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ABSTRACT

This paper describes a new algorithm for solving the classical assignment
problem. The algorithm is of a primal-dual nature and in some ways resembles the
Hungarian and subgradient methods, but is substantially different in other respects.
Its main feature is that it is well suited for distributed operation whereby each
node participates in the computation on the basis of limited local information
about the topology of the network and the data of the problem. The algorithmic

process resembles an auction where economic agents compete for resources by

making successively higher bids. The algorithm terminates in a finite number
. -

of iterations after resocurce prices rsach levels where no further bidding is

profitable.



1. Introduction

The assignment (or weighted matching) problem was among the first linear
programming problems to be studied extensively. It arises often in practice
and it is usually solved by either the simplex method cor Kuhn's Hungarian
method (see e.g. [1],[2],(3]1). Recently there has been considerable interest
in developing distributed algorithms for optimization and other problems. There
seems to be no precise definition of what is meant by a distributed algorithm,
but the term usually refers to a situaticn where there are several computation
centers (which could be, for example, micrcorecessors units) connected “via
coemmunicaticn links, and each center is resconsible for executing part of the
algerishm while coordination between centers is maintained by information
exchanges via the communication links. Cne possible advantage of distributed
opexration is that.it results in reducticn cof time needed to solve the problem

when a significant amount of computation can be carried out in parallel by

n

several processors. Another advantage of scme distributed algorithms for
network problems is that they may be more suitable for real-time operation
under conditions where the network topolegy may be subject to change such
as when existing nodes fail or new nodes become operaticnal. Furthermore,
when problem data is itself distributed among network nodes, the ﬁeed for a
central data collection mechanism may be eliminated.

Several distributed algorithms have been proposed for particular types
cf linear programming problems - for example the shortest path problem. )
The standard methods for the assignmen%t problem, however, apparently cannot
be easily modified so that they can be operated in a distributed manner. It
is possible to use a subgradient method (see e.g.[4],([5]) for solving the

dual of the assignment problem, and such an algorithm can be operated in

a distributed manner. However,finite termination at an optimal dual solution



cannot be guaranteed for a subgradient method anéd even if an optimal dual
solution were made available one is still faced with the problem of finding
an optimal primal solution in a distributed way.

The algorithm proposed in this paper is the first, to our knowledge, for
the assignment problem that can be meaningfully viewed as being distributed
and is guaranteed to terminate finitely at an optimal assignment. Since linear
transportation problems with integer supplies and demands can be reduced to
the assignment problem, the algorithm can be adzpted to handle such problems
as well. The algorithm may also be of interest as a.model of price formation
in an auction, but this eccnomic interpretation has not been pursued to any
significant extent in this paper. The ideas underlying the algorithm bear some
similarity with those of £-subgradient methods of the type discussed in [6]

but the feature of finite termination is generically absent in the latter methods.

Similarities with Kuhn's Hungarian method [2] will also be noticed by the reader,

but from a mathematical programming peint of view there is one significant difference.
In the Hungarian method the dual objective function value is decreased at each

iteration, but in the method of this paper this value may be increased in some

iterations - a feature found in subgradient methods.

2. A Distributed Algorithm for the Assignment Problem

Consider a bipartite graph consisting of two finite sets of nodes U and V,

h
(a7

and a nonempty set o irected links L with elements denoted (i,j) where i€U

and JEV. We refer to elements of U and V as sources and sinks respectively. Each

link (i,3j) has a scalar weight aij asscciated with it. By an assignment we

mean a subset A of links such that for each source i (sink j) there is at most

one link in A with initial node i (terminal node j). We wish to find an assignment
that maximizes L «o,., over all assignments A.

