eigenvalue of Sy). Thus it takes approximately 2 iterations per significant

digit of accuraecy for the method to converge, a vast im-
provement over the convergence rate of steepest descent.
Furthermore, the bound 1/9 on the convergence ratio is
independent of the system coefficient ¢ and the number of
stages N.

We now turn to the possibility of scaling [(19] Sec. 7.6)
the control variables. Given the problem of minimizing
Tppr = AT + Uy some function f: R? — R, we may consider scaling by an

Now if the system (29) is unstable, it may be readily
shown that the maximum eigenvalue of Sy increases to
infinity as N — . Consequently, the eigenvalue £ and
the condition number A/) also go to infinity as N — .

Example 1: Consider the linear quadratic problem in-
volving the scalar system
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invertible symmetric matrix T:R? — R?. By this we mean
that the argument z € R? of f is replaced by a vector ¥
where Ty = z. Then the problem of minimizing f(z) is
equivalent, to the problem of minimizing

h(y) = f(Ty).
Since we have
Vh(y) = TV(Ty)

the steepest descent algorithm for minimizing h(y) can be
written as -~

Y = ¥ — aTV(Ty)
or equivalently by using Ty, = 2,
g1 = Zp — akTﬁ'Vf(Zk)

where o, minimizes f[z;, — «T?Vf(z;)]. Similarly, the con-
jugate gradient algorithm for minimizing h(y) can be
written as :

Yerr = Y + axdy

where

dx

—T9f(Tys) + Bradis

VI(Ty) T*VI(Ty,)
VI(Ty) TV (Tyra)

Equivalently using Ty, = 2z, we have

By =

Zp = Zp + oydy

where

dx —=T*Vf(zz) + Bradi = Td;

Vi(z) T2V (22)
Vi (23-1) TV (21)

and o minimizes f{z; + ad;).

However, the convergence rate properties of steepest
descent. and conjugate gradient are now governed by the
eigenvalue structure of the Hessian

I

By =

V() = TVHE)T

and not by the eigenvalue structure of V% (z). Thus these
convergence rate properties may be substantially im-
proved by appropriate choice of 7', which is of course the
prime motivation for secaling.

* Consider now the ease where u is scaled by the matrix
[02H /6u2(2*)].~"* Then for the purpose of carrying out
steepest descent or any conjugate gradient algorithm the
gradient V.J(u) is replaced by

o

VJ(u) = [%f (u*):lul vJ () (32)

and the corresponding convergence ratio is governed by
the eigenvalues of the matrix

- -1/ —1fe
Vi (u*) = I:Z—j? (u*):] : Vi (u?®) I:%E (u*)] . (33)

T

o ——
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-

By using (28) and (33), we bave that V27 (u*) is of the form
&
i) =14+ ¥ aa/ (34)
1i=1
where I is the identity matrix, and @, 7 = 1, --,s are
appropriate column vectors.

Now from (34) it may be seen that the matrix V2J(u*)
has (N -m — s) eigenvalues equal to one and s eigenvalues
greater or equal to one. While the effect of scaling on the
performance of steepest descent is unclear, its effect on the
performance of the (s+1)-step conjugate gradient method
is profound. If {u*¢+0} k = 0,1,---, is the generated
sequence, then by the result quoted earlier [20]

Ju®+ren] — Ju*) )
T —gwn S0 ©

Iim sup

k=

i1.e., we obtain (s-+1)-step superlinear convergence rate.

It should be mentioned of course that scaling by the
matrix (82H /8u?(u*)]~! is impossible in practice since this
matrix is unavailable during the computation. However,
one can approximate [82H/ou*(u*)]~! in the spirit of
Newton’s method by means of the matrices [92H/ou®
(uFe+1)]-1 which are computed and updated at the be-
ginning of each (s+1)-step cycle. This is precisely what 1s
done in the scaled partial conjugate gradient method of
the previous section. Based on the fact that a2H/dwu?
(u*C+1) converges to 92H /ou*(u*), it can be easily shown
by a simple modification of the argument in [20] that the
method achieves the (s+41)-step superlinear convergence
rate indicated in (35), at least for the implementation
adopted in [20]. For the Fletcher-Reeves implementation,
(35) should be viewed as an unproved but rather safe
conjecture.

