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Multiagent Reinforcement Learning:
Rollout and Policy Iteration

Dimitri Bertsekas

Abstract—We discuss the solution of complex multistage deci-
sion problems using methods that are based on the idea of po)i
iteration (PI), i.e., start from some base policy and gener® an
improved policy. Rollout is the simplest method of this type
where just one improved policy is generated. We can view PI
as repeated application of rollout, where the rollout poliy at
each iteration serves as the base policy for the next iterain.
In contrast with PI, rollout has a robustness property: it can be
applied on-line and is suitable for on-line replanning. Moreover,

rollout can use as base policy one of the policies produced by

P1, thereby improving on that policy. This is the type of schene
underlying the prominently successful AlphaZero chess prgram.
In this paper we focus on rollout and Pl-like methods for
problems where the control consists of multiple componentsach
selected (conceptually) by a separate agent. This is the sk of
multiagent problems where the agents have a shared objectv
function, and a shared and perfect state information. Base@dn a
problem reformulation that trades off control space compleity
with state space complexity, we develop an approach, whergb
at every stage, the agents sequentially (one-at-a-time) epute a
local rollout algorithm that uses a base policy, together wh some
coordinating information from the other agents. The amount of
total computation required at every stage grows linearly wth the
number of agents. By contrast, in the standard rollout algoithm,
the amount of total computation grows exponentially with the
number of agents. Despite the dramatic reduction in requirel
computation, we show that our multiagent rollout algorithm has
the fundamental cost improvement property of standard rollout:
it guarantees an improved performance relative to the baseicy.

form are strictly off-line methods, but they can be used to povide
a base policy for use in an on-line multiagent rollout scheme

Index Terms—Dynamic programming, multiagent problems,
neuro-dynamic programming, policy iteration, reinforcement
learning, rollout.

I. INTRODUCTION

N this paper we discuss the solution of large and challeng-

ing multistage decision and control problems, which in-
volve controls with multiple components, each associatild w
a different decision maker or agent. We focus on problents tha
can be solved in principle by dynamic programming (DP),
but are addressed in practice using methods of reinforcemen
learning (RL), also referred to by names such as approximate
dynamic programming and neuro-dynamic programming. We
will discuss methods that involve various forms of the dlzeds
method of policy iteration (PI), which starts from some pwli
and generates one or more improved policies.

If just one improved policy is generated, this is called
rollout, with the initial policy calledbase policyand the
improved policy calledrollout policy. Based on broad and
consistent computational experience, rollout appears €0 b
one of the simplest and most reliable of all RL methods
(we refer to the author’s textbooks [4[3] for an extensive

We also discuss autonomous multiagent rollout schemes thatlist of research contributions and case studies on the use of

allow the agents to make decisions autonomously through the
use of precomputed signaling information, which is sufficiat to
maintain the cost improvement property, without any on-line
coordination of control selection between the agents.

For discounted and other infinite horizon problems, we also
consider exact and approximate Pl algorithms involving a n&
type of one-agent-at-a-time policy improvement operation For
one of our PI algorithms, we prove convergence to an agent-
by-agent optimal policy, thus establishing a connection wh the
theory of teams. For another PI algorithm, which is executed

over a more complex state space, we prove convergence to al

optimal policy. Approximate forms of these algorithms are dso
given, based on the use of policy and value neural networks.
These PI algorithms, in both their exact and their approximae
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rollout). Rollout is also well-suited for on-line modekf
implementation and on-line replanning.

Approximate Pl is one of the most prominent types of
RL methods. It can be viewed as repeated application of
rollout, and can provide (off-line) the base policy for useai
rollout scheme. It can be implemented using data generated
by the system itself, and value and policy approximations.
Approximate forms of Pl, which are based on the use

Pf approximation architectures, such as value and policy

neural networks, have most prominently been used in the
spectacularly successful AlphaZero chess program; seerSil

et al. [4]. In particular, in the AlphaZero architecture a policy

is constructed via an approximate Pl scheme that is based
on the use of deep neural networks. This policy is used as
a base policy to generate chess moves on-line through an
approximate multistep lookahead scheme that applies Monte
Carlo tree search with an approximate evaluation of the
base policy used as a terminal cost function approximation.
Detailed descriptions of approximate Pl schemes can be
found in most of the RL textbooks, including the author’s
[2], [3], which share the notation and point of view of the
present paper.
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1) Our Multiagent Structure that maps the current state to an m-component control
The purpose of this paper is to survey variants of rolloyt(x) = (Ml (x),... ,um(x)), also referred to as thbase
and PI for DP problems involving a contral at each stage policy], the policy improvement operation portion of a PI
that consists of multiple componenis, .. ., un,, i.€., involves at each state, a one-step lookahead minimization

of the general form
U:(Ul,...,um), (1) g
min H(z,u, J,), (2)

where the components, are selected independently from wel
within corresponding constraint setg, ¢ = 1,...,m. Thus
the overall constraint set ig € U, whereU is the Cartesian
product

where J,, is the cost function of policyu (a function of
x), and H is a problem-dependent Bellman operator. This
minimization may be done off-line (before control has st
U=U; X+ xUp. or on-line (after control has started), and defines a newcyoli
i (also referred to as thellout policy), whereby the control
ii(x) to be applied atr is the one attaining the minimum

agents. _ _ _ _ _ above. The key property for the success of the rollout and P!
The term “multiagent” is used widely in the I'teraturealgorithms is the policy improvement property
with several different meanings. Here, we use this term as

a conceptual metaphor in the context of problems with the Ju(z) < Ju(z), for all statesz, 3)
multi-component structure (1); it is often insightful tsasiate ) ,
control components with agent actions. A common examgt§- the rollout policy yields reduced cost compared wita t
of a multiagent problem is multi-robot (or multi-personP@Se Policy, for all states. Assuming that each sdf; is
service systems, often involving a network, such as dgljvefNite (@s we do in this paper), there are two difficulties with
maintenance and repair, search and rescue, firefightirigatax (€ l0okahead minimization (2), which manifest themselves
or utility vehicle assignment, and other related contetee 2Oth in off-line and in on-line settings:
the decisions are implemented collectively by the robots (o (&) The cardinality of the Cartesian produgtgrows ex-
persons, respectively), with the aid of information exagmn Ponentially with the numbern of agents, thus resulting in
or collection from sensors or from a computational “cloud 8Xcessive computatlonal overhead in the minimization over
The information may or may not be common to all the roboté € U Whenm is large.
or persons involved. Another example involves a network of (P) To implement the minimization (2), the agents need
facilities, where service is offered to clients that movehivi 0 coordinate their choices of controls, thus precludingrth
the network. Here the agents may correspond to the serviR@allel computation. . .
facilities or to the clients or to both, with information sy I this paper, we develop rollout and PI algorithms, which,
that may involve errors and/or delays. as a first objective, aim to alleviate the preceding two dif-
Note, however, that the methodology of this paper app”éigulties. A key idea is to introduce a form of sequential
generally to any problem where the contiolconsists ofm agent-by-agent one-step I-o.okahead mini-mization, which we
componentsy = (u1, .. ., un) [cf. EQ.(1)], independently of ca[l multiagent rollout It mitigates dramatlcglly the compu-
the details of the associated practical context. In pdeticu tational bottleneck due to (a) above. In particutag amount
the practical situation addressed may not involve recagie Of computation required at each stage grows linearly with
“agents” in the common sense of the word, such as multipfa® number of agents:, rather than exponentiallyDespite
robots, automobiles, service facilities, or clients. Fearaple, the dramatic reduction in required computation, we show
it may simply involve control with several components, suciiat our multiagent rollout algorithm has the fundamental
as a single robot with multiple moving arms, a chemic&0St improvement property (3): it guarantees an improved
plant with multiple interacting but independently conteol performance of the rollout policy relative to the base polic
processes, or a power system with multiple production csnte Multiagent rollout in the form just described involves co-
As is generally true in DP problems, in addition to Comroprdination of the control selections of the different agent
there is an underlying state, denotedfywhich summarizes In particular, it requires that the agents select their @it
all the information that is useful at a given time for théequentiallyin a prespecified order, with each agent convmun
purposes of future optimization. It is assumed thatis cating its control selection to the other agents. To allovajbal
perfectly known by all the agents at each stage. a PI control selection by the agents [cf. (b) above], we suggest t

infinite horizon context, given the current polipy{a function implement multiagent rollout with the use ofpgecomputed
signaling policythat embodies agent coordination. One possi-

1we will also allow later dependence of the séfs on a system state. bility is to approximately compute off-line the multiagewtl-

More complex constraint coupling of the control componeras be allowed ; ; R ; F A i

at the expense of additional algorithmic complicationss [83, [5], [6]. out policy t_hl’OUgh apprQX|mat|on in policy space, i.e.jrtag
2partial observation Markov decision problems (POMDP) camdnverted an approximation arqhnecture such as a neural network to

to problems involving perfect state information by usingedidf state; see e.g., learn the rollout policy. This scheme, calleslitonomous

the textbook [1]. Our assumption then amounts to perfeciMedge of the multiagent rollout allows the use of autonomous, and faster

belief state by all agents. For example, we may think of areéprocessing . , . . .
computational “cloud” that collects and processes staferrmation, and distributed and asynChronous on-line control selection by

broadcasts a belief state to all agents at each stage. the agents, with a potential sacrifice of performance, which

We associate each control componantwith the ¢th of m
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depends on the quality of the policy space approximatiowho then perform local computations to apply their controls
Note thatautonomous multiagent rollout makes sense only as functions of the system state; see Fig.1l. Alternatively,
the context of distributed computatidf all computations are the agent computations can be done at the cloud, and the
performed serially on a single processor, there is no retsorresults may be passed on to the agents in place of the exact
resort to signaling policies and autonomous rollout scleemestate. This scheme is also well suited as a starting point for

Let us also mention that distributed DP algorithms hawapproximations where the state information made available
been considered in a number of contexts that involve partire agents is replaced by precomputed “signaling” politias
tioning of the state space into subsets, with a DP algorithgness/estimate missing information. The estimates ane the
executed in parallel within each subset. For example diseated by the agents as if they were exact. Of course such
tributed value iteration has been investigated in the atghoan approach is not universally effective, but may work well
papers [7], [8], and the book [9]. Also asynchronous Hbr favorable problem structuréslts analysis is beyond the
algorithms have been discussed in a series of papers of sigepe of the present paper, and is left as a subject for furthe
author and Yu [10}[12], as well as the books [3], [13], [14] . research.

Moreover, distributed DP based on partitioning in conjiorct

with neural network training on each subset of the partition

has been considered in the context of a challenging partia l <\ l

state information problem by Bhattacharga al. [15]. The .

algorithmic ideas of these works do not directly apply to )
the multiagent context of this paper. Still one may envision
applications where parallelization with state space fianing ‘ State
is combined with the multiagent parallelization ideas of th

present paper. In particular, one may consider Pl schenags th

involve multiple agents/processors, each using a stateespa Agent 1
partitioning scheme with a cost function and an agent policy u,
defined over each subset of the partition. The agents may then
communicate asynchronously their policies and cost fonsti Fig.1. lllustration of a conceptual structure for our magent system. The

to other agents, as described in the paper [10] and bogkud” collects information from the environment and frdime agents on-

[3] (Section 5.6), and iterate according to the agent-bgrag line, and broadcasts the state (and possibly other infiomjato the agents
policy evaluation and policy improvement schemes disaliss& each stage, who then perform local computations to apely tontrols as

in this paper. This, however, is beyond our scope and is |éfoctions of the state information obtained from the clo@d.course some

as an interesting subject for further research. of these local computations may be done at the cloud, andethéts may be

2) Classical and Nonclassical Information Patterns passed on to the agents in place of the exact state. In thetaggoblem with

It is worth emphasizing that our multiagent problem forpartial state observation, the cloud computes the curretefbstate (rather
mulation requires that all the agents fully share inforgmti than the state).
including the values of the controls that they have applied i
the past' and have perfect memory of all past information_we note that our multiagent rollout schemes relate to a
This gives rise to a problem with a so called “classicavell-developed body of research with a long history: the
information pattern,” a terminology introduced in the peplay theory of teams and decentralized control, and the notion
Witsenhausen [16], [17]. A fact of fundamental importange Pf person-by-person optimality; see Marschak [18], Radner
that problems possessing this structure can be addresgied Wi9l, Witsenhausen [17], [20], Marschak and Radner [21],
the DP formalism and approximation in value space metho&andellet al. [22], Yoshikawa [23], Ho [24]. For more recent
of RL. Problems where this structure is absent, referred #9rks, see Bauso and Pesenti [25], [26], Nayyar, Mahajash, an
as problems with “nonclassical information pattern,” cainn Teneketzis [27], Nayyar and Teneketzis [28], éfi al. [29],
be addressed formally by DP (except through impractic®U and Li [30], Gupta [31], the books by Bullo, Cortes, and
reformulations), and are generally far more complicatexl, artinez [32], Mesbahi and Egerstedt [33], Mahmoud [34],
illustrated for linear systems and quadratic cost by theofzsn and Zoppoli, Sanguineti, Gnecco, and Parisini [35], and the
counterexample of [16]. references quoted there.