(i,3)eA
The problem can be embedded into the linear program {3]



(1) maximize z Q.. X..
(i,j,)er 25 13
subject to z ¥.. <1 . ¥ igU
3 1] —
(i,j)en
; xij <1 ’ ¥ jev
i
(i,3)eL
s . .
xij >0 ' ¥ (i,3)eL

in the sense that an optimal solution of proklem. (1) which is an extreme

point of its feasible set correszonds to an optimal assignment. The problem

dual to (1) is the linear program in the wvectors m and p given by

(2) minimize I m. + I p.
iey ' gzv 3

subject-té ‘m, + p. 2.
1 3 — 13

m >0, pij, ¥ icU

As an aid in understanding the following algorithm it is worth noting that

if we view ai. and p. as the value and price raspectively of including

ink (i,3j) in an assigrment, then (ai - pj) may be viewed as the profit

]
margin of source i for getting assigned to sink j. From the complementary

slackness conditions we have that if link (i,3j) is part of an optimal

assignment then for any optimal solutiocn m*, p* of the dual problem we have

* * * . .
(3) m, = a,_, -p. =max{a, - p, lall x with (i,k)er} ,
i 15 j ik k

i.e., at an optimum source i is assigned to the sink j offerinc maximum profit

margin relative to the price vector p*.

Given a vector p of nonnegative prices we say that source i is

operational if



max{a, . - p.lall j with (i,j)eL} >0 ,
ij j
i.e. source i is operational if it has a positive maximum profit margin. For

an operational source i we say that k is a preferred sink for i 1if it offers

maximum profit margin for i, i.e., if

(4) a.. = p = max{aij - p.lall j with (i,j)eL} .

A
“

If k is a preferred sink for an operational source i we define the price

adjustment margin of i by

x.. - D ) if there is no sink j it} - >
ix Py j # Eﬁyltn aij pj 0
‘ﬂ'k =
a.. - p = nmax{e.. - p.{all j k with (i,j)elL} otherwise.
“l.( % {alj PJ J # - ( Ij }
The scalar T k represants the amount that one can add to the price p and still
k

have k be a preferred sink for source i. Finally, given an’ ass‘ghuen; A we

say that source i is assicned to sink j if (i,j)eA, and we say that source

i or sink j, is unassicned if (i,j)gA for all (i,j)eL.

—.—.—_—_

We now describe our algorithm. At the typical step a vector p of

nonnegative sink prices ieV is available, together with an assignment A.
Pr 3’ J g
o -

throughout the algorithm, is also given. If all sources

‘L

A scalar ¢ > 0, fixe
are either assigned or not operational the algorithm terminates. Ctherwise
an arbitrary unassigned cperational source i is selected together with a

preferred sink k for i. To perform the step of the algorithm we do the

follewing:

a) Increase Py to a level 5% satisfying )
<p. < + T

(6) P+ €SP <P *T, FE '

where ﬂk is given by (5), and leav= all other prices unchanged.

b) Add link (i,k) to the assignment A, and, if k was assigned to some %,

remove link (£,k) from A.



The step of the algorithm is repeated with the new price vector and assignment

until tarmination. The initial prices are taken to be all zero, and the initial

assignment is taken to be the empty assignment.
A possible interpretation of a step of the algorithm is that an
unassigned operational source i bids for its preferred sink k by adding an

amount between € and Wk

when p, is changed to 5; the.§fofit margin of (i,k} is reduced by (Ek-lpk)‘and

k
by using (5) ané (6) we have

‘
i
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L d
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- >
¢ “ix T Px 2 %y

‘Tr—eza..‘P."E y ¥ I F

Px k ij j

Thus the profit margin @, is within € of the maximum profit margin

x ~ Fx
is increased to py - The scalar € may be viswsd as the minimum

bidding increment. Its role will become apparent in the convergence analysis

thatc follows.
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Note that steps of the algorithm involvin
cperational sources can actually be carried cut independently and simultanecus
In distributed algorithmic operation a scurce need cnly know whether it is
assigned or not together with the current prices of the neighboring sinks.

1

f is is unassigned and operational it bids for a preferred sink and
cormunicates the new price. The sink in turn broadcasts the new price

and assignment information to its neighboring sources. If two sources bid for

the same sink simultaneously, the sink arbitrarily decicdes which cne to
accept and accordingly informs the neighboring sources.

