
IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021 249

Multiagent Reinforcement Learning:
Rollout and Policy Iteration

Dimitri Bertsekas

Abstract—We discuss the solution of complex multistage deci-
sion problems using methods that are based on the idea of policy
iteration (PI), i.e., start from some base policy and generate an
improved policy. Rollout is the simplest method of this type,
where just one improved policy is generated. We can view PI
as repeated application of rollout, where the rollout policy at
each iteration serves as the base policy for the next iteration.
In contrast with PI, rollout has a robustness property: it can be
applied on-line and is suitable for on-line replanning. Moreover,
rollout can use as base policy one of the policies produced by
PI, thereby improving on that policy. This is the type of scheme
underlying the prominently successful AlphaZero chess program.

In this paper we focus on rollout and PI-like methods for
problems where the control consists of multiple componentseach
selected (conceptually) by a separate agent. This is the class of
multiagent problems where the agents have a shared objective
function, and a shared and perfect state information. Basedon a
problem reformulation that trades off control space complexity
with state space complexity, we develop an approach, whereby
at every stage, the agents sequentially (one-at-a-time) execute a
local rollout algorithm that uses a base policy, together with some
coordinating information from the other agents. The amount of
total computation required at every stage grows linearly with the
number of agents. By contrast, in the standard rollout algorithm,
the amount of total computation grows exponentially with the
number of agents. Despite the dramatic reduction in required
computation, we show that our multiagent rollout algorithm has
the fundamental cost improvement property of standard rollout:
it guarantees an improved performance relative to the base policy.
We also discuss autonomous multiagent rollout schemes that
allow the agents to make decisions autonomously through the
use of precomputed signaling information, which is sufficient to
maintain the cost improvement property, without any on-line
coordination of control selection between the agents.

For discounted and other infinite horizon problems, we also
consider exact and approximate PI algorithms involving a new
type of one-agent-at-a-time policy improvement operation. For
one of our PI algorithms, we prove convergence to an agent-
by-agent optimal policy, thus establishing a connection with the
theory of teams. For another PI algorithm, which is executed
over a more complex state space, we prove convergence to an
optimal policy. Approximate forms of these algorithms are also
given, based on the use of policy and value neural networks.
These PI algorithms, in both their exact and their approximate

Manuscript received September 23, 2020; revised October 28, 2020; ac-
cepted October 30, 2020. Recommended by Associate Editor Qinglai Wei.

For a video lecture and slides based on this paper, see the webpages
of the books [2], [3] at the author’s web site: http://web.mit.edu/dimitrib/
www/RLbook.html.

Citation: D. Bertsekas, “Multiagent reinforcement learning: Rollout and
policy iteration,” IEEE/CAA J. Autom. Sinica, vol. 8, no. 2, pp. 249−272,
Feb. 2021.

D. Bertsekas is with the Arizona State University (ASU), Tempe, AZ 85281
USA, and also with Massachusetts Institute of Technology (MIT), Cambridge,
MA 02139 USA (e-mail: dimitrib@mit.edu).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2021.1003814

form are strictly off-line methods, but they can be used to provide
a base policy for use in an on-line multiagent rollout scheme.

Index Terms—Dynamic programming, multiagent problems,
neuro-dynamic programming, policy iteration, reinforcement
learning, rollout.

I. I NTRODUCTION

I N this paper we discuss the solution of large and challeng-
ing multistage decision and control problems, which in-

volve controls with multiple components, each associated with
a different decision maker or agent. We focus on problems that
can be solved in principle by dynamic programming (DP),
but are addressed in practice using methods of reinforcement
learning (RL), also referred to by names such as approximate
dynamic programming and neuro-dynamic programming. We
will discuss methods that involve various forms of the classical
method of policy iteration (PI), which starts from some policy
and generates one or more improved policies.

If just one improved policy is generated, this is called
rollout, with the initial policy calledbase policyand the
improved policy calledrollout policy. Based on broad and
consistent computational experience, rollout appears to be
one of the simplest and most reliable of all RL methods
(we refer to the author’s textbooks [1]−[3] for an extensive
list of research contributions and case studies on the use of
rollout). Rollout is also well-suited for on-line model-free
implementation and on-line replanning.