Once a classical information pattern is adopted, we mayThe connection of our work with team theory manifests
assume that all agents have access to a systeri atatenake itself in our infinite horizon DP methodology, which inclule
use of a simple conceptual model: there is a computatiorv@lue iteration and Pl methods that converge to a person-by-
“cloud” that collects information from the agents on-linePerson optimal policy. Note that in contrast with the présen
computes the system state, and passes it on to the ageP@Per, a large portion of the work on team theory and de-

State
Info

3The system state at a given time is either the common inféomaif 4For example consider a problem where the agent locatiorisinvitome
all the agents, or a sufficient statistic/summary of thiinfation, which two-dimensional space become available to the other agétitssome delay.
is enough for the computation of a policy that performs aabily close to It may then make sense for the agents to apply some algorithestimate
optimal. For example in the case of a system with partiakestdiservations, the location of the other agents based on the availablenEtion, and use
we could use as system state a belief state; see e.g., [1]. the estimates in a multiagent rollout scheme as if they weaete
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centralized control allows a nonclassical informationtgrat, while the bottleneck due to exponential growth of compotati
whereby the agents do not share the same state informatigth the number of agents has been recognized [47], [48], it
and/or forget information previously received, althougky has not been effectively addressed. It appears that theatent
do share the same cost function. In the case of a multiagétga of the present paper, agent-by-agent sequential izptim
system with partially observed state, this type of model toon while maintaining the cost improvement property, has
also known as a decentralized POMDP (or Dec-POMDP),b&een considered only recently. In particular, the apprdach
subject that has attracted a lot of attention in the last 2057 maintaining cost improvement through agent-by-agenoubl|
see e.g., the monograph by Oliehoek and Amato [36], amds first introduced in the author’s papers [5], [6], [63]dan
the references quoted there. We may also note the extensasearch monograph [3].
literature on game-theoretic types of problems, includitagh A major computational study where several of the algo-
games, where the agents have different cost functions;.gee @ithmic ideas of this paper have been tested and validated is
the surveys by Hernandez-Leatl al. [37], and Zhang, Yang, the paper by Bhattacharyt al. [64]. This paper considers a
and Basar [38]. Such problems are completely outside darge-scale multi-robot routing and repair problem, imiod
scope and require a substantial departure from the metHodpartial state information, and explores some of the attenda
this paper. Zero-sum sequential games may be more amenéblaglementation issues, including autonomous multiagelft r
to treatment with the methodology of this paper, because theut, through the use of policy neural networks and other
can be addressed within a DP framework (see e.g., Shaptegcomputed signaling policies.
[39], Littman [40]), but this remains a subject for further The author’s paper [6] and monograph [3] discuss con-
research. strained forms of rollout for deterministic problems, iding

In addition to the aforementioned works on team theory amdultiagent forms, and an extensive range of applications
decentralized control, there has been considerable daladek in discrete/combinatorial optimization and model predet
on multiagent sequential decision making from a machir@ntrol. The character of this deterministic constrainadtbut
learning perspective, often with the use of variants of goli methodology differs markedly from the one of the methods
gradient, Q-learning, and random search methods. Worksadf this paper. Still the rollout ideas of the paper [6] are
this type also have a long history, and they have been sudveweipplementary to the ones of the present paper, and point the
over time by Sycara [41], Stone and Veloso [42], Panaitay to potential extensions of constrained rollout to sastic
and Luke [43], Busoniu, Babuska, and De Schutter [44problems. We note also that the monograph [3] describes
[45], Matignon, Laurent, and Le Fort-Piat [46], Hernandezanultiagent rollout methods for minimax/robust control,dan
Leal, Kartal, and Taylor [47], OroojlooyJadid and Hajinadh other problems with an abstract DP structure.
[48], Zzhang, Yang, and Basar [38], and Nguyen, Nguyen, 4) Organization of the Paper
and Nahavandi [49], who list many other references. For The present paper is organized as follows. We first introduce
some representative recent research papers, see Tes@jro fidite horizon stochastic optimal control problems in Sacti
Oliehoek, Kooij, and Vlassis [51], Pennesi and Paschalidis we explain the main idea behind the multiagent rollout
[52], Paschalidis and Lin [53], Kar, Moura, and Poor [54]Jalgorithm, and we show the cost improvement property. We
Foersteret al. [55], Omidshafieiet al. [56], Gupta, Egorov, also discuss variants of the algorithm that are aimed at

and Kochenderfer [57], Lowet al. [58], Zhou et al. [59], improving its computational efficiency. In Section Ill, we
Zhanget al. [60], Zhang and Zavlanos [61], and de Wit consider the implementation of autonomous multiagenbu||
al. [62]. including schemes that allow the distributed and asyndauen

These works collectively describe several formidable difftomputation of the agents’ control components.
culties in the implementation of reliable multiagent vers We then turn to infinite horizon discounted problems. In
of policy gradient and Q-learning methods, although thexehaparticular, in Section IV, we extend the multiagent rollout
not emphasized the critical distinction between classical algorithm, we discuss the cost improvement property, and we
nonclassical information patterns. It is also worth notthgt provide error bounds for versions of the algorithm invotyin
policy gradient methods, Q-learning, and random search ao#lout truncation and simulation. We also discuss two type
primarily off-line algorithms, as they are typically tooosl of multiagent Pl algorithms, in Sections IV-A and IV-E,
and noise-afflicted to be applied with on-line data colletti respectively. The first of these, in its exact form, converge
As a result, they produce policies that are tied to the model an agent-by-agent optimal policy, thus establishing & co
used for their training. Thus, contrary to rollout, they a nection with the theory of teams. The second PI algorithm,
robust with respect to changes in the problem data, and thayits exact form, converges to an optimal policy, but must
are not well suited for on-line replanning. On the other hante executed over a more complex state space. Approximate
it is possible to train a policy with a policy gradient or ramal  forms of these algorithms, as well as forms of Q-learning,
search method by using a nominal model, and use it as a base also discussed, based on the use of policy and value
policy for on-line rollout in a scheme that employs on-lin@eural networks. These algorithms, in both their exact heit t
replanning. approximate form are strictly off-line methods, but they &e

3) Related Works used to provide a base policy for use in an on-line multiagent

The multiagent systems field has a long history, and tmellout scheme. Finally, in Section V we discuss autonomous
range of related works noted above is very broad. Howevenultiagent rollout schemes for infinite horizon discounted
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Fig.2. [lllustration of theN-stage stochastic optimal control problem. Starting frdatesc;, the next state under contral,, is generated according to a
system equation

Tpt1 = fr(Th, vk, W),

wherewy, is the random disturbance, and a random stage go&ts, ux, wy) is incurred.

problems, which allow for distributed on-line implemeidat A. The Standard Rollout Algorithm and Policy Improvement

II. MULTIAGENT PROBLEM FORMULATION - FINITE In the standard form of rollout, given a policy =
HORIZON PROBLEMS {wo,--.,un—1}, calledbase policywith cost-to-go from state

xy, at stagek denoted by, - (zx), k= 0,..., N, we obtain an
We consider a standard form of afrstage DP problem (seeimproved policy, i.e., one that achieves cost that is lessjagl
[1], [2]), which involves the discrete-time dynamic system to .J, . (=) starting from each;. The base policy is arbitrary.
It may be a simple heuristic policy or a sophisticated policy
obtained by off-line training through the use of an appraadien
, G Pl method that uses a neural network for policy evaluation or
wherezy, is an element of some (possibly infinite) state space, . ) -
the controluy is an element of some finite control space, an% pohcy gradient mgthod of the actor/eritic type (see i,
wy, is a random disturbance, with given probability distributi reinforcement learning book [2]).
Pi(- | 21, ui) that may depend explicitly om;, anduy, but The standard rollout algorithm has a long history (see the
not on values of prior disturbances,_1, . .., wo. The control textbooks [1}-[3], [65], which collectively list a large number
uy is constrained to take values in a given subSgtzy), of research contributions). The name “rollout” was coingd b

which depends on the current statg. The cost of thekth Tesauro, who among others, has used a “truncated” version

Tk+1 :fk(xkaukawk)a k:()ala"'aN_la (4)

stage is denoted by, (., ux, wy); see Fig. 2. of the rollout algorithm for a highly successful applicatim
We consider policies of the form computer backgammon [66]. The algorithm is widely viewed
among the simplest and most reliable RL methods. It provides
m={po,- -, UN—1}, on-line control of the system as follows:

wherep, maps states;, into controlsu,, = ux(x), and sat- .
isfies a control constraint of the form, (z),) € U (xy,) for all | Standard One-Step Lookahead Rollout Algorithm

z),. Given an initial state:y and a policyr = {yo, - .., py—1}, Gtivten a bage DOliCy(rjf: {uoa - 7MN—t1.}v Stetft }Nit:‘ the initial
the eXpeCted cost of Starting froml'o is statexo, and proceed torward generating a trajectory

N_1 {1’07174071’1,'&17---,$N7171~/4N—171’N}
Jr(wo) = E<L gn(zN) + Z gk ($k7uk($k),wk) , according to the system equation (4), by applying at eade sta
=0 x1 a controlay, selected by the one-step lookahead minimizatjon
where the expected value operatiél{-} is with respect to iy € arg ukenzlff?mE{gk(zk’u’“wk)
the joint distribution of all the random variableg, and x. ; .
The optimal cost starting fromy, is defined by * ’““”T(f’“(“’uk’wk))}‘ ®)

J*(x0) = min J (o),
mell Throughout this paper we will focus on rollout algorithms

wherell is the set of all policies. An optimal policy* is one thatinvolve one-step lookahead minimization as in Eq.Tee

that attains the minimal cost for every; i.e., basic ideas extend to multistep lookahead, in which cagerbet
performance can be expected at the expense of substantially
Jr (20) = min J(x0), for all zg. increased on-line computation. The one-step minimizg&on
well . . . . %
which usesJiy1 » in place of the optimal cost functiod*,
Since the optimal cost functio#* and optimal policyr* are defines a policyr = {jo,...,in-1}, referred to as the

typically hard to obtain by exact DP, we consider approxamatollout policy, where for allz;, andk, fix(zx) is equal to the
DP/RL algorithms for suboptimal solution, and focus orontrol; obtained from Eq.(5). The rollout policy possesses
rollout, which we describe next. a fundamentatost improvement propertit improves over the
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base policy in the sense that constraint set is the Cartesian product

Jir(28) < T (w0), v ok, ©) U(zi) = Ul (zk) X - x U (xx). (7

Then the minimization (5) involves as many @8 Q-factors,
whereJy z (z), k = 0,..., N, is the cost-to-go of the rollout where ¢ is the maximum number of elements of the sets
policy starting from stater). (see, e.g., [1], Section 6.4, ory{(z;) [so that¢™ is an upper bound to the number of
[2], Section 2.4.2). Extensive experimentation has shdva t controls inUy(x;), in view of its Cartesian product structure
in practice the rollout policy typically performs signifitdy  (7)]. Thus the computation required by the standard rollout
better than the base policy, even when the latter policy i®qualgorithm is of orderO(¢™) per stage.
poor. We propose an alternative rollout algorithm that achieves

In addition to the cost improvement property, the rollouhe cost improvement property (6) at much smaller compu-
algorithm (5) has a second nice property: it is an on-lin@algtational cost, namely of orde®(gm) per stage. A key idea
rithm, and hence inherently possesse®laustness property is that the computational requirements of the rollout ote@-s
it can adapt to variations of the problem data through oe-litinimization (5) are proportional to the number of controls
replanning. Thus if there are changes in the problem datd(sin the setUy(z;) and are independent of the size of the state
as for example the probability distribution ef;, or the stage space. This motivates a problem reformulation, first pregos
cost functiong;), the performance of the base policy can bin the neuro-dynamic programming book [65], Section 6.1.4,
seriously affected, but the performance of the rollout @oli whereby control space complexity is traded off with state
is much less affected because the computation in Eq.(5) wdpace complexity by “unfolding” the contraly, into its m
take into account the changed problem data. components, which are applied one-agent-at-a-time rétlaer

Despite the advantageous properties just noted, the toll@l-agents-at-once. We will next apply this idea within our
algorithm suffers from a serious disadvantage when the conultiagent rollout context. We note, however, that the idaa
straint set,.(z,) has a large number of elements, namely th&e useful in other multiagent algorithmic contexts, inahgd
the minimization in Eq.(5) involves a large number of altern approximate Pl, as we will discuss in Section IV-E.
tives. In particular, let us consider the expected valuegr{dg,
which is the Q-factor of the pair:, i) corresponding to the

base policy: C. Trading off Control Space Complexity with State Space

Complexity

We noted that a major issue in rollout is the minimization
over up € Ug(zr) in Eq.(5), which may be very time-
+ Jis 1,7 (fr (@, ur, wy)) } consuming when the size of the control constraint set islarg

In particular, in the multiagent case wherg= (uj, ..., u"),

In the “standard” implementation of rollout, at each encouf® time to perform this minimization is typically exponiht
tered statery,, the Q-factorQy  (y, ) is computed by some in m. In this case, we can reformulate the problem by breaking

algorithm separately for each contro} € Uy (z1,) (often by dovx{n-the collective decisic.m;C into m individ-ual component
Monte Carlo simulation). Despite the inherent parallgia J€cisions, thereby reducing the complexity of the control
possibility of this computation, in the multiagent conteat SPace while increasing the complexity of the state space. Th
be discussed shortly, the number of controlip(z;), and potential advantage is that the extra sFate space complexit
the attendant computation and comparison of Q-factorsy grd0€s not affect the computational requirements of some RL
rapidly with the number of agents, and can become ve@@orithms, including rollout. B _

large. We next introduce a modified rollout algorithm for the T this end, we introduce a modified but equivalent problem,
multiagent case, which requires much less on-line Commmmvolvmg one-agent-at-a-time control sglectloht the generic
but still maintains the cost improvement property (6). statexy, we break down the contral; into the sequence of
the m controlsu},u?,...,u}", and betweenr, and the next
statexy11 = fi(zk, ug, w), we introduce artificial interme-
diate “states”(zx,uy), (Tg, up, ui), ..., (XK, up, .. ., uZl_l),

and corresponding transitions. The choice of the last obntr
gemponent;* at “state” (zg,ub, ..., up* ™) marks the tran-
Iﬂ'tlon to the next statei1 = fi(zk, ug, w,) according to
the system equation, while incurring cagi(xy, ux, wi); see
Fig. 3.

Qkn(Th, up) = E{gk(d?k, Uk, W)

B. The Multiagent Case

Let us assume a special structure of the control spa
corresponding to a multiagent version of the problem.
particular, we assume that the contre} consists ofm
components:y, . .., ul,

1 5The Cartesian product structure of the constraint set igptedohere

Ug = (uk, sy U )7 for simplicity of exposition, particularly when arguing @it computational

complexity. The idea of trading off control space complexhd state space

. ) - complexity (cf. Section II-C), on which this paper rests.esianot depend

with the Compone_m‘ L = 1,...,m, chosen by agent at on a Cartesian product constraint structure. Of course whienstructure is
stagek, from within a given setU,f(a:k). Thus the control present, it simplifies the computations of our methods.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT A POLICY ITERATION 255

Control u}"
Random Transition

1 —
" @ a u} ! X =i, W)
Random Cost

FACARTRTA]

< »
>

Stage k
Fig.3. Equivalent formulation of th&/-stage stochastic optimal control problem for the case @tte controk:;, consists ofn componentmt,u%, coupt

up = (Up, .. uft) € Up(zg) x - x U (xg)-

The figure depicts théth stage transitions. Starting from statg, we generate the intermediate sta(efk,ui), (mk,ui,u%), cee, (:ck,ui, e ,u;"’l),
using the respective controhst,...7u;"’1. The final controlu}* leads from(xk,u}w .. .,uzlfl) t0 zpy1 = fk(:chu}w ..,upt, wy), and a random
stage cosyk(xk,ui, ..., upt, wy) is incurred.

It is evident that this reformulated problem is equivalent t  jij.(z1) €

the original, since any control choice that is possible i® on .
g y P arg min E{gk(xk,ullg,,ui(zk),...,,u;cn(xk),wk)

problem is also possible in the other problem, while the cost ul €U (k)
structure of the two problems is the same. In particularyeve
li P P ¥ +JkJrl-,ﬂ(fk('rkaullghui(Ik)a"-a,u;cn('rk)awk))}v
policy
~2
fir(zk) €
m={(uh,.... 5" [E=0,....N—1} | I
o _ ) o arg min E{gk(xk,uk(:ck),uk,...,uk (xk),wk)
of the original problem, including a base policy in the comte ui €UZ(zk)
of rollout, is admissible fpr the reformglgted problem, and ¥ T (fk(:ck,ﬂ}g(:ck),Uﬁ, (k) wk))},
has the same cost function for the original as well as the

reformulated problem.
The motivation for the reformulated problem is
that the control space is simplified at the expense._,,

of introducing m — 1 additional layers of states, and i () €
correspondingm — 1 cost-to-go functions Jj (zy,u}),  arg min E{gk(:vk,/l}c(:vk),,__7/12171(;5;@),%”,%)
2 (g, ub,u2), . T Nk, w™ Y, in addition i €U (o)

to Ji(zx). On the other hand, the increase in size of the +Jk+17,,(fk(a:k,ﬂ,1€(xk),...,ﬂ;””(:z:k),uzi,wk))}. (8)
state space does not adversely affect the operation ofutpllo

since the Q-factor minimization (5) is performed for just Thus, when applied on-line, at;, the algorithm gen-
one state at each stage. Moreover, in a different conteat, ¥rates the controli(zy) = (fk(zk), ..., 40" (zx)) via a
increase in size of the state space can be dealt with funct@quence ofn minimizations, once over each of the agent
approximation, i.e., with the introduction of cost-to-gaontrols u},...,u}", with the past controls determined by
approximations the rollout policy, and the future controls determined by
the base policy cf. EQ.(8). Assuming a maximum of
elements in the constraint set& (z), the computation re-
quired at each stagé is of order O(q) for each of the
“states” xy, (vg, up), . .., (Tg, up, ..., up' ), for a total of
orderO(gm) computation.