We now turn to convergence analysis of the algorighm. We first

observe that the algorithm will terminate in a finite number of steps.

This follows from the fact that at each step one price is increased by at

least € > O and if all prices increase to sufficiently high levels then there

+ £ to the price of k, and gets assigned to k. Notice that



will be no operatiocnal sources left. Clearly the algorithm will terminate

faster if E% is set at the maximum possible value pk + T, + €& [c£.(6)] and

k
this seems to be the best way to operate the algorithm. The number of steps
needed for termination may also depend on the value of €. Depending on the
preblem at hand the number of steps needed can remain constant or increase
significantly as € is reduced. On the other hand a value of € below a

certain threshold value is necessary in order to obtain an optimal assignment

at termination as the following proposition shows.

is+inct values of

v
[
1]
[t
'l

Preoesiticn 1: Let v

wr Vo,...,v be all the pecssi
1 2 m :

assignments and assume vy > v, > L. Vo Let also

-

: = ) : hi
N = mIn{numdar oI sources, numoar of sinks; .

The value v of an assignment cbtained upon termination c¢f the algerithm

satisfies
*
v, — Ne < v <vw
1l - -1
and hencs, if & satisfies
v, -~ Vv
1 2
(8) 0 <eg«< S P

the algorithm terminates at an optimal assignment.

*
Prccf: Let A and p be the final assignment and price vector obtained by

* *
the algerithm. Define the vectors x and m by

%*
. 1 if (i,3)€a :
() L= .
+J 0 if (i,3)2A
* *
(10) m, = max{max{o,aij - pj}lan j with (i,j)en} , Vicu.

Clearly we have



* %*
> 0 + > , ;isU,  (i,3,)€
(11) mi._ ’ ml pj __al] ¥ U (1,j,)EL .
* * * .
(12) p. =0 , if0=1Ix . <1 , Ps 20 , ¥ Jev.
3 i 13 3
* . . %*
If xij = 0 for all 3, then i is not operational relative to p for other-

*

. *
wise the algorithm would not terminate at A . This implies aij - pj < 0,

for all j with (i,j)EL. Hence from (10)

* *
(13) m. =0 if 0=12Ix. . < 1.
1 J ij
Also from (7), (8) and (10) we have
14 * * < .. L. *
L .+ D. ..+ < g .
(14) mi pj __913 £ i (i,3)ea
Define 0”(
. . )
m. + D if i,i)ea /‘%///
) 3 , \
15 a,., =
e 57 . -
ij if (i,3)EA i

~

TN

From complementary slackness we have that (9),(11}),

P

solves the linear program

maximize z ai. x.i.'
i,5eL. 2 ¥
subject to I x,. <1, Ex, . <
j i3 - i 7i3 —

(12),(13), (15) imply that x

X, .
1]

* * -~ - - -
and (m , p ) solve its dual. Let X be an cptimal solution of p

have -
* ~
z aixi < z o X,
i,50eL P M7 (1,9)er I 13
* -~
L Gl Xis oo I a,., x..
(i,5)en. 3 I 2 (4, 5en I

and by using (11),(14),(15) we obtain

roblem (l). We

*
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(16) v, = T oy Xy < T a:. X, < z G X
(i,90er ¥ I T (i,yen Y i,rer 2
< L o, %, +€ Z * x. . < I a,x.+Ne
(i,y)eL 3 I (i,9€a I T(,yper I 0H
~ *
< T ai. xi. + NE =v + Ne
(i,9eL *3 1

which proves the prcposition. Q.E.D.

Notice that if the weighting scalars @4 are all integers,

. 1 : X
> 1 so by choosing € < § We are guaranteed termination at

then vl - v2

an optimal assignment.