Approximate PI is one of the most prominent types of
RL methods. It can be viewed as repeated application of
rollout, and can provide (off-line) the base policy for use in a
rollout scheme. It can be implemented using data generated
by the system itself, and value and policy approximations.
Approximate forms of PI, which are based on the use
of approximation architectures, such as value and policy
neural networks, have most prominently been used in the
spectacularly successful AlphaZero chess program; see Silver
et al. [4]. In particular, in the AlphaZero architecture a policy
is constructed via an approximate PI scheme that is based
on the use of deep neural networks. This policy is used as
a base policy to generate chess moves on-line through an
approximate multistep lookahead scheme that applies Monte
Carlo tree search with an approximate evaluation of the
base policy used as a terminal cost function approximation.
Detailed descriptions of approximate PI schemes can be
found in most of the RL textbooks, including the author’s
[2], [3], which share the notation and point of view of the
present paper.



250 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

1) Our Multiagent Structure
The purpose of this paper is to survey variants of rollout

and PI for DP problems involving a controlu at each stage
that consists of multiple componentsu1, . . . , um, i.e.,

u = (u1, . . . , um), (1)

where the componentsuℓ are selected independently from
within corresponding constraint setsUℓ, ℓ = 1, . . . , m. Thus
the overall constraint set isu ∈ U , whereU is the Cartesian
product1

U = U1 × · · · × Um.

We associate each control componentuℓ with the ℓth of m
agents.

The term “multiagent” is used widely in the literature,
with several different meanings. Here, we use this term as
a conceptual metaphor in the context of problems with the
multi-component structure (1); it is often insightful to associate
control components with agent actions. A common example
of a multiagent problem is multi-robot (or multi-person)
service systems, often involving a network, such as delivery,
maintenance and repair, search and rescue, firefighting, taxicab
or utility vehicle assignment, and other related contexts.Here
the decisions are implemented collectively by the robots (or
persons, respectively), with the aid of information exchange
or collection from sensors or from a computational “cloud.”
The information may or may not be common to all the robots
or persons involved. Another example involves a network of
facilities, where service is offered to clients that move within
the network. Here the agents may correspond to the service
facilities or to the clients or to both, with information sharing
that may involve errors and/or delays.

Note, however, that the methodology of this paper applies
generally to any problem where the controlu consists ofm
components,u = (u1, . . . , um) [cf. Eq.(1)], independently of
the details of the associated practical context. In particular,
the practical situation addressed may not involve recognizable
“agents” in the common sense of the word, such as multiple
robots, automobiles, service facilities, or clients. For example,
it may simply involve control with several components, such
as a single robot with multiple moving arms, a chemical
plant with multiple interacting but independently controlled
processes, or a power system with multiple production centers.

As is generally true in DP problems, in addition to control,
there is an underlying state, denoted byx, which summarizes
all the information that is useful at a given time for the
purposes of future optimization. It is assumed thatx is
perfectly known by all the agents at each stage.2 In a PI
infinite horizon context, given the current policyµ [a function

1We will also allow later dependence of the setsUℓ on a system state.
More complex constraint coupling of the control componentscan be allowed
at the expense of additional algorithmic complications; see [3], [5], [6].

2Partial observation Markov decision problems (POMDP) can be converted
to problems involving perfect state information by using a belief state; see e.g.,
the textbook [1]. Our assumption then amounts to perfect knowledge of the
belief state by all agents. For example, we may think of a central processing
computational “cloud” that collects and processes state information, and
broadcasts a belief state to all agents at each stage.

that maps the current statex to an m-component control
µ(x) =

(
µ1(x), . . . , µm(x)

)
, also referred to as thebase

policy], the policy improvement operation portion of a PI
involves at each statex, a one-step lookahead minimization
of the general form

min
u∈U

H(x, u, Jµ), (2)

where Jµ is the cost function of policyµ (a function of
x), and H is a problem-dependent Bellman operator. This
minimization may be done off-line (before control has started)
or on-line (after control has started), and defines a new policy
µ̃ (also referred to as therollout policy), whereby the control
µ̃(x) to be applied atx is the one attaining the minimum
above. The key property for the success of the rollout and PI
algorithms is the policy improvement property

Jµ̃(x) ≤ Jµ(x), for all statesx, (3)

i.e., the rollout policy yields reduced cost compared with the
base policy, for all statesx. Assuming that each setUℓ is
finite (as we do in this paper), there are two difficulties with
the lookahead minimization (2), which manifest themselves
both in off-line and in on-line settings:

(a) The cardinality of the Cartesian productU grows ex-
ponentially with the numberm of agents, thus resulting in
excessive computational overhead in the minimization over
u ∈ U whenm is large.