71 1.1y 72 1,2 .2
Ji (@, up, 1), JE (T, g, Ul TR, - -
Tm—1 1 m—1 _m—1
T (@ gy up T T,
in addition tojk(:ck,rk), Whererk,r}c, e ,r;”* are param-

eters of corresponding approximation architectures (sash . . .
P g app ( In the “standard” implementation of the algorithm, at each

feature-based architectures and neural networks); se®m®ec .
IV-E ) (Tg,up,y ... ,uiil) with ¢ < m, and for each of the controls

u, we generate by simulation a number of system trajectories
up to stageV, with all future controls determined by the base
D. Multiagent Rollout and Cost Improvement policy. We average the costs of these trajectories, thenbby
Consider now the standard rollout algorithm applied to tHaining the Q-factor corresponding toy, uj, ..., u; !, uf).
reformulated problem shown in Fig. 3, with a given base olidVe then select the contral; that corresponds to the minimal
7 = {po,..., un—1}, Which is also a policy of the original Q-factor, with the co.ntroISu}C, ...,uy* held fixed at the
problem [so thaty, = (ub,...,u"), with eachul, ¢ = values computed earlier.
1,...,m, being a function of just;]. The algorithm generates  Prerequisite assumptions for the preceding algorithm to
a rollout policy # = {fio,...,/in_1}, where for each stage Work in an on-line multiagent setting are:
k, fu, consists ofm componentgit, i.e., iy = (fit, ..., i), (a) All agents have access to the current state
and is obtained for alt;, according to the sequential one-step (b) There is an order in which agents compute and apply
lookahead minimizations their local controls.
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(c) There is “intercommunication” between agents, so agemhere in the preceding relation:

¢ knows the local controls.i, ... ui ! computed by the (a) The first equality is the DP/Bellman equation for the
predecessor agents...,¢ — 1 in the given order. rollout policy 7.

In Sections Il and V, we will aim to relax Assumptions (b) The first inequality holds by the induction hypothesis.
(b) and (c), through the use of autonomous multiagent rallou (c) The second equality holds by the definition of the
Assumption (a) is satisfied if there is a central computationultiagent rollout algorithm as it pertains to agent 2.
center (a “cloud”) that collects all the information availa (d) The third equality holds by the definition of the multi-
from the agents and from other sources, obtains the state ggent rollout algorithm as it pertains to agent 1.

a belief state in the case of partial state information prot)| (e) The last equality is the DP/Bellman equation for the
and broadcasts it to the agents as needed; cf. Fig. 1. To rdi@ee policyr.

this assumption, one may assume that the agents use ahhe induction proof of the cost improvement property (9) is
estimate of the state in place of the unavailable true stdteis complete for the case = 2. The proof for an arbitrary

in all computations. However, this possibility has not beemumber of agents: is entirely similar. |
investigated and is beyond our scope. Note that there are cases where the all-agents-at-once stan

Note that the rollout policy (8), obtained from the refordard rollout algorithm can improve strictly the base policy
mulated problem is different from the rollout policy obtath but the one-agent-at-a-time algorithm will not. This pbaiy
from the original problem [cf. Eq.(5)]. Generally, it is Usar arises when the base policy is “agent-by-agent-optimad,; i
how the two rollout policies perform relative to each other ieach agent’'s control component is optimal, assuming thet th
terms of attained cost. On the other hand, both rollout fEsic control components of all other agents are kept fixed at some
perform no worse than the base policy, since the performartg®wn value$. Such a policy may not be optimal, except
of the base policy is identical for both the reformulatednder special conditions (we give an example in the next
problem and for the original problem. This is shown formallgection). Thus if the base policy is agent-by-agent-ogdtima
in the following proposition. multiagent rollout will be unable to improve strictly the
cost function, even if this base policy is strictly subomim
Proposition 1:Let = be a base policy and létbe a corresponding However, we speculate that a situation where a base policy is
rollout policy generated by the multiagent rollout algbnit (8). |  agent-by-agent-optimal is unlikely to occur in rollout gtiae,

We have since ordinarily a base policy must be reasonably simple,
T,z (2r) < Jkn(Th), for all z andk. (9) | readily available, and easily simulated.
Let us provide an example that illustrates how the size of

Proof: We will show Eq.(9) by induction, and for simplicity, the control space may become intractable for even moderate
we will give the proof for the case of just two agents, ive.= values of the number of agents.

2. Clearly Eq.(9) holds fok = N, sinceJy z = Jn = = gn.
Assuming that it holds for indek + 1, i.e., Jy+1.7 < Jyt+1,-, EXample 1 (Spiders and Fly)

we have for allxy, Here there arem spiders and one fly moving on a
2-dimensional grid. During each time period the fly moves
Ji7(xg) = E{g;C (gc;C ), B2 (), wk) to some other position according to a given state-dependent
probability distribution. The spiders, working as a teanm a
+ Jit1,7 (fk (Ik, Hxw), i3 (), k))} to catch the fly at minimum cost (thus the one-stage cost is
equal to 1, until reaching the state where the fly is caught,
< E{gk (xk’ (xk% ( k), wk) at which time the one-stage cost becomes 0). Each spider
learns the current state (the vector of spiders and fly losa}i
+ Jit1 ﬂ(fk (Ik7ﬂ]1g(zk),ﬂi(xk),wk))} at the beginning of each time period, and either moves to a
’ neighboring location or stays where it is. Thus each spider

has as many as five choices at each time period (with each

move possibly incurring a different location- dependenst):o
The control vector ig = (u!,...,u™), whereu! is the choice

Uk,wk))} of the /th spider, so there are aboﬂ’fl possible values of:.

= min E{ T, ik (25), U2, w
Ll 9k (@, i (k) Wi, wr)

~1
+ Jit1,7 (fk (zk, g (z),
However, if we view this as a multiagent problem, as per the
k

< E{gk (»”sz ﬂ/lg (z), Mﬁ(x ), wk) reformulation of Fig. 4, the size of the control space is oedl
~ ) to < 5 moves per spider.
+ Jit1,n (fk( ky Mg ( )muk(xk)’wk))} To apply multiagent rollout, we need a base policy. A
. L o simple possibility is to use the policy that directs eactdspi
= mmn E{gk (»”Ck,ukaﬂk(fk),wk) to move on the path of minimum distance to the current fly
up €U (@) position. According to the multiagent rollout formalisnhet
spiders choose their moves in a given order, taking intowatco
+ Ikt (fk (xk’ uk’ Mk xk k)) } tr?e current state, and assuming tghat future moves%vill bearho

< E{ T e 2(zg), w
- gk( ko Mk (Tk)s i (2), k) 6This is a concept that has received much attention in thergheb

9 team optimization, where it is known g@&rson-by-person optimalityt has
+ Jet1x (fk Lk Mk k), e (T ), wk))} been studied in the context of somewhat different problewtsich involve
T (DCk) imperfect state information that may not be shared by allatpents; see the
- ™

references on team theory cited in Section I.



according to the base policy. This is a tractable computatio
particularly if the rollout with the base policy is truncdtefter
some stage, and the cost of the remaining stages is appitexima
using a certainty equivalence approximation in order taiced
the cost of the Monte Carlo simulation.

Sample computations with this example indicate that the
multiagent rollout algorithm of this section performs abais
well as the standard rollout algorithm. Both algorithmsfgen
much better than the base policy, and exhibit some “intelli-
gence” that the base policy does not possess. In partignlar,
the rollout algorithms the spiders attempt to “encircleé iy
for faster capture, rather that moving straight towards fthe
along a shortest path.
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Here the optimal policy is to move the two spiders towards
different flies, the ones that are initially closest to themwitlf ties
broken arbitrarily). The minimal time to capture is the nmaxim
of the two initial distances of the two optimal spider-fly pags.

Let us apply multiagent rollout with the base policy that
directs each spider to move one unit towards the closest fly
position (and in case of a tie, move towards the fly that lies to
the right). The base policy is poor because it may unnedgssar
move both spiders in the same direction, when in fact only
one is needed to capture the fly. This limitation is due to the
lack of coordination between the spiders: each acts ssffishl
ignoring the presence of the other. We will see that rollout
restores a significant degree of coordination between tidersp

through an optimization that takes into account the lomgite
consequences of the spider moves.

According to the multiagent rollout mechanism, the spiders
choose their moves one-at-a-time, optimizing over the two
Q-factors corresponding to the right and left moves, while
assuming that future moves will be chosen according to the
base policy. Let us consider a stage, where the two flies are
alive while the spiders are at different locations as in big.
Then the rollout algorithm will start with spider 1 and cdhte
two Q-factors corresponding to the right and left moves,levhi
using the base policy to obtain the next move of spider 2, as
well as the remaining moves of the two spiders. Depending on
the values of the two Q-factors, spider 1 will move to the righ
or to the left, and it can be seen that it will choosentove
away from spider 2ven if doing so increases its distance to its
closest flycontrary to what the base policy will dsee Fig.5.
Then spider 2 will act similarly and the process will congnu
Intuitively, spider 1 moves away from spider 2 and fly 2, begau
7 7 it recognizes that spider 2 will capture earlier fly 2, so ighi
_ as well move towards the other fly.
7+ 7 7™ 7 Thus the multiagent rollout algorithm induces implicit

move coordinationi.e., each spider moves in a way that takes
78 into account future moves of the other spider. In fact it can b
verified that the algorithm will produce an optimal sequeate
moves starting from any initial state. It can also be seen tha
ordinary rollout (both flies move at once) will also produce a
optimal move sequence. Moreover, the example admits a two-
dimensional generalization, whereby the two spiders tistar
from the same position, will separate under the rolloutqyli
with each moving towards a different spider, while they will
move in unison in the base policy whereby they move along
the shortest path to the closest surviving fly. Again thisl wil

78 /2 /o

7/’\

W\

Fig.4. lllustration of the 2-dimensional spiders-and-fiolgem. The state
is the set of locations of the spiders and the fly. At each tiragod, each
spider moves to a neighboring location or stays where itl& 3piders make
moves with perfect knowledge of the locations of each ottmet af the fly.

The fly moves randomly, regardless of the position of the esgid

The following example is similar to the preceding one,
but involves two flies and two spiders moving along a line, typically happen for both standard and multiagent rollout.
and admits an exact analytical solution. It illustrates hbesy ~ The preceding example illustrates how a poor base policy
multiagent rollout policy may exhibit intelligence and age can produce a much better rollout policy, something that
coordination that is totally lacking from the base policy. | can be observed in many other problems. Intuitively, the key
this example, the base policy is a poor greedy heuristiclewhfact is that rollout is “farsighted” in the sense that it can
both the standard rollout and the multiagent rollout polcg benefit from control calculations that reach far into future
optimal. stages. The qualitative behavior described in the exanmgde h
been confirmed by computational experiments with larger two
Example 2 (Spiders and Flies) dimensional problems of the type described in Example 1.
This is a spiders-and-flies problem that admits an an& has also been supported by the computational study [64],

lytical solution. There are two spiders and two flies movingyhich deals with a multi-robot repair problem.
along integer locations on a straight line. For simplicitg w

will assume that the flies’ positions are fixed at some integ o .
locations, although the problem is qualitatively simildrem the % Optimizing the Agent Order in Agent-by-Agent Rollout
flies move randomly. The spiders have the option of moving In the multiagent rollout algorithm described so far, the
either left or right by one unit; see Fig.5. The objective iggents optimize the control components sequentially ineafix

to minimize the time to capture both flies (thus the one-sta ; ; ; ;
cost is equal to 1, until reaching the state where both flies grﬁder' It is possible to improve performance by trying to

captured, at which time the one-stage cost becomes 0). T%Btimize_ "’_‘t each stage tth O_rder Qf the .'_:lggnts. )
problem has essentially a finite horizon since the spidens ca An efficient way to do this is to first optimize over all single
force the capture of the flies within a known number of stepsagent Q-factors, by solving the minimization problems that
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Fly 1 Spider 1 Spider 2 Fly 2
oo *—0—0 @ *—0

Fig.5. [lllustration of the two-spiders and two-flies prahleThe spiders move along integer points of a line. The twa iy still at some integer
locations. The optimal policy is to move the two spiders tasadifferent flies, the ones that are initially closest tenth The base policy directs each
spider to move one unit towards the nearest fly position.

Multiagent rollout with the given base policy starts withidgr 1 at locationn, and calculates the two Q-factors that correspond to motong
locationsn — 1 andn + 1, assuming that the remaining moves of the two spiders wilinagle using the go-towards-the-nearest-fly base policy. The
Q-factor of going ton — 1 is smallest because it saves in unnecessary moves of spittevatds fly 2, so spider 1 will move towards fly 1. The
trajectory generated by multiagent rollout is to move amniusly spiders 1 and 2 towards flies 1 and 2, respectivelys Tiultiagent rollout generates
the optimal policy.

correspond to each of the agerits- 1,...,m being first in One possibility that works well for many problems is to sim-
the multiagent rollout order. If; is the agent that producesply set the terminal cost approximation to zero. Alternelily
the minimal Q-factor, we fix/; to be the first agent in the the terminal cost function approximation may be obtained by
multiagent rollout order and record the corresponding rdnt using some sophisticated off-line training process thay ma
component. Then we optimize over all single agent Q-factoiavolve an approximation architecture such as a neuralortw
by solving them — 1 minimization problems that correspondor by using some heuristic calculation based on a simplified
to each of the agents# ¢, being second in the multiagentversion of the problem. We will discuss multiagent trundate
rollout order. Let/s be the agent that produces the minimal Qrollout later in Section IV-F, in the context of infinite hadn
factor, fix /5 to be the second agent in the multiagent rolloygroblems, where we will give a related error bound.

order, record the corresponding control, and continue @ th

same manner. In the end, after I1l. A SYNCHRONOUS ANDAUTONOMOUSROLLOUT

M In this section we consider multiagent rollout algorithms
2 that are distributed and asynchronous in the sense that the

minimizations, we obtain an agent ord&s, .. ., /,, that pro- agents may compute their rollout controls in parallel rathe
duces a potentially much reduced Q-factor value, as well &n in sequence, aiming at computational speedup. An exam-
the corresponding rollout control component selections.  ple of such an algorithm is obtained when at a given stage,

The method just described likely produces better perfaggent/ computes the rollout contral!, before knowing the
mance, and eliminates the need for guessing a good agentroltout controls of some of the agents. ..,/ — 1, and uses
der, but it increases the number of Q-factor calculatioresied the controlsu}.(zy), . . . ,uifl(xk) of the base policy in their
per stage roughly by a factdim + 1)/2. Still this is much place.
better than the all-agents-at-once approach, which regjan This algorithm may work well for some problems, but it
exponential number of Q-factor calculations. Moreoves,@ does not possess the cost improvement property, and may
factor minimizations of the above process can be paradieliz not work well for other problems. In fact we can construct
so withm parallel processors, we can perform the number af simple example involving a single state, two agents, and
m(m + 1)/2 minimizations derived above in just batches two controls per agent, where the second agent does not take
of parallel minimizations, which require about the sameetiminto account the control applied by the first agent, and as a
as in the case where the agents are selected for Q-fagtssult the rollout policy performs worse than the base golic
minimization in a fixed order. We finally note that our earliefor some initial states.
cost improvement proof goes through again by induction,
when the order of agent selection is variable at each stageample 3 (Cost Deterioration in the Absence of Adequate
k. Agent Coordination)

Consider a problem with two agents:(= 2) and a single

. . . . state. Thus the state does not change and the costs of differe
F. Truncated Rollout with Terminal Cost Function Approxi- stages are decoupled (the problem is essentially stateh Bf

mation the two agents has two controls;, € {0,1} andu? € {0, 1}.