We have specified that the initial price vector isp =0
and the initial assignment is empty. However, any price-assignment pair
{(p,A) that satisfies the following two rules :
a) Every unassigned sink j has pj = 0.
b) If (i,3)eA then j is a preferred sink for i relative to p,
can serve as initial choice. The proof of Proposition 1 carries through
for any initial choice of {p,A) satisfying cenditions a) and b) above.
We note that given any integer N > 0 it is possible to construct
an assignment problem where the weightsc‘ij are integers and the algorithm

)

with € = %-fa*ls to find an optimal assignment. This shows that the bound

-

1 . . s s . ) .
£ < ﬁ-prov1ced by Proposition 1 is sharp. We give an example for N = 2

which is easily generalized for any N > 2. A similar example can be
constructed for N = 1.
Example 1l: Consider the assignment problem represented by the network

of Figure 1 with the weights aij shown along the corresponding links.



seccné best assignment is (2,1},

‘s 1 R . .
Proposition 1. Takei;==§-= = . A possible sequence of prices and assignments

Figure 1.

The optimal assignment is (1,1},

1
2

generated by the algorithm is

(2,2) with value 5. The

(3,2) with value 4. Thus v, - v, = 1 in

1 2

Step Link Entering the Assignment New Price
1 (3,2) B, = l+¢
2 (2,1) p, = 1 + 2¢

and the algorithm

p; = 1l + 2 and € =

N

terminates at the second best assignment since when

the unassigned source 1 is not operaticnal. By

. 1 ’
contrast if we had € < = the sequence generated would be

2

Step | Link Entering the Assignment New Price
1 {3,2) p, = 1 +¢€
2 (2,1) P, = 1+ 2¢
3 (1,1) P, = 2 + €
4 (2,2) P, = 2 + 2¢€

Thus the optimal assignment is obtained if € <

N[
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In the preceding example the number of sinks is smaller than the

number of scurces. If

(17) number of sources < number of sinks
then it is possible to improve the bound con € given by the proposition

and show that if N > 2 it is sufficient to have

(18) 0<e<
in order to guarantee that the algorithm terminates at an optimal assignment.
If N = 1 then cbviously the same is true fcr any-€ > 0. This can be shown

*

by a slight modification of the proof cf Propesizicn 1. (If A contains

less than N links we can modify (16) to show the result. Ctherwise if

—_— *

(i,3) is the last link to enter the terminal assignment A we can medify
* . * . . .

P so that ¢--= Gif and use (16} again).

=
(1]
2]
B
v
o
n
(o)
0
o
e}
£,
t
5
v
ot
k3
I
[0}
3
—~
[
~)
o 3

clds ané the weights aij are

8) by means of the following

integers the bound € < L providad by (18)

- s sha
N-1

b
4

&

example.

Example 2: Consider the assignment problem represented by the network

of Figure 2.

Lo 2 o4
P
2
s L
2 3
2
S J. ’:}

Figure 2.
The optimal assignment is (1,1), (2,2),(3,3) with wvalue 7.

The second best assignment is (1,3),(2,1),(3,2) with value 6. Thus
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vy - v, = 1 in Proposition 1. Take € = E%I-= % . A possible secuence of

prices and assignments generated by the algorithm is

Step Link Entering the Assicnment New Price
1 (3,2) p, = 1 +¢
2 = 2€

(2,1) Py
3 (1,3) py=¢

and the algorithm terminates at the second best assignment. By contrast

if we had € < %- the segquence generated would be B
Step Link Entering the Assignment New Price
1 (2,2) p, = l+¢
. 2 o (2,1 pl = 2¢
3 1,1) p, = l +¢
4 (2,2) _ p, =2+ 2
5 (3,3) p, = l +¢

Thus the optimal assignment is obtained for € < 7 -
The reader can verify that the assignment problem of Figure 3

gives a related example for N = 4 and a similar example can be constructed

for every N > 4, as well as for N = 2.

[ s
2

- 3 -

2$é - e
e 3

3 3

4% i > 4

Figure 3
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An important guestion relates to the number of steps n necessary

for the algorithm to terminate. Let us assume that the weights aij are integers

and let
M= max{aij!(i,j)SIJ >0 .
- . 1l . . L s .
Assume further that £ = % for some integer k. Then it is clear that at

Gk

he price of any one &elUrde reaches or

11
o}
(14
13
¢
13
A
o
19
th
[}
La]
(3
[
V3
o®

most kM steps will b
exceeds the level M. Since the number of nonzero prices cannot exveed N

we obtain the estimate

(19) n < kMN .