Of course, if the system is linear

- R T = Ay + B,

and the cost is quadratic
No-~1
J (g, - unva) = 2x'Qay + _ZD ' Ry
te=

(@: positive semidefinite symmetric, R,: positive definite
symmetric) then the matrix

N
0 Ry

is independent of u, and the scaled conjugate gradient
method converges in at most (s+1) steps (s: rank of @)
by the results quoted earlier. In particular, the linear
quadratic problem of Example 1 is solved in one or at most
two iterations. This fact may also be shown simply by
observing that the (effective) Hessian of the cost func-
tional is of the form (34), and therefore, has at most (s+1)
distinct eigenvalues. Then the (s+1)-step convergence
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follows by a well-known result on the behavior of the
conjugate gradient method as applied to quadratic
problems. .

V. CompuTaTiONAL ExamrLE

The partial conjugate gradient methods proposed were.

tested on the following simple problem
.. 1 1 1 ¥=1
minimize J{u) = 5 lzn]® + 52:”2 s > (1 + 0.1k)u,?
2 =m0

subject to \

Tes1 = o 1 uy, k= 0:1:' Bk
zo = 5.0.

The number of iterations required to solve the problem for
various combinations of values of @ and N ‘are shown in
Table I. The computations were terminated at points
satisfying |VJ(u)| £ 10-3(|-| is the L, norm), and the
starting point was «% = 0.

The results in Table I, though limited in scope, point.to
the apparent superiority of the scaled method. Yet the
additional programming and computational effort per
iteration of the scaled method over the ordinary con-
jugate gradient is negligible.

V1. CoNCLUSIONS

In this paper, it was shown that a certain class of optimal
control problems is well suited to the application of partial
conjugate gradient methods with and without secaling.
The scaled method, in particular, is simple to implement
and is apparently superior to the ordinary conjugate
gradient methods. The analysis of the paper reaffirms the
need for further investigation of the convergence rate
aspects of the numerous computational methods used in
optimal control problems. f :

The careful reader will undoubtedly recognize that the
scaled algorithm is well suited not only to the optimal
control problem considered in this paper, but also to
many other unconstrained problems with a Hessian
matrix of the form

4+ Ela:’at‘!
where 4 is a square positive definite matrix, and a,, 1 =
1,---,s are column vectors. The basic requirement is that
(s-F1) is much less than the dimension of the problem, and
that the matrix 4 is such that linear systems of equations
of the form Az = y can be easily solved. Tor example, A
should have a block diagonal form (as in the optimal con-
trol problem considered), or at least be a sufficiently
sparse matrix. Given this observation, it is easy to see that
the method is well suited for the solution of some other
optimal control problems which involve a cost on inter-
mediate states, which is linear in a neighborhood of the
solution for a substantial portion of the time interval.
Such situations occur often, for example, in state-con-
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TABLE I
2-Btep
2-3tep Scaled
Steepest Conjugate Conjugate Conjugate
Descent Gradient Gradient Gradient
- a=0.9 18 10 10 2
N=15 ,-11 100« 10 14 2
. a=10.9 14 10 8 2
N=30 ,_11 100< 15 21 2

strained problems which are solved by penalty or multi-
plier methods. Also, a cost on the difference between
suceessive control variables occurring, for example, in
production smoothing problems may also be handled
efficiently by the method. In addition, it is possible to
handle efficiently simple inequality constraints such as
upper and lower bounds on the -control variables. To
accomplish this task and at the same time retain the
convergence and rate of convergence properties of the
method, one must use a device which guarantees that
successive iterates lie on the same constraint manifold at
least towards the end of the algorithmic process. One such
device, proposed recently by MeCormick [26] and related
to earlier proposals by Goldstein [27] and Levitin and
Polyak [28], appears to be well suited for optimal control
problems.
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