\ 01y and;
An important variation of both the standard and the multia-  T"€ COSt per stages is equal to 0 ifuy 7 wuy, is equal to 1

; . ) . if up = w2 =0, and is equal to 2 ifs;, = u = 1. Suppose
gent rollout algorithms isruncated rolloutwith terminal cost that the base policy applies. — u? — 0. Then it can be seen

approximation. Here the rollout trajectories are obtaitgd that when executing rollout, the first agent appligs= 1, and
running the base policy from the leaf nodes of the lookahead in the absence of knowledge of this choice, the second agent
tree, but they are truncated after a given number of steps, also appliesu = 1 (thinking that the first agent will use the
while a terminal cost approximation is added to the hewristi ~ Pase policy controly, = 0). Thus the cost of the rollout policy

. .. is 2 per stage, while the cost of the base policy is 1 per stage.
cost to compensate for the resulting error. This is impaifan By contrast the rollout algorithm that takes into accourg th

problems with a large number of stages, and it is also essenti  first agent's control when selecting the second agent'srabnt

for infinite horizon problems where the rollout trajectarie appliesu) = 1 andu? = 0, thus resulting in a rollout policy
have infinite length. with the optimal cost of 0 per stage.

m+m—-1)+---+1=
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The difficulty here is inadequate coordination between the More precisely, the autonomous multiagent rollout algo-
two agents. In particular, each agent uses rollout to coenpuiithm uses the base and signaling policies to generateautoll
the local control, each thinking that the other will use thsd policy # = {jio, ..., jin_1} as follows. At stagek and state
policy control. If instead the two agents were to coordirtatsr I 1 . . . .
control choices, they would have applied an optimal policy. txc;c’ fir(zr) = (g (xr),- .., Ay (zx)), is obtained according

The simplicity of the preceding example raises serious
guestions as to whether the cost improvement property () ca
be easily maintained by a distributed rollout algorithm vehe
the agents do not know the controls applied by the preceding
agents in the given order of local control selection, and use
instead the controls of the base policy. One may speculate th
if the agents are naturally “weakly coupled” in the sensé tha
their choice of control has little impact on the desirabilit
of various controls of other agents, then a more flexible
inter-agent communication pattern may be sufficient fort cos
improvement. An important question is whether and to what
extent agent coordination is essential. In what followshis t
section, we will discuss a distributed asynchronous mystie.
rollout scheme, which is based on the use of a signalingyolic
that provides estimates of coordinating information ortoe t
current state is known.

1) Autonomous Multiagent Rollout

An interesting possibility for autonomous control selenti
by the agents is to use a distributed rollout algorithm, \whic .
is augmented by a precomputed signaling policy that em- + Jkt1,r (fk(wk’/‘k(xk)’
bodies agent coordinatichThe idea is to assume that the ~m—1 m
agents do not communicate their computed rollout control co T ) ’wk))}'
components to the subsequent agents in the given ordemMite that the preceding computation of the controls
local control selection. Insteadince the agents know thejl(zy),..., i (z;) can be done asynchronously and in par-
state, they use precomputed approximations to the contedlel, and without direct agent coordination, since thealmg
components of the preceding ageraad compute their own policy valuesii},(x), . . ., fif" (1) are precomputed and are
control components in parallel and asynchronously. We c&thown to all the agents.
this algorithmautonomous multiagent rollouthile this type The simplest choice is tase as signaling policyi the
of algorithm involves a form of redundant computation, ibase policy z. However, this choice does not guarantee
allows for additional speedup through parallelization. policy improvement as evidenced by Example 3 (see also

Similar to Section Il, the algorithm at theth stage uses a Example 7 in Section V). In fact performance deterioration
base policyu, = {u},. .. ,u}f”}, but it also uses second with this choice is not uncommon, and can be observed in
policy fix = {fj,... ,ﬁ}ffl}, called thesignaling policy more complicated examples, including the following.
which is computed off-line, is known to all the agents for on-
line use, and is designed to play an agent coordination rolexample 4 (Spiders and Flies - Use of the Base Policy for
Intuitively, 7% (1) provides an intelligent “guess” about what Signaling)
agent/ will do at statexy. This is used in turn by all other Consider the problem of Example 2, which involves two

agentsi # ¢ to compute asynchronously their own rollout  spiders and two flies on a line, and the base pqlithat moves

control components on-line. a spider towards the closest surviving fly (and in case where a
spider starts at the midpoint between the two flies, moves the

spider to the right). Assume that we use as signaling pglicy

min
u}cGU%(mk)
i (), we)
+ Jkt1,7 (fk (xk, up, i (),

. ,u?(wk),wk)) },

E{ g (ws (@),

fir(7r) € arg E{gk(iﬂkaullcaﬂi(xk)v

~92 .
Tk ) €ar min
fii (k) g 0

o R (), wr)

+ Jk+1,7r (fk (xka //Illc(xk)’ ’U/i,
)}

min
u;nEU,g”(wk)

B ﬁ?il(xk)a u;cna wk)

gt (zy) € arg E{gk(xkaﬁllg(xk)’

(10)

7In particular, one may divide the agents in “coupled” grqugrsd require
coordination of control selection only within each grouphile the compu-
tation of different groups may proceed in parallel. Notet tthee “coupled”
group formations may change over time, depending on theecustate. For
example, in applications where the agents’ locations asérilited within
some geographical area, it may make sense to form agent graughe
basis of geographic proximity, i.e., one may require thatnég that are
geographically near each other (and hence are more cougedjinate their
control selections, while agents that are geographicaltyapart (and hence
are less coupled) forego any coordination.

8The general idea of coordination by sharing informationualibe agents’
policies arises also in other multiagent algorithmic cet#teincluding some
that involve forms of policy gradient methods and Q-leagnisee the surveys
of the relevant research cited earlier. The survey by Matigri_aurent, and
Le Fort-Piat [46] focuses on coordination problems from &npRint of view.

the base policy:. It can then be verified that if the spiders start
from different positions, the rollout policy will be optirhéwill
move the spiders in opposite directions). If, however, fiidess
start from the same position, a completely symmetric sibnat

is created, whereby the rollout controls move both flies i th
direction of the flyfurthest awayfrom the spiders’ position (or

to the left in the case where the spiders start at the midpoint
between the two flies). Thus, the flies end up oscillating radou
the middle of the interval between the flies and never cateh th
flies.

The preceding example is representative of a broad class of

counterexamples that involve multiple identical agertshé
agents start at the same initial state, with a base polidyhtha
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identical components, and use the base policy for signafireg involving a termination state (e.g., stochastic shortesthp
agents will select identical controls under the correspund problems, see [65], Chapter 2, [13], Chapter 3, and [14],
multiagent rollout policy, ending up with a potentially srrs Chapters 3 and 4).

cost deterioration. This example also highlights the rdie o In particular, we consider a standard Markovian decision
the sequential choice of the control componens. .., u}*, problem (MDP for short) infinite horizon discounted version
based on the reformulated problem of Fig. 3: it tends to break the finite horizonm-agent problem of Section I-B, where

symmetries and “group think” that guides the agents towards > 1. We assume: statesr = 1,...,n and a controk that
choosing the same controls under identical conditions. consists ofm componentsi, £ =1,...,m,

An alternative idea is to choose the signaling poljcy
to approximate the multiagent rollout policy of Section II- u= (s um),

D [cf. Eq.(8)], which is known to embody coordinationor the MDP notation adopted for this section, we switch
between the agents. In particular, we may obtain the poligy; convenience to subscript indexing for agents and contro
fik = (A, - - [ij") by off-line training a neural network (or components, and reserve superscript indexing for poliy it
m networks, one per agent) with training samples generatg@s)_ At stater and stagek, a controlu is applied, and the
through the rollout policy of Eq.(8); i.eyse as signaling system moves to a next statavith given transition probability
policy 1i, a neural network representation of the rollout poIicypm(y) and costy(z, u, y). When at stagé, the transition cost
i of Eg.(8) Note that if the neural network representatioty yiscounted byx*, wherea € (0,1) is the discount factor.
were perfect, the policy defined by Eq.(10) would be the sanggch control component; is separately constrained to lie in
as the rollout policy of Eq.(8). Thus we intuitively expebtt 4 given finite set/;(z) when the system is at state Thus

if the neural network provides a good approximation of thge control constraint is U(z), whereU(z) is the finite
rollout policy (8), the policy defined by Eq.(10) would have-grtesian product set

better performance than the base policy. This expectatas w

confirmed in the context of a large-scale multi-robot repair U(z) = Us(z) x -+ x Up(x).
application in the paper [64]. The advantage of autonomo
multiagent rollout with neural network approximations list
it allows approximate policy improvement (to the extenttth
the functionsii, are good approximations {@,), while at the
same time allowing asynchronous distributed agent operati
without on-line agent coordination through communicatién

'YRe cost function of a stationary poligythat applies control
éL(x) € U(x) at statex is denoted by, (x), and the optimal
cost [the minimum ovep: of J,(z)] is denotedJ*(z).

An equivalent version of the problem, involving a reformu-
lated/expanded state space is depicted in Fig.6 for the case

their rollout control values (but still assuming knowledgie m = 3. The state space of the reformulated problem consists

the exact state by all agents). We will return to this aldwnit of
and provide more details in Section V, in the context of indni z, (zyuy), . (U, U1, (11)

horizon problems. o .
where x ranges over the original state space (i.e., €

IV. MULTIAGENT PROBLEM FORMULATION - INFINITE {1,...,n}), and eachu,, ¢ = 1,...,m, ranges over the
HORIZON DISCOUNTED PROBLEMS corresponding constraint s&%(z). At each stage, the agents

The multiagent rollout ideas that we have discussed so fdt00se their controls sequentially in a fixed order: from
can be modified and generalized to apply to infinite horizotiatez agent 1 applies,, € Ui(z) to go to state(z,u1),
problems. In this context, we may also consider multiageten agent 2 applies, € Us(z) to go to state(z, us, us),
versions of Pl algorithms, which generate a sequence &td S0 on, until finally at statéz,u:,...,um-1), agent
policies {;/*}. They can be viewed as repeated applicatiod& aPpliesun, € Un(x), completing the choice of control
of multiagent rollout, with each policy:* in the sequence ® = (u1, ..., un), and effecting the transition to stageat a
being the multiagent rollout policy that is obtained whefOStg(z,u,y), appropriately discounted.
the preceding policyu*~! is viewed as the base policy. This reformulation involves the type of tradeoff between
For challenging problems, Pl must be implemented off-ling@ontrol space complexity and state space complexity that wa
and with approximations, possibly involving neural netksor proposed in the book [65], Section 6.1.4, and was discussed i
However, the final policy obtained off-line by PI (or its naur Section II-C. The reformulated problem involvescost-to-go
network representation) can be used as the base policy forfdfctions
on-line r_nultiagent roII_out scheme. o IO, T @ wr), . ., T (@,

We will focus on discounted problems with finite number
of states and controls, so that the problem has a contractiveh corresponding sets of Bellman equations, but a much
structure (i.e., the Bellman operator is a contraction nragp smaller control space. Note that the existing analysis bdub
and the strongest version of the available theory appliakorithms, including implementations, variations, arrdoe
(the solution of Bellman’s equation is unique, and stronigounds, applies to the reformulated problem; see Sectibn 5.
convergence results hold for Pl); see [13], Chapters 1 anfithe author’s RL textbook [2]. Moreover, the reformulated
2, [14], Chapter 2, or [2], Chapter 4. However, a qualitdyive problem may prove useful in other contexts where the size of
similar methodology can be applied to undiscounted problertine control space is a concern, such as for example Q-legarnin

),
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e O
i

Cost g (x, u, w)

u,

u,

Agent 1 @ Cost 0 @ @ @

Reformulated Reformulated Reformulated Reformulated
State Space State Space State Space State Space

Fig.6. lllustration of how to transform am-agent infinite horizon problem into a stationary infiniterikon problem with fewer control choices available
at each state (in this figurex = 3). At the typical stage only one agent selects a control. kamgple, at state, the first agent chooses; at no cost
leading to statdx, u1). Then the second agent applies at no cost leading to staier, u1,uz2). Finally, the third agent appliegs leading to some statg

at costg(z, u, y), wherew is the combined control of the three agenis= (u1,u2,u3). The figure shows the first three transitions of the trajéesothat
start from the states, (z,u1), and (z, u1,u2), respectively. Note that the state space of the transforpneblem is well suited for the use of state space
partitioned PI algorithms; cf. the book [3], and the papd@]{[12], [15].

Similar to the finite horizon case, our implementation of theses a modified form of policy improvement, whereby the

rollout algorithm, which is described next, involves orgeat- control u = (u,...,u,,) iS optimized one-component-at-a-

at-a-time policy improvement, while maintaining the bagist time, with the preceding components computed according to

improvement and error bound properties of rollout, sin@s¢h the improved policy, and the subsequent components comhpute

apply to the reformulated problem. according to the current policy. In particular, given thereat
policy ©*, the next policy is obtained as

A. Multiagent Rollout Policy Iteration M’Hl c Mvuk(Juk), (13)

The policies generated by the standard PI algorithm fofhare for giveny = (u1,...,um) and J, we denote by
the reformulated problem of Fig. 6 are defined over the larggl; (1) the set of poIicies7 ’ ’
space and have the form .