- 1 s s . .
Ife = N We ars guarzntaed termination at an optimal assignzment and we
obtain

72 ’

(20) n < M(N" + N).

c - 1. .
IS N = number of sources we can take € = N " which case

1 2
(21) n < My -

These upper bounds can be actually improved at the expense
of a more refined analysis but this does not seem to be worth the effort.
In any case these bounds are usually quite conservative. For instance in
Example 2 the number of steps n was 5 while the upper bound in (21) is 27.
However, given any & > O it is possible to construct an example of a network

where vl - v2 = 1 and

(22) 1 -86<—— <1 :
M(N +N

which implies that (20) is quite reliable as a worst case estimate. The

reader can verify this by considering a network with (N+1) sources and

N sinks. Every source-sink pair is connected by a link of weight M except
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for a single source-link pair that is ccnnected by

- v, =1 and if take € =
Then vl 5 1 we N+l

and N sufficiently large (22) holds.

Now each step of the algorithm rsguires a

comparisens wnich is less

or egu

s

in view cf (2C) the total number

3M(N + N) (nur

s comparable to the number of arithme

'.h

This

-

Hungari ethod ([2],z. 2035), but it shcu

§

burden in our method can be cuiife severs if M is a

al to three times the number of sinks.

of arithmetic operations is

tic ooe*atlons needed

a link of weight (M-1) .

it is possible to show that for M

number of additions and
Thus

boundeéd by

d by the

1culd be mentioned that the computaticnal

large integer.

cur method, in addition to being distributed,

reascnably efficient

3. The Alcorithm Appliad to the Maximal Complete Assignment Problem

If for an assignment A every souzce and sink is assigned, we say
that A is complete. A variaticn of the assignment problem is to find an
assignment that maximizes ; a.. over all complete assignments A.

(i,5)ea 13

.

The corresponding linear program is

wimi z ¢ X
(23) maximize (i,9)€L i3 i3 )
subject to z x,. =1 ¥
1]
.3
i,3)EL
z X, = 1 v
i J
(i,3)eL
X >0 v

’-d-
(4]
<

jev

(i,j)eL .
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Its dual is given by

(24) minimize X m, + .

ubiec m, + .>a.. P
subject to ml pj — ij ’ ¥ (1,3)EL .

We assume in what follows that there exists at least cone complete assignmen

-
-

and, among other things, this implies that
Number of Sources = Number of Sinks = N.

We also assume that for each source i there are at least two sinks j such

that (i,3j)ci. This is no real loss of generality but simplifies scmewhat

the following algerithm description.

3, Wolfz2 a2nd Crowéer [7] have considered solution c¢f the dual

problen {(24) by mezns of subgradient methods. They report favorable results

and observe that if there exists a unigue optimal assignment then a sub-
gradient method will typically yield an optimal dual soluticn in a finite
number of steps. Cur algorithm bears some similarity with their method
with the main éifferences lying in the stepsize procedure, and in the fact
that we change only one price at each step rather than the entire price
vector.

We now show how to mcdify the algorithm of the preceding section

to make it applicable to problems (23) and (24).

-

Given a price vector p with elements pj, jev, we define for any

source i the preferred sink for i to be the sink k for which

nax {a.j - pjlall j with (i,3j)eL} .

We define the price adjustment margin of i by

T =c. =-p, - max{aij - pjlall j # k with (i,3)eL} .

k

The typical step of the algorithm is as follows. Given a vector p
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of sink prices pj, jeV and an assignment A&, we select an arbitrary un-
assigned source i together with a preferred sink k for i. We increase P,
to a level Py satisfying
+e€<p < +T "+ €
Fx e e S ‘

we add link (i,k) to & and, if k was assicned to some £, we remove link
(2,k) frcm A. The step of the algorithm is repeated with the new price and

assignment. If every source is assigned the algorithm terminates. The initial

.

price vector p is arbitrary. The initizl assignment is either empty, or any

is a preferred sink for i with rescect

Ch

assignment A such that if (i,3)£A then
to the initial vecter p.