(b) To implement the minimization (2), the agents need
to coordinate their choices of controls, thus precluding their
parallel computation.

In this paper, we develop rollout and PI algorithms, which,
as a first objective, aim to alleviate the preceding two dif-
ficulties. A key idea is to introduce a form of sequential
agent-by-agent one-step lookahead minimization, which we
call multiagent rollout. It mitigates dramatically the compu-
tational bottleneck due to (a) above. In particular,the amount
of computation required at each stage grows linearly with
the number of agentsm, rather than exponentially. Despite
the dramatic reduction in required computation, we show
that our multiagent rollout algorithm has the fundamental
cost improvement property (3): it guarantees an improved
performance of the rollout policy relative to the base policy.

Multiagent rollout in the form just described involves co-
ordination of the control selections of the different agents.
In particular, it requires that the agents select their controls
sequentially in a prespecified order, with each agent communi-
cating its control selection to the other agents. To allow parallel
control selection by the agents [cf. (b) above], we suggest to
implement multiagent rollout with the use of aprecomputed
signaling policythat embodies agent coordination. One possi-
bility is to approximately compute off-line the multiagentroll-
out policy through approximation in policy space, i.e., training
an approximation architecture such as a neural network to
learn the rollout policy. This scheme, calledautonomous
multiagent rollout, allows the use of autonomous, and faster
distributed and asynchronous on-line control selection by
the agents, with a potential sacrifice of performance, which



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 251

depends on the quality of the policy space approximation.
Note thatautonomous multiagent rollout makes sense only in
the context of distributed computation. If all computations are
performed serially on a single processor, there is no reasonto
resort to signaling policies and autonomous rollout schemes.

Let us also mention that distributed DP algorithms have
been considered in a number of contexts that involve parti-
tioning of the state space into subsets, with a DP algorithm
executed in parallel within each subset. For example dis-
tributed value iteration has been investigated in the author’s
papers [7], [8], and the book [9]. Also asynchronous PI
algorithms have been discussed in a series of papers of the
author and Yu [10]−[12], as well as the books [3], [13], [14] .
Moreover, distributed DP based on partitioning in conjunction
with neural network training on each subset of the partition
has been considered in the context of a challenging partial
state information problem by Bhattacharyaet al. [15]. The
algorithmic ideas of these works do not directly apply to
the multiagent context of this paper. Still one may envision
applications where parallelization with state space partitioning
is combined with the multiagent parallelization ideas of the
present paper. In particular, one may consider PI schemes that
involve multiple agents/processors, each using a state space
partitioning scheme with a cost function and an agent policy
defined over each subset of the partition. The agents may then
communicate asynchronously their policies and cost functions
to other agents, as described in the paper [10] and book
[3] (Section 5.6), and iterate according to the agent-by-agent
policy evaluation and policy improvement schemes discussed
in this paper. This, however, is beyond our scope and is left
as an interesting subject for further research.

2) Classical and Nonclassical Information Patterns
It is worth emphasizing that our multiagent problem for-

mulation requires that all the agents fully share information,
including the values of the controls that they have applied in
the past, and have perfect memory of all past information.
This gives rise to a problem with a so called “classical
information pattern,” a terminology introduced in the papers by
Witsenhausen [16], [17]. A fact of fundamental importance is
that problems possessing this structure can be addressed with
the DP formalism and approximation in value space methods
of RL. Problems where this structure is absent, referred to
as problems with “nonclassical information pattern,” cannot
be addressed formally by DP (except through impractical
reformulations), and are generally far more complicated, as
illustrated for linear systems and quadratic cost by the famous
counterexample of [16].