:&: (ﬁla"'aﬂm)
/’Ll('r)vf'LQ('rvul)v"'7/’Lm(xaula"'aumfl)- (12)

satisfying for all statesx =1,...,n,
We may consider a standard Pl algorithm that generates a n
sequence of policies of the preceding form (see Section Vi) (z) €arg  min mey (ul,uz(:r), L ,um(x))
E), and which based on standard discounted MDP results, w €l (@) P

converges to an optimal policy for the reformulated prohlem _
which in turn yields an optimal policy for the original preioh. (g(x’ U1, H2(2), - (), y) + aJ(y))’

However, policies of the form (12) can also be represented in . .
the Slmpler form M2 (I) € a‘rg uzglUl?(w) mey (/’[’1 (I)7 U2, U3 (I)7 vy Hm (:C))
y=1

#1(@): (@), - pm () (9@ (@) uz, 13 (@), (@), 9) + @I (W),
i.e., as policies for the original infinite horizon problefthis
motivates us to consider an alternative multiagent PI @lyor

that uses one-agent-at-a-time policy improvement andab@er n

over the latter class of policies. We will see that this aikion fim(x) Earg  min szy (1 (), fiz(z),
converges to an agent-by-agent optimal policy (which nexd n um €U (@)=

be an optimal policy for the original problem). By contrakg ey fim—1 (), um)

alternative multiagent Pl algorithm of Section IV-E alsesis

one-agent-at-a-time policy improvement, but operates thee ' (g(x’ﬂl(x)’w(x)’ o1 (2) s y)

class of policies (12), and converges to an optimal policy +aJ(y))_ (14)
for the original problem (rather than just an agent-by-agen .
optimal policy). Note that M, (J) may not consist of a single policy, since

Consistent with the multiagent rollout algorithm of Sentiothere may be multiple controls attaining the minima in the
IV-D, we introduce a one-agent-at-a-time PI algorithm thatreceding equations.
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Each of them minimizations (14) can be performed for Mathematically, this amounts to using the control compo-
each stater independently, i.e., the computations for stateents atz of a policy within the set
x do not depend on the computations for other states, thus —,
allowing the use of parallel computation over the different M (), (15)
states. On the other hand, the computations corresponain
individual agent components must be performed in seque € e et )
(in the absence of special structure related to couplingef t 'S any pollcy in the setM,(J,) defined by Eq. (14)
control components through the transition probabilitiesl a[so_ H (I)""’Hm(z) are the rollout control components,
the cost per stage). It will also be clear from the subsequ _|<_:h _are_ obtained with a single round of coordinate descent
analysis that for convergence purposes, the ordering of fﬁ'@'m'zat'ons (14)]- The_ S,Et, (15,’) corresponds to two rounds
components is not important, and it may change from oﬁé coordinate dgscentm|n|m|zat|on§ rather than one [rwie t
policy improvement operation to the next. In fact there af@' the calculations of values of,, is Eq.(15), we use the
versions of the algorithm, which aim to optimize over mutip K"OWn base policy:, so the values of/'(z),. .., ju, () are

component orders, and are amenable to parallelization r}fse_de_d only at the glven_stai@. )
discussed in Section II-E. Similarly, we may considet > 2 rounds of coordinate de-

Similar to the finite horizon case of Section Il, the salieriicent lterations. This amounts to using the control comptsne

feature of the one-agent-at-a-time policy improvementape atz of a policy within the set
tion (14) is that it is far more economical than the standard Mk(J )
policy improvement: it requires a sequencerefminimiza- A

tions, once over each of the control components.. ., un.. N defined for allk as the set of all policies in the sat,,.(.J,,),
particular, for the minimization over the typical compoheRn \yhere ./ is any policy in the Seﬂk—l(JM) [here we define
7

the preceding components, ..., u,_; have been computedﬂl J.) to be the setM, (J iven by Ea.(14)]. After a
earlier by the minimization that yielded the policy compotse finiu( w) wlJ) y Eq.(14))

- ) _ X te number of rounds of coordinate descent iterations the
i1, - .., fte—1, While the following controlsugy, ..., u,, are values of
determined by the current policy componepts 1, - . ., fim-
Thus, if the number of controls within each component con- . - - -
straint set/,(z) is bounded by a number the one-agent-at-a- ulgli}?(z) mey (u1, (@), - fom ()
. . . . y=1
time operation (14) requires at magh Q-factor calculations.

By contrast, since the number of elements in the constraint ' (g(x,ul, fiz(x), -, fim (7),y) + O‘J#(y))v
setU(x) is bounded by™, the corresponding number of Q-
factor calculations in the standard policy improvementrape n
tion is bounded by™. Thusin the one-agent-at-a-time policy = min mey (/11 (x), fgz2(z), ... ,/lm_l(x),um)
improvement the number of Q-factors grows linearly with ~ “=€Un(®) /=
as compared to the standard policy improvement, where the . ( (:C i (), fia () ~ (@),u )
number of Q-factor calculations grows exponentially with I\E Fa{E), B238), - - - Bm—118), Um, Y

+ aJH(y))

B. Multipass Multiagent Policy Improvement will converge (since the control space is finite). Howevee t

) _ limit of these values need not be the result of the joint auintr
In trying to understand why multiagent rollout of the form:omponent minimizatich

(13) succeeds in improving the performance of the baseypolic

t —
rggCeefined as the set of all policies in the set, (J,), where

it is useful to think of the multiagent policy improvementarp ) -
: ; : H H nin mey(ula"'aum)
ation as an approximation of the standard policy improvemen (141t ) UL () U () £
operation. We basically approximate the joint minimizatio v=
over all the control components,,...,u,, with a single '(9(17, Ui, ... ,Umvy) + OéJu(?/))-

“coordinate descent-type” iteration, i.e., a round of &ng

control component minimizations, each taking into accoufftWill be instead a value with an agent-by-agent optimality
the results of the earlier minimizations. property, to be defined in the next section. This is consisten

Iw the convergence results that we will subsequently imbta
cf. Prop.2). Still, however, the policy: obtained through
the preceding multipass multiagent rollout policy has the
fundamental policy improvement propetfy, (z) < J,(z) for
all z. This can be seen by a slight extension of the proof of
the subsequent Prop. 2.

This coordinate descent view suggests that one may obt
further policy improvements wittmultiple rounds of coor-
dinate descent minimization8y this we mean that for a
given and fixed state, after computing the multiagent rollout
controls i1 (x), ..., im(x) using Eq.(14), we use them to
replace the base controls (z), ..., um(x), and repeat once
more the multiagent policy improvement operation [while g _

Generally, the convergence of the coordinate descent mhetbothe

keeplng the function/ in Eq'(14) equal to the base pOI'Cyminimum of a multivariable optimization cannot be guaradtexcept under
cost functlonJH]. special conditions, which are not necessarily satisfietiiwiour context.
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C. Convergence to an Agent-by-Agent Optimal Policy optimal policy is guaranteed to be (overall) optimal amdmg t

An important fact is that multiagent Pl need not convergte‘!pe of multivariable optimization problems where coogat

to an optimal policy. Instead we will show convergence to eSCent is guaranteed to converge to an optimal solution.
different type of optimal policy, which we will now define. For example positive definite quadratic problems or prolslem

We say that a policy: = {si1, ..., um) is agent-by-agent involying differentiable strictly convex functiqns -(se67|],
optimalif 1 € MVH(JM)’ or equivalently [cf. Eq.(14)], if for Sectlon 3.7). Generally, agent—by—aggnt ppumallty may be
all statesz — 1,...,n, and agent§ — 1....,m, we have viewed as an acceptable form of_ optimality for many types

of problems, but there are exceptions.

Our main result is that the one-agent-at-a-time Pl alguorith
generates a sequence of policies that converges in a finite
number of iterations to a policy that is agent-by-agentropti
However, we will show that even if the final policy produced
by one-agent-at-a-time Pl is not optimal, each generatédypo

mey(ﬂl (,T), cee 7#771(55))

. (g(x,ul(x), ey i (), y) + onH(y))

n

= min mey (Ml(x), ey to—1 (), ug, is no worse than its predecessor. In the presence of appaexim
ue€le(@) = tions, which are necessary for large problems, it appeats th
pe1 (@), i () the policies produced by multiagent PI are often of sufficien

quality for practical purposes, and not substantially wdlean

the ones produced by (far more computationally intensive)
approximate Pl methods that are based on all-agents-at-onc
lookahead minimization.

To interpret this definition, let a policy = {p1, ..., ftm} For the proof of our convergence result, we will use a special
be given, and consider for evefye {1,...,m} the single rule for breaking ties in the policy improvement operation
agent DP problem where for all£ ¢ the ith policy compo- in favor of the current policy component. This rule is easy
nents are fixed at;, while the¢th policy component is subjectto enforce, and guarantees that the algorithm cannot cycle
to optimization. Then by viewing the preceding definition aBetween policies. Without this tie-breaking rule, thedaling
the optimality condition for all the single agent problemsproof shows that while the generated policies may cycle, the
we can conclude that is agent-by-agent optimal if eachcorresponding cost function values converge to a cost fumct
componenty, is optimal for the/th single agent problem; value of some agent-by-agent optimal policy.
in other words by usingu,, each agent acts optimally, In the following proof and later all vector inequalities are
assuming all other agents# ¢ do not deviate from the policy meant to be componentwise, i.e., for any two vectérand
componentg:;. Note that agent-by-agent optimality is related’, we write
to the notion of a Nash equilibrium where we view the agents J< g
as the players of a multi-person game with the same objective -
function for all the players. For notational convenience, we also introduce the Bellman

While an (overall) optimal policy is agent-by-agent optimaoperator7), that maps a function of the stafeto the function
the reverse is not true as the following example shows.  of the stateT),J given by

: (g(x,/u (x)v s 7M€—1(x)a Ugy he+1 (ZC),

(). 9) + 0 ()

it J(x) < J'() for all 2.

Example 5 (Counterexample for Agent-by-Agent Optimality)

Consider an infinite horizon problem, which involves two
agents f» = 2) and a single state. Thus the state does not
change and the costs of different stages are decoupled (the
problem is essentially static). Each of the two agents at®o

(@) @) = 3 pay (1)) (92 1(2). ) + @)

r=1,...,n.

between the two controls 0 andd; € {0,1} andus € {0, 1}.
The cost per stage is equal to 2 ifu; # us, is equal to 1 if
u1 = uz = 0, and is equal to 0 ifu; = u2 = 1. The unique
optimal policy is to applyui (x) = 1 andu2(x) = 1. However,
it can be seen that the suboptimal policy that appliege) = 0

Proposition 2:Let {¢*} be a sequence generated by the o
agent-at-a-time Pl algorithm (13) assuming that ties inpbkécy
improvement operation of Eq.(14) are broken as follows:olf
any?=1,...,m andz, the control componeni,(z) attains the
minimum in Eq.(14), we choose

ne-

f

and u2(z) = 0 is agent-by-agent optimal.

The preceding example is representative of an entire cla
of DP problems where an agent-by-agent optimal policy
not overall optimal. Any static (single step) multivariabl
optimization problem where there are nonoptimal solutio
that cannot be improved upon by a round of coordinam
descent operations (sequential component minimizatimms,
component-at-a-time) can be turned into an infinite hor2én
example where these nonoptimal solutions define agent-by-
agent optimal policies that are not overall optimal. Cosegr, ~ Proof: We recall that for giveny and J, we denote by
one may search for problem classes where an agent-by-agéfji(J) the set of policieg: satisfying Eq.(14). The critical

4SS fe(z) = pe(z)

is[even if there are other control components wittiiia(z) that
attain the minimum in addition tg(x)]. Then for allz andk,
Qve have

e JMIH»] (:1:) < Juk (:E),

and after a finite number of iterations, we hgve™ = 4*, in
\\I/vhich case the policieg"*! and " are agent-by-agent optimal.

N
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step of the proof is the following monotone decrease inequ#ll follows that eitherJ,»+1 = J,x, or else we have strict
ity: policy improvement, i.e.J,x+1(x) < J,x(x) for at least one
. statex. As long as strict improvement occurs, no generated
Tpd = Tud < J, for all J with 7,J < .J policy can be repeated by the algorithm. Since there are only
andji € MH(J), (16) finitely many policies, it follows that within a finite number
of iterations, we will haveJ,x+1 = J,x. Once this happens,

which yields as a special cadg.J,, < J,, sinceTy,J, = Ju. equality will hold throughout in Eq.(17). This implies, g
This parallels a key inequality for standard PI, namely thajsg the preceding proof, that

Ty J, < Jy, for all i such thatT; J,, = T'J,, which lies at
the heart of its convergence proof. Once Eq.(16) is shoven, th i ( ’“*1(;3) k1 (x))
monotonicity of the operatdf; implies the cost improvement ! 112

property J; < J,, and by using the finiteness of the set of =t - -
policies, the finite convergence of the algorithm will fallo : (9($7M1+ (), 5" (@), y) + (y))
We will give the proof of the monotone decrease inequality n
(16) for the casen = 2. The proof for an arbitrary number = m[}n mey(ulf+l(£v),u2)
of componentsn > 2 is entirely similar. Indeed, i, J < J u2€Uz(w) =7
andii € M, (J), we have for all states, , (g(:c,u’f+1(a:),uQ,y) +ad (y))
(T[LJ) (.CC) = mey (ﬂl(x)v /22 (x)) = mey (:ullﬁ_l (‘T)a MIQC (1‘))
y=1 y=1
(9. (@), fo(@),y) + @ (v)) (9t @) b @)y) + e v), (28)
=2 > ey (o), 2) e
2 2(Z y=1 n
k+1 k
- Pay(py (), pg(z
.(g(gc,ul(:c),ug,y)—f—aJ(y)) ; y (1 (@), w5 ()
n . k+1 k N
= WA (A CINTAED) (9o ™! @ (@)9) + aTs )
y=1 n
. k
- = min Pay (U1, py (@
: (g(waul(w),uz(w)ay) + aJ(y)) mEUl(w)y; v i43(2)
n k
S (g (2w, g5 (), y) + adyx (y)
o ; Py (u1, pa(2)) n( )
‘ = mey (/L?(I), lec(x))
. (g(x7ulaﬂ2(x)7y) + a’](y)) y=1
<3 by (1) 12(0)) (9@ b @), 1 (@), ) + ().
y=1 In view of our tie breaking rule, this equation implies that
. (g(x,ul (), pa(x),y) + aJ(y)) pitt = b, and then Eq.(18) implies thaty ™! = 4%, Thus
(T, ) () we havepr+! = 4*, and from the preceding two equations,
B it follows that **' and 1/* are agent-by-agent optimal. B
<J(x),
where: D. Variants - Value and Policy Approximations

(1) The first equality uses the definition of the Bellman An important variant of multiagent Pl is an optimistic

operator forj. version, whereby policy evaluation is performed by using a

(2) The first two inequalities hold by the definition Ofgjnite number of one-agent-at-a-time value iterationssHpe
policies /i € M#(J)'_ ) . of method together with a theoretical convergence anabfsis
(3) The last equality is the definition of the Bellman operatqy, jiagent value iteration is given in the paper [5] and ie th

for pu. _ o _ monograph [3] (Sections 5:%.6). It is outside the scope of
(4) The last inequality is the assumpti@hJ < J. this paper.
By letting J = J,» in the monotone decrease inequality ag Example 5 shows, there may be multiple agent-by-agent
(16), we havel) s J SH{M- In view of the monotonicity 4ptimal policies, with different cost functions. This #irates
of Tynir, we also havel’ [ Jyx < T Jys forall £> 1, hat the policy obtained by the multiagent PI algorithm may
so that depend on the starting policy. It turns out that the same
Tt = lim Ték+1ka < Tyendye < . 17) example_can be used to show that the _pollcy obtained by
o0 P the algorithm depends also on the order in which the agents
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select their controls. projection of J, onto a subspace spanned by basis functions
or features, such as temporal difference methods, inaudin
Example 6 (Dependence of the Final Policy on the AgemD(\) and LSPEAR), or methods based on matrix inversion
Iteration Order) such as LSTDX). We refer to RL textbooks, such as [65],
Consider the problem of Example 5. In this problem therfr9], and the approximate DP book [13] for detailed accounts
are two agent-by-agent optimal policies: the optimal pofic  of these methods. We next discuss an alternative that isibase
wherepi (z) =1 andus(z) = 1, and the suboptimal policy on aggregation.