We have the following result.

rd .
Procrvosificn 2.. a) The algorithm terminates in a finite number of steps.

2

and assume vl > v2 > ....> v . The value v* of the assignment obtained upcn
m

b) Let v., v.,...,v Dbe all possible éistinct values cf ccmplete assignments
1 m - = 3

termination satisiies

and hence, if € satisfies

ViT V)

N-1 !

0<egc«<
the algorithm terminates at an optimal complete assignment.
Proof: a) Partition the set V into three disjoint sets Vo' Vs, v, defined

as follows

Vo = {jz j is unassigned in all steps of the algorithm}

VS = {jl j is assigned to the same source after a finite number
of steps}

Vq,:{JI szo' szs} .
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If the algorithm does not terminate in a finite number of steps the sets

V° and V_ are nonempty. The sequence of prices of any sink in V_ tends to o,
while the prices of any sink in Vo or Vs are constant after some step.

Let Us be the subset of sources that ramain assigned to sinks in Vs aftexr
some step, and let U, be the set of scurces not in Us. The sot U has a

larger cardinality than V_ since US and Vs have the same cardinality and Vo is

nonempty. Furthermore, there can be no link (i,j)€L such that i€v_and
jeVsU\é, for if such a link existed then, after scme step, j would offer
higher profit margin for i than any of the sinksrin V., - This would compel
i to be assigned infinitely cften to scme sink in VOU\Q and would violate

the assumption that the prices pj, jEVbU%g stabilize after a finite number
-

.- - Ut
- .

of steps. Thus we have that S -

(3] (i,ren, isu} =v. .

@ o
Since u, hasvlarger cardinality than V_ we arrive at the conclusion that
there cannot exist a complete assignment - a contradiction.

b} The proof of this part is very similar to the prcof of Proposition 1.
Compare also with the discussion following (18). Q.E.D.

Exampie 2 shows that the bound £ < E%I-provided by Propositicn 2

for aij t integer cannot be improved. The fact that an arkitrary initial

price vector may be used in the algorithm of this section suggests the

possibility of obtaining a gocd initial choice of p by first running the

algorithm with a large value of €. Regarding computational complexity, it

is easy to show similarly as in the previous section that, if aij: integer
and € = %-, the total number of arithmetic operations required for termination
is bounded by bN3 where b is a constant depending on the data of the problem.

An easily computaﬁle upper bound for b is3(max ¢,, - min & .).
i,j 13 i,j 3



-17-

References
[1] Simonnard, M., Linear Programming, Prentice Hall, 1966.
{2] Kunn, H.W., "The Hungarian Method for the Assignment Problem"”,

" KNaval Research Logistics Quarterlv, Vol. 2, 1955, pp. 83-97.

[3] Lawler, E., Combinatorial Optimization: Netwcrks and Matroids,
Holt, Rinehart and Winston, 1376.

{4] Poljak, B.T., "Minimization of Unsmooth Functionals", Zh. Vychisl.
Mat. i Mat. Fiz., Vol. 9, 1969, pp. 509-521, (English Translation
in U.S.S.R. Computational Mathematics and Mathematical Phvsics).

{51 Balinski, M.L., anéd P. Wolfe, eds. Nondifferentiable Optimization,
‘zthamatical Programming Study 3, Nerth-Holiland, 1975. .

{6] Nurminski, E.A., "Nen-Differentiable Cptimization with e-Subgradient
Methods", Internaticonal Institute for Applied Systems Analysis
W? - 78 - 53, November 1978.

{71 Held, M., P. Wolfe, and H. Crowder, "“a’idation of Subgradient -

Opt‘ﬂfzat;on," Ma;nematlca; Programming, Vol. 6, 1874, pp.62-83.