Once a classical information pattern is adopted, we may
assume that all agents have access to a system state3 and make
use of a simple conceptual model: there is a computational
“cloud” that collects information from the agents on-line,
computes the system state, and passes it on to the agents,

3The system state at a given time is either the common information of
all the agents, or a sufficient statistic/summary of this information, which
is enough for the computation of a policy that performs arbitrarily close to
optimal. For example in the case of a system with partial state observations,
we could use as system state a belief state; see e.g., [1].

who then perform local computations to apply their controls
as functions of the system state; see Fig. 1. Alternatively,
the agent computations can be done at the cloud, and the
results may be passed on to the agents in place of the exact
state. This scheme is also well suited as a starting point for
approximations where the state information made availableto
the agents is replaced by precomputed “signaling” policiesthat
guess/estimate missing information. The estimates are then
treated by the agents as if they were exact. Of course such
an approach is not universally effective, but may work well
for favorable problem structures.4 Its analysis is beyond the
scope of the present paper, and is left as a subject for further
research.

Fig. 1. Illustration of a conceptual structure for our multiagent system. The

“cloud” collects information from the environment and fromthe agents on-

line, and broadcasts the state (and possibly other information) to the agents

at each stage, who then perform local computations to apply their controls as

functions of the state information obtained from the cloud.Of course some

of these local computations may be done at the cloud, and the results may be

passed on to the agents in place of the exact state. In the caseof a problem with

partial state observation, the cloud computes the current belief state (rather

than the state).

We note that our multiagent rollout schemes relate to a
well-developed body of research with a long history: the
theory of teams and decentralized control, and the notion
of person-by-person optimality; see Marschak [18], Radner
[19], Witsenhausen [17], [20], Marschak and Radner [21],
Sandellet al. [22], Yoshikawa [23], Ho [24]. For more recent
works, see Bauso and Pesenti [25], [26], Nayyar, Mahajan, and
Teneketzis [27], Nayyar and Teneketzis [28], Liet al. [29],
Qu and Li [30], Gupta [31], the books by Bullo, Cortes, and
Martinez [32], Mesbahi and Egerstedt [33], Mahmoud [34],
and Zoppoli, Sanguineti, Gnecco, and Parisini [35], and the
references quoted there.

The connection of our work with team theory manifests
itself in our infinite horizon DP methodology, which includes
value iteration and PI methods that converge to a person-by-
person optimal policy. Note that in contrast with the present
paper, a large portion of the work on team theory and de-

4For example consider a problem where the agent locations within some
two-dimensional space become available to the other agentswith some delay.
It may then make sense for the agents to apply some algorithm to estimate
the location of the other agents based on the available information, and use
the estimates in a multiagent rollout scheme as if they were exact.



252 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

centralized control allows a nonclassical information pattern,
whereby the agents do not share the same state information
and/or forget information previously received, although they
do share the same cost function. In the case of a multiagent
system with partially observed state, this type of model is
also known as a decentralized POMDP (or Dec-POMDP), a
subject that has attracted a lot of attention in the last 20 years;
see e.g., the monograph by Oliehoek and Amato [36], and
the references quoted there. We may also note the extensive
literature on game-theoretic types of problems, includingNash
games, where the agents have different cost functions; see e.g.,
the surveys by Hernandez-Lealet al. [37], and Zhang, Yang,
and Basar [38]. Such problems are completely outside our
scope and require a substantial departure from the methods of
this paper. Zero-sum sequential games may be more amenable
to treatment with the methodology of this paper, because they
can be addressed within a DP framework (see e.g., Shapley
[39], Littman [40]), but this remains a subject for further
research.