wherefi; (z) = 0 and fi2 () = 0. Let the starting policy be’ . L . .
whered(z) = 1 and i3 (z) = 0. Then if agent 1 iterates first, 2) Value and Policy Approximations with Aggregation

the algorithm will terminate with the suboptimal poligy: = /i, One of the possibilities for value and policy approximasion
while if agent 2 iter?tes first, the algorithm will terminatéth  in multiagent rollout arises in the context of aggregatisee
the optimal policy,u™ = p*. the books [13] and [2], and the references quoted there. In

As noted in Section II-E, it is possible to try to optimizeparticular, let us consider the aggregation with represtmet
the agent order at each iteration. In particular, first oj#ém features framework of [2], Section 6.2 (see also [13], ecti
over all single agent Q-factors, by solving theminimization 6.5). The construction of the features may be done with saphi
problems that correspond to each of the agénts1,...,m ticated methods, including the use of a deep neural network
being first in the multiagent rollout order. #f; is the agent as discussed in the paper [80]. Briefly, in this framework
that produces the minimal Q-factor, we fix to be the first we introduce an expanded DP problem involving a finite
agent in the multiagent rollout order. Then we optimize ovgiumber of additional states = 1,...,s, called aggregate
all single agent Q-factors, by solving the — 1 minimization states. Each aggregate states associated with a subsat;
problems that correspond to each of the agéngs/, being of the system’s state spacé. We assume that the sels;,
second in the multiagent rollout order, etc. i = 1,...,s, are nonempty and disjoint, and collectively

1) Value and Policy Neural Network Approximations include every state ofX. We also introduce aggregation

There are also several possible versions for approximgi@babilities mapping an aggregate stat® the subsetX;,
one-agent-at-a-time PI, including the use of value andcpoliand disaggregation probabilities,; mapping system states
neural networks. In particular, the multiagent policy impe- to subsets of aggregate stat¥s.
ment operation (14) may be performed at a sample set of statea base policyu defines a set of aggregate state cogtg),
z®, s = 1,...,q, thus yielding a training set of state-rolloutj = 1,... s, which can be computed by simulation involving
control pairs(z*, fi(z*)), s = 1,..., ¢, which can be used to an “aggregate” Markov chain (see [2], [13]). The aggregate
train a (policy) neural network to generate an approxinmgtio costsr,(j) define an approximatiod,, of the cost function
to the policyi.1° The policy i becomes the new base policyJ, of the base policy, through the equation
and can be used in turn to train a (value) neural network s
that approximates its cost function valudg. The approximate 7 — e (d )
multiagent PI cycle can thus be contir?ued (cf. Fig.7). Note ) ;%JWU)’ vex

that the training of the agent p_ohcwﬁg, -+ ftm May be done Then an (approximate) multiagent rollout poligy can be
separately for each agent, with separate neural networks., . Sa .

i ) e . defined by one-step lookahead usisig in place ofJ,, i.e.,
With this scheme, the difficulty with a large control space iS M h th Wi () is defined f
overcome by one-agent-at-a-time policy improvement, vhif* §J 6‘( E)' \1v4ere|z ethse #(d) Itsh € melt' or tanleLI t
the difficulty with a potentially large state space is oveneo and.J by _q.( )- In other words, ~ € ruftiagent roflou
by training value and policy networks. algpnthm with aggregatlon IS deflneq ye M“(J.“) msFead

The RL books [2] and [3] provide a lot of details relatin gf its_counterpart without aggregation, which is defined by
to the structure and the training of value and policy network’ < Mu(Jn). . o .

Note that using an approximation architecture based on

in various contexts, some of which apply to the algorithms

of the present paper. These include the use of distribut%%gregatlon has a significant advantage over a neural net-

asynchronous algorithms that are based on partitioninhef twork arghltecture because aggregat!on induces a Dl.:) Steuctu
hat facilitates Pl convergence and improves associatexd er

state space and training different networks on differems s . )
P ning o W I unds (see [2] and [13]). In particular, a multiagent Plalg

of the state space partition; see also the paper [15], whi ! based i dmit It lik
applies partitioning to the solution of a challenging clags ;1 m asfeP on gggregatli)hn fthr'm >a I(;onver?ence resuft fike
partial state information problems. € one of rop. £, except tat this resutt asserts conveegon

an agent-by-agent optimal policy for the associated aggeeg

Note also that the policy evaluatioﬁ of the base policy: bl B . i Pl with val
in the context of approximate Pl may be done in several difidf’0P'eM: BY contrast, appro?<|mate mu tllagent W't value
nd policy networks (cf. Fig.7) generically oscillates, as

t . Th includ thods that te iterativedy tl .
ent ways. These include methods that compute iteratively thh ' =% "0 C (2], [13], [65], [81].

10There are quite a few methods for training an approximatichitecture
to represent a given policy by using training data that issgated by using this . . .
policy. In principle, these methods can be based on claasdit methodology, E. POI'Cy Iteration and Q-Learning for the Reformulated
whereby a policy is represented as a classifier that asescistates to Problem
controls; see [68}[70]. There are also several related methods, known by L h ival f lated bl .
names such as imitation learning, apprenticeship learrondearning from et us return to the equivalent reformulated problem intro-

demonstrations; see [74]78]. duced at the beginning of Section IV and illustrated in Fig. 6
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Approximate
Approximate Multiagent
Base Policy Approximation J, to J, Policy
»{ Policy Evaluation > Improvement >
u Value Policy
Network Network

Approximation / to Multiagent Rollout Policy &

Fig. 7. Approximate multiagent Pl with value and policy netis. The value network provides a trained approximatioth& current base policy. The
policy network provides a trained approximatignto the corresponding multiagent rollout poligy The policy network may consist of. separately trained
policy networks, one for each of the agent policjes, . . ., fim.-

Instead of applying approximate multiagent Pl to generate aAccording to the standard theory of discounted MDP, the
sequence of multiagent policies preceding exact form of Pl will terminate in a finite number

. . . . of iterations with an optimal policy
ph () = (i (), 15 (@), g () (19)

as described in Section IV-A [cf. Egs.(13) and (14)],
can use an ordinary type of Pl method for the reformul
problem. The policies generated by this type of Pl will exthib
not only a dependence on the state[like the policies
(19)], but also a dependence on the agents’ controls, e., t pi(x) = fu(x),
generated policies will have the form ps(x) = fio (w, pi(2)),

(ﬂl(x),,&g(:v,ul), .. .,,&m(x,ul, e ,um_l))

;}lggr the reformulated problem, which in turn can yield an
optimal policy p* = (uf,...,uk,) for the original problem
through the successive substitutions

(u’f(gc),u’;(x,ul), . ,ufn(x,ul, . ,um_l)); (20)
an(z) = ﬂm (Ia :LLT(x)v s 7#2171(56))3

cf. the state space of Eqg.(11) of the reformulated problem. forall x—1.... 1

Thus the policies are defined over a space that grows exponen-

tially with the number of agents. This is a different PI methoFor example, the reader can verify that the algorithm will

than the one of Section IV-A, and will generate a differerfind the optimal policy of the one-state/two controls prob-

sequence of policies, even when the initial policy is thesanmem of Example 5 in two iterations, when started with the
The exact form of this Pl algorithm starts iteratibrwith a  strictly suboptimal agent-by-agent optimal poligy(x) = 0,

policy of the form (20), computes its corresponding evatiat p2(x,u1) = 0 of that problem.

(i.e., the cost function of the policy, defined over the sstece ~ Note thatthe policy improvement operation (22) requires

of the reformulated problem) optimization over single control components rather over th
o . ) entire vectoru = (u1, ..., u,), butitis executed over a larger
m— . .
Ji (@), T (zyun), o S (@ u, e um), (21) and more complex state spagehose size grows exponentially

with the number of agents. The difficulty with the large state

and generates the new policy space can be mitigated through approximate implementation

k+1 k+1 k+1 with policy networks, but for this it is necessary to constnu
(@), g ), i (@01 tm) polics net>\l/vorks at each iteration, with théh aéent network
through the following policy improvement operation: having as input(z,us,...,us—1); cf. Eq.(20). Similarly, in
1 . ) the case of approximate implementation with value networks
p(2) € arg min Ji (@, u1), it is necessary to construgt value networks at each iteration,
ket e . 9 with the ¢th agent network having as inpQt, w1, ..., ue—1);
pa (@ u1) € A8 oelale) Ji (@, u1, u2), cf. Eq.(21). Thus generating policies of the form (20) reesii

more complex value and policy network approximations. For
a moderate number of agents, however, such approximations

k41
P (T, 015 U —2) € may be implementable without overwhelming difficulty, vehil
arg Ienl}n ( )J,anl(a?,uh ey U2, U — 1), maintaining the advantage of computationally tractable-on
. o1 S8 m o agent-at-a-time policy improvement operations of the form
+1
Pt (T, Uy, e Um—1) € (22).
. - We may also note that the policy improvement operations
arg min 3 pay(ui,..tim) (22) can be executed in parallel for all states of the refermu

U, €U (x) =
v=t lated problem. Moreover, the corresponding Pl method has a

(9(,ur, e um,y) + ad)(y)). (22) potentially significant advantage: it aims to approximate a
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optimal policy rather than one that is merely agent-by-agetnuncated rollout, which operates similar to the finite kon
optimal. case described in Section II-E. Here, we use multiagent one-
1) Q-Learning for the Reformulated Problem step lookahead, we then apply rollout with base polidpr a
The preceding discussion assumes that the base policy Ifetited number of steps, and finally we approximate the cbst o
the multiagent rollout algorithm is a policy generated tigbh the remaining steps using some terminal cost function ag@pro
an off-line exact or approximate Pl algorithm. We may alse usnation.J. In truncated rollout schemeg,may be heuristically
the reformulated problem to generate a base policy throngh@hosen, may be based on problem approximation, or may
off-line exact or approximate value iteration (VI) or Q#esng be based on a more systematic simulation methodology. For
algorithm. In particular, the exact form of the VI algoritlcan  example, the valueg,(z) can be computed by simulation

be written in terms of multiple Q-factors as follows: for all z in a subset of representative states, ahdan be
JEr) = min QF(x,w), c=1,....n, selected from a parametric clgss of functions throughitrgin .
u1 €U () e.g., a least squares regression of the computed values. Thi
Ml u) = min QF(x,ur,us), appr(_)gimation_ may be perform_ed off-line, outsio_le the time-
u2€U2() sensitive restrictions of a real-time implementation, dhe
x=1,...,n, u; € Uy(x), (23) result may be used on-line in place df as a terminal cost

function approximation.
We have the following performance bounds the proofs of

QN (w,ur, ..oy U 1) which are given in [3] (Prop. 5.2.7).
. k
:umg}}fj(m) @ (11, U =1, ), Proposition 2: (Performance Bounds for Multiagent Trurezht
Rollout
z=1...n u €Uz), £=1,....m—1, Let u t)ae a base policy, and lef be a function of the state|
ft 1 B " Consider the multiagent rollout _scheme_ that con;ists ofstep
Qu (T, U1, U,) = pry(ula ey Um) lookahead, followed by rollout with a poligy for a given number
y=1 of steps, and followed by a terminal cost function approxiora
. (g(a:, UL, Um,Y) + onk(y)), (Jé)k/(\e/teuhg\?ethe generated rollout policy.
x=1,...,n, (ug,...,um) € U(x). ‘
] ) Ja(z) < J(x) + , z=1,...,n,
It gives both the value iterate sequer{cE'} and the Q-factor l-a
iterate sequence§Qt}, ¢ = 1,...,m, at the states of the | where
reformglated prgblem [cf. Eq.(ll).]. The convergence of tI”g c= max ((TuJ)(z) - J(z)).
preceding algorithm, as well as its asynchronous stochasti @=1,...,n
approximation/Q-learning variants, is covered by thegitzd | (b) We have
theory of infinite horizon DP and the theory of the Q-learning
method applied to the reformulated problem (see the arsalysi Ju(2) < Ju(@) + T— o 2, [ 7(v) = Ju(w)],
of Tsitsiklis [82], and subsequent mathematical works gn z=1,...,n.
the convergence of Q-learning and variations). In particu-

lar, the sequencgJ*} converges toJ* (the optimal cost These error bounds provide some guidance for the imple-

function), while each sequené€? (z,u1, ..., u,)} converges mentation of truncated rollout, as discussed in Section65.2

to Q7 (z,u1,...,ue), the optimal cost that can obtained ifof the book [3]. An important point is that the error bounds

we start atz, the agentsl,.../ choose next the controlsdo not depend on the number of agentsso the preceding

u1, ..., u, respectively, and all the subsequent agent contrgieoposition guarantees the same level of improvement of the

are chosen optimally. rollout policy over the base policy for one-agent-at-aim
Note that all of the iterations (23) involve minimizationesv and all-agents-at-once rollout. In fact there is no knowrer

a single agent control component, but are executed ovetea stgound that is better for standard rollout than for multiagen

space that grows exponentially with the number of agentllout. This provides substantial analytical support the

On the other hand one may use approximate versions of th@ltiagent rollout approach, and is consistent with theiltes

VI and Q-learning iterations (23) (such as SARSA [78], angf computational experimentation available so far.

DON [83]) to mitigate the complexity of the large state space

through the use of neural networks or other approximatioy. AUTONOMOUSMULTIAGENT ROLLOUT FOR INFINITE

architectures. Once an approximate policy is obtainedutino HORIZON PROBLEMS - SIGNALING POLICIES

a neural network-based variant of the preceding algoriibm, The autonomous multiagent rollout scheme of Section Il
can be used as a base policy for on-line multiagent rollcatt thcan be extended to infinite horizon problems. The idea isnagai

involves single agent component minimizations. to use in addition to the base poligy = (u1,. .., fim), @
. signaling policyi = (i1, - - ., im), Which is computed off-

Another approximation possibility, which may also be In particular, given a base policy and a signaling pol-
combined with value and policy network approximations i€y 1, the autonomous multiagent rollout algorithm gener-
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ates a policyii as follows. At stater, it obtains ji(z) policy. Again, the final rollout policy thus obtained can be

(/11 (x),... ,/lm(:v)), according to implemented on-line with the possibility of on-line reptamng
} and the attendant robustness property.
fir(z) € arg g}}n(m)E{ (@, u1, p2(2), .., pm (), w) Note that if the neural network were to provide a perfect

approximation of the rollout policy, the policy defined by
} Eq.(24) would be the same as the rollout policy, as noted

w) earlier. Thus, intuitively, if the neural network providegood

’ approximation of the rollout policy (14), the policy defined
} by Eq.(24) will have better performance than both the base
policy and the signaling policy. This was confirmed by the
computational results of the paper [64], within the contexd
multi-robot repair application. The advantage of autonoso
multiagent rollout with neural network approximations is
+ad, (f(a:, B1(@),s -+, i1 (), U,y w))} that it allows gpperximate policy impr_over_nent (:[0 the exten

that the functions:; are good approximations t;), while

(24) . .
allowing the speedup afforded by autonomous agent operatio

Note that the preceding computation of the controlgs well as on-line replanning when the problem data varies
fir(x),. .., fim(x) can be done asynchronously and in parallebver time. The following example aims to illustrate thesesisl
without agent intercommunication of their computed colstro
since the signaling policy valugs (z), ..., fim—1(z) and the Example 7 (Autonomous Spiders and Flies)
base policy valueg; (x),. .., um,—1(z) are available to all the
agents.

There is no restriction on the signaling policy, but of
course its choice affects the performance of the correspgnd
autonomous multiagent rollout algorithm. The simplestgpos
bility is to use as signaling policy the base policy; i@+ u.
However, this choice does not guarantee policy improvement
and can lead to poor performance, as evidenced by Example
3. Still, using the base policy as signaling policy can be an
attractive possibility, which one may wish to try (perhaps i
some modified form) on specific problems, in view of its
simplicity and its parallelization potential. On the othemd,

+ aJN (f(xaula/LQ(x)a cee ,Mm

~

€arg min E{ T, [ U, ..., (T
fiz(w) €arg min Eqg(z,fn(x), vz, - pim

+ aJN (f(x,,ul(l'),UQ, cee aﬂm

,&m( ) carg min E{g(fﬂ,//zl(x),...,ﬁm_l(l'),um,U))

U €Uy ()

Let us return to the two-spiders-and-two-flies problem of
Examples 2 and 4, and use it as a test of the sensitivity of au-
tonomous multiagent rollout algorithm with respect to atidns
in the signaling policy. Formally, we view the problem as an
infinite horizon MDP of the stochastic shortest path typecdie
that the base policy moves each spider selfishly towards the
closest surviving fly with no coordination with the other cmi,
while both the standard and the multiagent rollout algangh
are optimal.

We will now apply autonomous multiagent rollout with
a signaling policy that isarbitrary. This also includes the
case where the signaling policy is an error-corrupted wersi
of the standard (nonautonomous) multiagent rollout polafy

if the signaling policy is taken to be the (nonautonomous)
mult|agent rollout policyi € M u(Jy) [cf. Eq.(14)], i.e.,

1 = f1, the autonomous and nonautonomous multiagent rollout
policies coincide, so nothing is gained from the use of this
signaling policy.

A related interesting possibility is to choose the signal-
ing policy iz to approximate the multiagent rollout policy
g € My(J,). In particular, we may obtain the policy
= (f1,.-.,dm—1), by off-line training and approximation
in policy space using a neural network, with the training set
generated by the multiagent rollout poligye M uw(Jy); cf.
Section IV-C and Fig. 7. Here are two p035|b|I|t|es alongsthe
lines:

(a) We may use the approximate multiagent Pl algorithm
with policy network approximation (cf. Section IV-D), star
with some initial policy 1, and producek new policies
ut, ..., 1. Then the rollout scheme would ugé as signaling

the preceding discussion. The errors can be viewed as the
result of the approximation introduced by a policy network
that aims to represent the multiagent rollout policy (whish
optimal as discussed in Example 2). Then it can be verified
that the autonomous multiagent rollout policy with arbigra
signaling policy acts optimally as long as the spiders atally
separated on the line by at least one unit. What is happening
here is that the Q-factors that are minimized in Eq.(24) veo

a first stage cost (which is fixed at 1 and is independent of
the signaling policy), and the cost of the base polify(y)
starting from the next statg, which is not sufficiently affected

by the signaling policyi to change the outcome of the Q-factor
minimizations (24).

On the other hand, we saw in Example 4 that if we use as
signaling policy the base policy, and the two spiders stattie
same position, the spiders cannot coordinate their movieesio
and they never separate. Thus the algorithm gets locked onto
an oscillation where the spiders keep moving together badk a
forth, and (in contrast with the base policy) never captine t
flies!

policy, andp*~! as base policy. The final rollout policy thus The preceding example shows how a misguided choice of
obtained can be implemented on-line with the possibility afignaling policy (namely the base policy), may lead to very
on-line replanning and the attendant robustness property. poor performance starting from some initial states, bub als
(b) We may generate a base poligyby a policy gradient a very good performance starting from other initial states.
or random search method, and approximate the correspondgigce detecting the “bad” initial states may be tricky for a
multiagent rollout policyi € M,(J,) by off-line neural complicated problem, it seems that one should be careful
network training. Then the rollout scheme would use thealeuto support with analysis (to the extent possible), as well as
network policy thus obtained as signaling policy, ands base substantial experimentation the choice of a signalingcyoli
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The example also illustrates a situation where approximasults, error bounds, and approximation techniques for-st
tion errors in the calculation of the signaling policy mattedard rollout apply in suitably reformulated form. Moreomiie
little. This is the case where at the current state the agaets reformulated problem may form the basis for an approximate
sufficiently decoupled so that there is a dominant Q-faator Pl algorithm with agent-by-agent policy improvement, as we
the minimization (24) whose dominance is not affected mudtave discussed in Section IV-E.
by the choice of the signaling policy. As noted in Section In this paper, we have assumed that the control constraint
lll, one may exploit this type of structure by dividing theset is finite in order to argue about the computational effinye
agents in “coupled” groups, and require coordination of thef the agent-by-agent rollout algorithm. The rollout aigfum
rollout control selections only within each group, whileethitself and its cost improvement property are valid even & th
computation within different groups may proceed in patallease where the control constraint set is infinite, including
with a signaling policy such as the base policy. Then thaodel predictive control context (cf. Section II-E of the RL
computation time/overhead for selecting rollout contrmt®- book [2]), and linear-quadratic problems. However, it is as
agent-at-a-time using on-line simulation will be propontal yet unclear whether agent-by-agent rollout offers an athgmn
to the size of the largest group rather than proportional to the infinite control space case, especially if the one-ste
the number of agenfs. Note, however, that the “coupled”lookahead minimization in the policy improvement openatio
groups may depend on the current state, and that decidiagiot done by discretization of the control constraint aet]
which agents to include within each group may not be easgxhaustive enumeration and comparison of the associated Q-

Analysis that quantifies the sensitivity of the performandactors.
of the autonomous multiagent rollout policy with respect The two multiagent PI algorithms that we have proposed in
to problem structure is an interesting direction for furtheSections IV-A and IV-E differ in their convergence guaraste
research. The importance of such an analysis is magnifigtien implemented exactly. In particular the PI algorithm of
by the significant implementation advantages of autonomo8sction IV-A, in its exact form, is only guaranteed to terati
versus nonautonomous rollout schemes: the agents can canith an agent-by-agent optimal policy. Still in many cases
pute on-line their respective controls asynchronously &nd (including the problems that we have tested computatighill
parallel without explicit inter-agent coordination, whifaking may produce comparable performance to the standard PI algo-

advantage of local information for on-line replanning. rithm, which however involves prohibitively large comptita
even for a moderate number of agents. The PI algorithm of
VI. CONCLUDING REMARKS Section IV-E, in its exact form, is guaranteed to terminaité w

We have shown that in the context of multiagent problema&n optimal policy, but its implementation must be carried ou
an agent-by-agent version of the rollout algorithm has tiyyeaover a more complex space. Its approximate form with policy
reduced computational requirements, while still mairitin hetworks has not been tested on challenging problems, and
the fundamental cost improvement property of the standdtds unclear whether and under what circumstances it offers
rollout algorithm. There are several variations of roll@kt @ tangible performance advantage over approximate forms of
gorithms for multiagent problems, which deserve attentiofhe Pl algorithm of Section IV-A.

Moreover, additional computational tests in some praktica Our multiagent Pl convergence result of Prop.2 can be
multiagent settings will be helpful in comparatively ewvating €xtended beyond the finite-state discounted problem to more
some of these variations. general infinite horizon DP contexts, where the Pl algoritbm

We have primarily focused on the cost improvement propell-suited for algorithmic solution. Other extensionslirde
erty, and the important fact that it can be achieved atagent-by-agent variants of value iteration, optimistic ©t
much reduced computational cost. The fact that multiagdggrning and other related methods. The analysis of such
rollout cannot improve strictly over a (possibly suboptimaextensions is reported separately; see [3] and [5].
policy that is agent-by-agent optimal is a theoreticaltation, ~ We have also proposed new autonomous multiagent rollout
which, however, for many problems does not seem to prevé&ghemes for both finite and infinite horizon problems. The
the method from performing comparably to the far moriglea is to use a precomputed signaling policy, which emizodie
computationally expensive standard rollout algorithm igih sufficient agent coordination to obviate the need for irgerd
is in fact intractable for only a modest number of agents). communication during the on-line implementation of theoalg

It is useful to keep in mind that the multiagent rollout pglic rithm. In this way the agents may apply their control compo-
is essentially the standard (all-agents-at-once) rolfmlicy Nnents asynchronously and in parallel. We have still assumed
applied to the (equivalent) reformulated problem of FigoB ( however, that the agents share perfect state information (o

Fig. 6 in the infinite horizon case). As a result, known insigh perfect belief state information in the context of partitidte
observation problems). Intuitively, for many problemshiosld

*'The concept of weakly coupled subsystems figures prominéntthe e npossible to implement effective autonomous multiagent

literature of decentralized control of systems with comtins state and control I h h . . | f
spaces, where it is usually associated with a (nearly) bitbegonal structure rollout schemes that use state estimates In place of exact

of the Hessian matrix of a policy's Q-factors (viewed as fiowes of the states. Analysis and computational experimentation witths
agent control components,, . .., u, for a given state). In this context, the gchemes should be very useful and may lead to improved
blocks of the Hessian matrix correspond to the coupled graefpagents. . . .

This analogy, while valid at some conceptual level, doesfulby apply to underStand'ng of their properties.
our problem, since we have assumed a discrete control space.
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Several unresolved questions remain regarding algorithmij12]
variations and conditions that guarantee that our PI alyori
of Section IV-A obtains an optimal policy rather than one
that is agent-by-agent optimal (the paper [5] providesverie
discussions). Moreover, approximate versions of our Pb-alg
rithms that use value and policy network approximations arf
of great practical interest, and are a subject for furtheesii-
gation (the papers by Bhattachamaal. [15] and [64] discuss
in detail various neural network-based implementations, i
the context of some challenging POMDP multi-robot repair
applications). Finally, the basic idea of our approach, elgm
simplifying the one-step lookahead minimization definihg t
Bellman operator while maintaining some form of cost im-[16]
provement or convergence guarantee, can be extended in othe
directions to address special problem types that involviimu [17]
component control structures.

We finally mention that the idea of agent-by-agent rollouf1s]
also applies within the context of challenging determiaist
discrete/combinatorial optimization problems, whichalwe
constraints that couple the controls of different stagehil&V
we have not touched upon this subject in the present paper,
we have discussed the corresponding constrained multiagét”P]
rollout algorithms separately in the book [3] and the papér [

[21]

(13]

[15]

(19]

REFERENCES
[22]
[1] D. P. BertsekasPynamic Programming and Optimal Control, \Vol. |
4th ed. Belmont, USA: Athena Scientific, 2017.
. . . [23]
[2] D. P. BertsekasReinforcement Learning and Optimal Contrdel-
mont, USA: Athena Scientific, 2019.
[24]
D. P. BertsekasRollout, Policy lteration, and Distributed Reinforce-
ment Learning Belmont, USA: Athena Scientific, 2020.

(3]

25
[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, .M.ai, A. 1251
Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lilap, K.
Simonyan, and D. Hassabis, “Mastering chess and Shogi fyplsgl
with a general reinforcement learning algorithm,” arXieprint arXiv: [26]
1712.01815, 2017.

(5]

D. P. Bertsekas, “Multiagent value iteration algorithnn dynamic
programming and reinforcement learning,” arxiv: 2005212,62020. [27]
[6] D. P. Bertsekas, “Constrained multiagent rollout andtidimensional
assignment with the auction algorithm,” arXiv:2002.074Q020.

[28]
[7] D. P. Bertsekas, “Distributed dynamic programmindZEE Trans.
Autom. Contral vol. 27, no. 3, pp. 616616, Jun. 1982.
[8] D. P. Bertsekas, “Asynchronous distributed computatiof fixed
points,” Math. Programmingvol. 27, no. 1, pp. 107120, Sep. 1983.

[29]

[9] D. P. Bertsekas and J. N. Tsitsikli®arallel and Distributed Com-
putation: Numerical MethodsEnglewood Cliffs, USA: Prentice-Hall,

1989.

(30]

[10] D. P. Bertsekas and H. Z. Yu, “Asynchronous distributedlicy
iteration in dynamic programming,” irProc. 48th Annu. Allerton
Conf. Communication, Control, and Computirglerton, USA, 2010,

pp. 1368-1374.

(31]

[11] D. P. Bertsekas and H. Z. Yu, “Q-learning and enhancedicyo
iteration in discounted dynamic programmingylath. Oper. Res.

vol. 37, pp.66-94, Feb. 2012.

(32]

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRURY 2021

H. Z. Yu and D. P. Bertsekas, “Q-learning and policy atésn algo-
rithms for stochastic shortest path problems;in. Oper. Resvol. 208,
no.1, pp. 95132, Sep. 2013.

D. P. BertsekasDynamic Programming and Optimal Control, Vol. Il
4th ed. Belmont, USA: Athena Scientific, 2012.

D. P. BertsekasAbstract Dynamic ProgrammingBelmont, USA:
Athena Scientific, 2018.

S. Bhattacharya, S. Badyal, T. Wheeler, S. Gil, and DBé&ttsekas,
“Reinforcement learning for POMDP: Partitioned rolloutdapolicy
iteration with application to autonomous sequential nepabblems,”
IEEE Rob. Autom. Lettvol. 5, no. 3, pp.396%#3974, Jul. 2020.

H. S. Witsenhausen, “A counterexample in stochasttaxogm control,”
SIAM J. Contro] vol. 6, no. 1, pp. 133147, 1968.

H. S. Witsenhausen, “Separation of estimation androbfior discrete
time systems,Proc. IEEE vol. 59, no. 11, pp. 15571566, Nov. 1971.

J. Marschak, “Elements for a theory of teamblanage. Scj.vol. 1,
no. 2, pp.12#137, Jan. 1975.

R. Radner, “Team decision problems&nn. Math. Statist. vol. 33,
no. 3, pp.85#881, Sep. 1962.

H. S. Witsenhausen, “On information structures, fes#band causal-
ity,” SIAM J. Contro] vol. 9, no. 2, pp. 149160, 1971.

J. Marschak and R. Radndfconomic Theory of Teamblew Haven,
USA: Yale University Press, 1976.

N. Sandell, P. Varaiya, M. Athans, and M. Safonov, “Sayrvof
decentralized control methods for large scale systet&EE Trans.
Autom. Contral vol. 23, no. 2, pp. 108128, Apr. 1978.

T. Yoshikawa, “Decomposition of dynamic team decisjproblems,”
IEEE Trans. Autom. Contrplol. 23, no. 4, pp. 62#632, Aug. 1978.