In addition to the aforementioned works on team theory and
decentralized control, there has been considerable related work
on multiagent sequential decision making from a machine
learning perspective, often with the use of variants of policy
gradient, Q-learning, and random search methods. Works of
this type also have a long history, and they have been surveyed
over time by Sycara [41], Stone and Veloso [42], Panait
and Luke [43], Busoniu, Babuska, and De Schutter [44],
[45], Matignon, Laurent, and Le Fort-Piat [46], Hernandez-
Leal, Kartal, and Taylor [47], OroojlooyJadid and Hajinezhad
[48], Zhang, Yang, and Basar [38], and Nguyen, Nguyen,
and Nahavandi [49], who list many other references. For
some representative recent research papers, see Tesauro [50],
Oliehoek, Kooij, and Vlassis [51], Pennesi and Paschalidis
[52], Paschalidis and Lin [53], Kar, Moura, and Poor [54],
Foersteret al. [55], Omidshafieiet al. [56], Gupta, Egorov,
and Kochenderfer [57], Loweet al. [58], Zhou et al. [59],
Zhanget al. [60], Zhang and Zavlanos [61], and de Wittet
al. [62].

These works collectively describe several formidable diffi-
culties in the implementation of reliable multiagent versions
of policy gradient and Q-learning methods, although they have
not emphasized the critical distinction between classicaland
nonclassical information patterns. It is also worth notingthat
policy gradient methods, Q-learning, and random search are
primarily off-line algorithms, as they are typically too slow
and noise-afflicted to be applied with on-line data collection.
As a result, they produce policies that are tied to the model
used for their training. Thus, contrary to rollout, they arenot
robust with respect to changes in the problem data, and they
are not well suited for on-line replanning. On the other hand,
it is possible to train a policy with a policy gradient or random
search method by using a nominal model, and use it as a base
policy for on-line rollout in a scheme that employs on-line
replanning.

3) Related Works
The multiagent systems field has a long history, and the

range of related works noted above is very broad. However,

while the bottleneck due to exponential growth of computation
with the number of agents has been recognized [47], [48], it
has not been effectively addressed. It appears that the central
idea of the present paper, agent-by-agent sequential optimiza-
tion while maintaining the cost improvement property, has
been considered only recently. In particular, the approachto
maintaining cost improvement through agent-by-agent rollout
was first introduced in the author’s papers [5], [6], [63], and
research monograph [3].

A major computational study where several of the algo-
rithmic ideas of this paper have been tested and validated is
the paper by Bhattacharyaet al. [64]. This paper considers a
large-scale multi-robot routing and repair problem, involving
partial state information, and explores some of the attendant
implementation issues, including autonomous multiagent roll-
out, through the use of policy neural networks and other
precomputed signaling policies.

The author’s paper [6] and monograph [3] discuss con-
strained forms of rollout for deterministic problems, including
multiagent forms, and an extensive range of applications
in discrete/combinatorial optimization and model predictive
control. The character of this deterministic constrained rollout
methodology differs markedly from the one of the methods
of this paper. Still the rollout ideas of the paper [6] are
supplementary to the ones of the present paper, and point the
way to potential extensions of constrained rollout to stochastic
problems. We note also that the monograph [3] describes
multiagent rollout methods for minimax/robust control, and
other problems with an abstract DP structure.

4) Organization of the Paper
The present paper is organized as follows. We first introduce

finite horizon stochastic optimal control problems in Section
II, we explain the main idea behind the multiagent rollout
algorithm, and we show the cost improvement property. We
also discuss variants of the algorithm that are aimed at
improving its computational efficiency. In Section III, we
consider the implementation of autonomous multiagent rollout,
including schemes that allow the distributed and asynchronous
computation of the agents’ control components.

We then turn to infinite horizon discounted problems. In
particular, in Section IV, we extend the multiagent rollout
algorithm, we discuss the cost improvement property, and we
provide error bounds for versions of the algorithm involving
rollout truncation and simulation. We also discuss two types
of multiagent PI algorithms, in Sections IV-A and IV-E,
respectively. The first of these, in its exact form, converges
to an agent-by-agent optimal policy, thus establishing a con-
nection with the theory of teams. The second PI algorithm,
in its exact form, converges to an optimal policy, but must
be executed over a more complex state space. Approximate
forms of these algorithms, as well as forms of Q-learning,
are also discussed, based on the use of policy and value
neural networks. These algorithms, in both their exact and their
approximate form are strictly off-line methods, but they can be
used to provide a base policy for use in an on-line multiagent
rollout scheme. Finally, in Section V we discuss autonomous
multiagent rollout schemes for infinite horizon discounted



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 253

Fig. 2. Illustration of theN -stage stochastic optimal control problem. Starting from state xk, the next state under controluk is generated according to a
system equation

xk+1 = fk(xk, uk, wk),

wherewk is the random disturbance, and a random stage costgk(xk , uk, wk) is incurred.

problems, which allow for distributed on-line implementation.