Y. C. Ho, “Team decision theory and information strues)” Proc.
IEEE, vol. 68, no. 6, pp. 644654, Jun. 1980.

D. Bauso and R. Pesenti, “Generalized person-by-pecgdimization
in team problems with binary decisions,” Proc. American Control
Conf, Seattle, USA, 2008, pp. 717722.

D. Bauso and R. Pesenti, “Team theory and person-bygpeopti-
mization with binary decisions SIAM J. Control Optim.vol. 50, no. 5,
pp. 3011-3028, Jan. 2012.

A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentradizstochastic
control with partial history sharing: A common informatiapproach,”
IEEE Trans. Autom. Contrplol. 58, no. 7, pp. 16441658, Jul. 2013.

A. Nayyar and D. Teneketzis, “Common knowledge and sequ
tial team problems,”IEEE Trans Autom. Contrplvol. 64, no.12,
pp.5108-5115, Dec. 2019.

Y. Y. Li, Y. J. Tang, R. Y. Zhang, and N. Li, “Distributeceinforcement
learning for decentralized linear quadratic control: A igive-free
policy optimization approach,” arXiv:1912.09135, 2019.

G. Qu and N. Li, “Exploiting Fast Decaying and Localitg Multi-
Agent MDP with Tree Dependence Structure,”Rroc. of CDGC Nice,
France, 2019.

A. Gupta, “Existence of team-optimal solutions in Etaieams with
common information: A topology of information approaclg§1AM J.
Control Optim, vol. 58, no. 2, pp. 9981021, Apr. 2020.

F. Bullo, J. Cortes, and S. MartineRjstributed Control of Robotic Net-
works: A Mathematical Approach to Motion Coordination Afigloms
St. Princeton, USA: Princeton University Press, 2009.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT A POLICY ITERATION

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

M. Mesbahi and M. EgerstedBraph Theoretic Methods in Multiagent
Networks Princeton, USA: Princeton University Press, 2010.

M. S. Mahmoud Multiagent Systems: Introduction and Coordination [53]

Control. Boca Raton, USA: CRC Press, 2020.

R. Zoppoli, M. Sanguineti, G. Gnecco, and T. Pariskhéural Approx-
imations for Optimal Control and Decisiorspringer, 2020.

F. A. Oliehoek and C. Amatd Concise Introduction to Decentralized
POMDPs Springer International Publishing, 2016.

P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. MCde¢e, “A
survey of learning in multiagent environments: Dealing hwiton-
stationarity,” arXiv:1707.09183, 2017.

K. Q. Zhang, Z. R. Yang, and T. Basar, “Multi-agent feirte-
ment learning: A selective overview of theories and alboni,”
arXiv:1911.10635, 2019.

L. S. Shapley, “Stochastic gamesProc. Natl. Acad. Sci.vol. 39,
no. 10, pp.10951100, 1953.

M. L. Littman, “Markov games as a framework for multieg

reinforcement learning,” iftMachine Learning Proceedings 199W.

W. Cohen and H. Hirsh, Eds. Amsterdam, The Netherlandsvigise
1994, pp. 157163.

K. P. Sycara, “Multiagent systemsfl Mag., vol. 19, no. 2, pp. 7992,
Jun. 1998.

P. Stone and M. Veloso, “Multiagent systems: A surv@nfra machine
learning perspective,’Auton. Roh. vol. 8, no.3, pp.345383, Jun.
2000.

L. Panait and S. Luke, “Cooperative multi-agent leagniThe state of
the art,” Auton. Agen. Multi-Agent Systvol. 11, no. 3, pp. 38%434,
Nov. 2005.

L. Busoniu, R. Babuska, and B. De Schutter, “A compreien
survey of multiagent reinforcement learningZEE Trans. Syst., Man,
Cybern., Part Cvol. 38, no. 2, pp.156172, Mar. 2008.

L. Busoniu, R. Babuska, and B. De Schutter, “Multi-ageeinforce-
ment learning: An overview,” irlnnovations in Multi-Agent Systems

and Applications-1D. Srinivasan and L. C. Jain, Eds. Berlin, Germany:

Springer, 2010, pp. 183221.

L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Indedent rein-
forcement learners in cooperative Markov games: A survggarding
coordination problemsKnowl. Eng. Reyvol. 27, no. 1, pp. 31, Feb.
2012.

P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A sunand critique
of multiagent deep reinforcement learning\iton. Agent. Multi-Agent
Syst, vol. 33, no. 6, pp. 758797, Oct. 2019.

A. OroojlooyJadid and D. Hajinezhad, “A review of coogtive multi-
agent deep reinforcement learning,” arXiv:1908.03963.920

T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep m@icément
learning for multiagent systems: A review of challengedytsans, and
applications,”IEEE Trans Cybern.vol. 50, no. 9, pp. 38263839, Sep.
2020.

G. Tesauro, “Extending Q-learning to general adaptmalti-agent
systems,” inProc. 16th Int. Conf. Neural Information Processing
Systems2004, pp. 871-878.

F. A. Oliehoek, J. F. P. Kooij, and N. Vlassis, “The crasgropy
method for policy search in decentralized POMDPkformatica
vol. 32, no. 4, pp. 341357, 2008.

P. Pennesi and I. C. Paschalidis, “A distributed actitie algorithm

(54]

[55]

[56]

[57]

(58]

[59]

(60]

(61]

(62]

(63]

(64]

(65]

(66]

(67]

(68]

(69]

271

and applications to mobile sensor network coordinationblems,”
IEEE Trans. Autom. Contrphol. 55, no. 2, pp. 492497, Feb. 2010.

I. C. Paschalidis and Y. W. Lin, “Mobile agent coordiivet via a
distributed actor-critic algorithm,” ifProc. 19th Mediterranean Conf.
Control Automation Corfu, Greece, 2011, pp. 644649.

S. Kar, J. M. F. Moura, and H. V. PoorQ)D-Learning: A collaborative
distributed strategy for multi-agent reinforcement léagn through
consensus + innovationslEEE Trans. Signal Processvol. 61, no. 7,
pp. 1848-1862, Apr. 2013.

J. N. Foerster, Y. M. Assael, N. De Freitas, and S. White$Learning
to Communicate with Deep Multi-Agent Reinforcement Leagjl
in Proc. 30th Int. Conf. Neural Information Processing Sysem
Barcelona, Spain, 2016, pp.2132145.

S. Omidshafiei, A. A. Agha-Mohammadi, C. Amato, S. Y. Lili P.
How, and J. Vian, “Graph-based cross entropy method forirsplv
multi-robot decentralized POMDPs,” iroc. IEEE Int. Conf. Robotics
and Automation Stockholm, Sweden, 2016, pp. 5395402.

J. K. Gupta, M. Egorov, and M. Kochenderfer, “Coopemtmulti-
agent control using deep reinforcement learning,Pimc. Int. Conf.
Autonomous Agents and Multiagent SysteBest Papers, Brazil, 2017,
pp. 66-83.

R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and |. Mordgt‘Multi-
agent actor-critic for mixed cooperative-competitive ieswments,” in
Proc. 31st Int. Conf. Neural Information Processing Sysiebrong
Beach, USA, 2017, pp. 637%390.

M. Zhou, Y. Chen, Y. Wen, Y. D. Yang, Y. F. Su, W. N. Zhang, D
Zhang, and J. Wang, “Factorized Q-learning for large-soaléi-agent
systems,” arXiv:1809.03738, 2018.

K. Q. Zhang, Z. R. Yang, H. Liu, T. Zhang, and T. BasarulliF de-
centralized multi-agent reinforcement learning with nateed agents,”
arXiv:1802.08757, 2018.

Y. Zhang and M. M. Zavlanos, 2019 “Distributed off-poji actor-
critic reinforcement learning with policy consensus,” Rmoc. |IEEE
58th Conf. Decision and ControNice, France, 2018, pp. 46741679.

C. S. de Witt, J. N. Foerster, G. Farquhar, P. H. S. TorrBAehmer,
and S. Whiteson, “Multi-agent common knowledge reinfoream
learning”, in Proc. 31st Int. Conf. Neural Information Processing
SystemsVancouver, Canada, 2019, pp. 9923939.

D. P. Bertsekas, “Multiagent rollout algorithms andnfercement
learning,” arXiv: 2002.07407, 2019.

S. Bhattacharya, S. Kailas, S. Badyal, S. Gil, and D. ért&kas,
“Multiagent rollout and policy iteration for POMDP with afigation
to multi-robot repair problems,” ifProc. Conf. Robot Learning, 2020
also arXiv preprint, arXiv:2011.04222.

D. P. Bertsekas and J. N. Tsitsiklileuro-Dynamic Programming
Belmont, USA: Athena Scientific, 1996.

G. Tesauro, and G. R. Galperin, “On-line policy improvent using
Monte-Carlo search,” inProc. 9th Int. Conf. Neural Information
Processing SystemBenver, USA, 1996, pp. 1068L074.

D. P. BertsekasNonlinear Programming 3rd ed. Belmont, USA:
Athena Scientific, 2016.

M. G. Lagoudakis and R. Parr, “Reinforcement learnisgckssifica-
tion: Leveraging modern classifiers,” Proc. 20th Int. Conf. Machine
Learning Washington, USA, 2003, pp. 424131.

C. Dimitrakakis and M. G. Lagoudakis, “Rollout sampgjiapproximate
policy iteration,” Mach. Learn, vol. 72, no. 3, pp. 15#171, Jul. 2008.



272

[70]

[71]

[72]

(73]

[74]

[75]

[76]

[77]

(78]

[79]

(80]

(81]

(82]

(83]

IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRURY 2021

A. Lazaric, M. Ghavamzadeh, and R. Munos, “Analysis of a deep reinforcement learning¥ature vol. 518, no. 7540, pp. 52933,
classification-based policy iteration algorithm,”fmoc. 27th Int. Conf. 2015.
Machine Learning Haifa, Israel, 2010.

P. Abbeel and A. Y. Ng, “Apprenticeship learning via émge rein-
forcement learning,” irfProc. 21st Int. Conf. Machine Learnin@anff,
Canada, 2004. T Dimitri Bertsekas undergraduate studies were in

44 engineering at the National Technical University of
Athens, Greece. He obtained his MS in electrical
engineering at the George Washington University,
Wash. DC in 1969, and his Ph.D. in system science
in 1971 at the Massachusetts Institute of Technol-
ogy.

Dr. Bertsekas has held faculty positions with
the Engineering-Economic Systems Dept., Stanford
H. Ben Amor, D. Vogt, M. Ewerton, E. Berger, B. Jung, and J University (1971-1974) and the Electrical Engineer-
Peters, “Learning responsive robot behavior by imitatian, Proc. ing Dept. Of the University of lllinois, Urbana (1974-1979%rom 1979
IEEE/RSJ Int. Conf. Intelligent Robots and Systeffskyo, Japan, to 2019 he was with the Electrical Engineering and Computeiere
2013, pp.32573264. Department of the Massachusetts Institute of Technologyl. TV, where

he served as McAfee Professor of Engineering. In 2019, heapasinted
J. Lee, “A survey of robot learning from demonstratidies human- Fulton Professor of Computational Decision Making, and latfne faculty
robot collaboration,” arXiv:1710.08789, 2017. member at the department of Computer, Information, and dl@tiSystems

Engineering at Arizona State University, Tempe, while rtaimng a research

M. K. Hanawal, H. Liu, H. H. Zhu, and I. C. Paschalidis, éarning position at MIT. His research spans several fields,_inc_@ctixptimization_,
policies for Markov decision processes from dat&EE Trans. Autom. Control, large-scale computation, and data communicatietworks, and is
Control, vol. 64, no. 6, pp. 22982309, Jun. 2019. closely tied to his teaching and bqok authoring activitiee has written
numerous research papers, and eighteen books and researdgraphs,
several of which are used as textbooks in MIT classes. Mastntey Dr
Bertsekas has been focusing on reinforcement learning, eartdored a
textbook in 2019, and a research monograph on its distdbaiel multiagent
implementation aspects in 2020.

Professor Bertsekas was awarded the INFORMS 1997 Prizedsed®ch
Excellence in the Interface Between Operations Research Gomputer
Science for his book “Neuro-Dynamic Programming”, the 2@@&ek Na-
. . . tional Award for Operations Research, the 2001 ACC John RyaRani
R. S. Sution an(_j A. G. Bar.tRelnforcement Learning: An Introductipn Education Award, the 2009 INFORMS Expository Writing Awatte 2014
2nd Ed. Cambridge, USA: MIT Press, 2018. ACC Richard E. Bellman Control Heritage Award for “contrilans to the

. . foundations of deterministic and stochastic optimizatiased methods in sys-
D. P. Bertsekas, “Feature-based aggregation and deieforcement  emg and control,” the 2014 Khachiyan Prize for Life-Timecaémplishments
learning: A survey and some new implementation’EE/CAA J. iy Optimization, and the SIAM/MOS 2015 George B. DantzigzBriln 2018,
Autom. Sinicavol. 6, no. 1, pp. +31, Jan. 2019. he was awarded, jointly with his coauthor John Tsitsiklig INFORMS John
von Neumann Theory Prize, for the contributions of the neseanonographs
D. P. Bertsekas, "Approximate policy iteration: A sepvand some “parallel and Distributed Computation” and “Neuro-Dynanfrogramming”.
new methods,J. Control Theory Appl.vol. 9, no. 3, pp. 316335, Jul. |n 2001, he was elected to the United States National Acadefmngi-
2011; Expanded version appears as Lab. for Info. and DecBystem neering for “pioneering contributions to fundamental eesh, practice and

B. D. Argall, S. Chernova, M. Veloso, and B. Browning, $irvey of
robot learning from demonstrationRob. Auton. Systvol.57, no.5, | =
pp. 469-483, May 2009.

G. Neu and C. Szepesvari, “Apprenticeship learningngisinverse
reinforcement learning and gradient methods,” arXiv:13@64, 2012.

D. Gagliardi and G. Russo, “On a probabilistic appro&eisynthesize
control policies from example datasets,” arXiv:2005.11,12020.

T. T. Xu, H. H. Zhu, and |. C. Paschalidis, “Learning paetric
policies and transition probability models of Markov démisprocesses
from data,” Eur. J. Contro] 2020.

Report LIDS-2833, MIT, 2011. education of optimization/control theory, and especiifiyapplication to data
communication networks.”

J. N. Tsitsiklis, “Asynchronous stochastic approxiina and Q- Dr. Bertsekas’ recent books are “Introduction to Probgbil2nd Edition”

learning,” Mach. Learn, vol. 16, no. 3, pp. 185202, Sep. 1994. (2008), “Convex Optimization Theory” (2009), “Dynamic Bramming and

Optimal Control,” Vol. I, (2017), and Vol. II: (2012), “Abgict Dynamic
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Vengsll. G. Programming” (2018), “Convex Optimization Algorithms” (®5), “Rein-
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. @stski, forcement Learning and Optimal Control” (2019), and “Ratlo Policy
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. KingKkDmaran, Iteration, and Distributed Reinforcement Learning”(2p2éll published by
D. Wierstra, S. Legg, and D. Hassabis, “Human-level cortticbugh Athena Scientific.