II. M ULTIAGENT PROBLEM FORMULATION - FINITE

HORIZON PROBLEMS

We consider a standard form of anN -stage DP problem (see
[1], [2]), which involves the discrete-time dynamic system

xk+1 = fk(xk, uk, wk), k = 0, 1, . . . , N − 1, (4)

wherexk is an element of some (possibly infinite) state space,
the controluk is an element of some finite control space, and
wk is a random disturbance, with given probability distribution
Pk(· | xk, uk) that may depend explicitly onxk and uk, but
not on values of prior disturbanceswk−1, . . . , w0. The control
uk is constrained to take values in a given subsetUk(xk),
which depends on the current statexk. The cost of thekth
stage is denoted bygk(xk, uk, wk); see Fig. 2.

We consider policies of the form

π = {µ0, . . . , µN−1},

whereµk maps statesxk into controlsuk = µk(xk), and sat-
isfies a control constraint of the formµk(xk) ∈ Uk(xk) for all
xk. Given an initial statex0 and a policyπ = {µ0, . . . , µN−1},
the expected cost ofπ starting fromx0 is

Jπ(x0) = E

{
gN (xN ) +

N−1∑

k=0

gk

(
xk, µk(xk), wk

)
}

,

where the expected value operationE{·} is with respect to
the joint distribution of all the random variableswk and xk.
The optimal cost starting fromx0, is defined by

J∗(x0) = min
π∈Π

Jπ(x0),

whereΠ is the set of all policies. An optimal policyπ∗ is one
that attains the minimal cost for everyx0; i.e.,

Jπ∗(x0) = min
π∈Π

Jπ(x0), for all x0.

Since the optimal cost functionJ∗ and optimal policyπ∗ are
typically hard to obtain by exact DP, we consider approximate
DP/RL algorithms for suboptimal solution, and focus on
rollout, which we describe next.

A. The Standard Rollout Algorithm and Policy Improvement

In the standard form of rollout, given a policyπ =
{µ0, . . . , µN−1}, calledbase policy, with cost-to-go from state
xk at stagek denoted byJk,π(xk), k = 0, . . . , N , we obtain an
improved policy, i.e., one that achieves cost that is less orequal
to Jk,π(xk) starting from eachxk. The base policy is arbitrary.
It may be a simple heuristic policy or a sophisticated policy
obtained by off-line training through the use of an approximate
PI method that uses a neural network for policy evaluation or
a policy gradient method of the actor/critic type (see e.g.,the
reinforcement learning book [2]).

The standard rollout algorithm has a long history (see the
textbooks [1]−[3], [65], which collectively list a large number
of research contributions). The name “rollout” was coined by
Tesauro, who among others, has used a “truncated” version
of the rollout algorithm for a highly successful application in
computer backgammon [66]. The algorithm is widely viewed
among the simplest and most reliable RL methods. It provides
on-line control of the system as follows:

Standard One-Step Lookahead Rollout Algorithm:
Given a base policyπ = {µ0, . . . , µN−1}, start with the initial
statex0, and proceed forward generating a trajectory

{x0, ũ0, x1, ũ1, . . . , xN−1, ũN−1, xN}

according to the system equation (4), by applying at each state
xk a controlũk selected by the one-step lookahead minimization

ũk ∈ arg min
uk∈Uk(xk)

E
{

gk(xk, uk, wk)

+Jk+1,π

(
fk(xk, uk, wk)

)}
. (5)

Throughout this paper we will focus on rollout algorithms
that involve one-step lookahead minimization as in Eq.(5).The
basic ideas extend to multistep lookahead, in which case better
performance can be expected at the expense of substantially
increased on-line computation. The one-step minimization(5),
which usesJk+1,π in place of the optimal cost functionJ∗,
defines a policyπ̃ = {µ̃0, . . . , µ̃N−1}, referred to as the
rollout policy, where for allxk andk, µ̃k(xk) is equal to the
control ũk obtained from Eq.(5). The rollout policy possesses
a fundamentalcost improvement property: it improves over the



254 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

base policy in the sense that

Jk,π̃(xk) ≤ Jk,π(xk), ∀ xk, k, (6)

whereJk,π̃(xk), k = 0, . . . , N , is the cost-to-go of the rollout
policy starting from statexk (see, e.g., [1], Section 6.4, or
[2], Section 2.4.2). Extensive experimentation has shown that
in practice the rollout policy typically performs significantly
better than the base policy, even when the latter policy is quite
poor.

In addition to the cost improvement property, the rollout
algorithm (5) has a second nice property: it is an on-line algo-
rithm, and hence inherently possesses arobustness property:
it can adapt to variations of the problem data through on-line
replanning. Thus if there are changes in the problem data (such
as for example the probability distribution ofwk, or the stage
cost functiongk), the performance of the base policy can be
seriously affected, but the performance of the rollout policy
is much less affected because the computation in Eq.(5) will
take into account the changed problem data.

Despite the advantageous properties just noted, the rollout
algorithm suffers from a serious disadvantage when the con-
straint setUk(xk) has a large number of elements, namely that
the minimization in Eq.(5) involves a large number of alterna-
tives. In particular, let us consider the expected value in Eq.(5),
which is the Q-factor of the pair(xk, uk) corresponding to the
base policy:

Qk,π(xk, uk) =E
{

gk(xk, uk, wk)

+ Jk+1,π

(
fk(xk, uk, wk)

)}
.

In the “standard” implementation of rollout, at each encoun-
tered statexk, the Q-factorQk,π(xk, uk) is computed by some
algorithm separately for each controluk ∈ Uk(xk) (often by
Monte Carlo simulation). Despite the inherent parallelization
possibility of this computation, in the multiagent contextto
be discussed shortly, the number of controls inUk(xk), and
the attendant computation and comparison of Q-factors, grow
rapidly with the number of agents, and can become very
large. We next introduce a modified rollout algorithm for the
multiagent case, which requires much less on-line computation
but still maintains the cost improvement property (6).

B. The Multiagent Case

Let us assume a special structure of the control space,
corresponding to a multiagent version of the problem. In
particular, we assume that the controluk consists of m
componentsu1

k, . . . , um
k ,

uk = (u1
k, . . . , um

k ),

with the componentuℓ
k, ℓ = 1, . . . , m, chosen by agentℓ at

stagek, from within a given setU ℓ
k(xk). Thus the control

constraint set is the Cartesian product5

Uk(xk) = U1
k (xk) × · · · × Um

k (xk). (7)

Then the minimization (5) involves as many asqm Q-factors,
where q is the maximum number of elements of the sets
U ℓ

k(xk) [so that qm is an upper bound to the number of
controls inUk(xk), in view of its Cartesian product structure
(7)]. Thus the computation required by the standard rollout
algorithm is of orderO(qm) per stage.

We propose an alternative rollout algorithm that achieves
the cost improvement property (6) at much smaller compu-
tational cost, namely of orderO(qm) per stage. A key idea
is that the computational requirements of the rollout one-step
minimization (5) are proportional to the number of controls
in the setUk(xk) and are independent of the size of the state
space. This motivates a problem reformulation, first proposed
in the neuro-dynamic programming book [65], Section 6.1.4,
whereby control space complexity is traded off with state
space complexity by “unfolding” the controluk into its m
components, which are applied one-agent-at-a-time ratherthan
all-agents-at-once. We will next apply this idea within our
multiagent rollout context. We note, however, that the ideacan
be useful in other multiagent algorithmic contexts, including
approximate PI, as we will discuss in Section IV-E.

C. Trading off Control Space Complexity with State Space
Complexity

We noted that a major issue in rollout is the minimization
over uk ∈ Uk(xk) in Eq.(5), which may be very time-
consuming when the size of the control constraint set is large.
In particular, in the multiagent case whereuk = (u1

k, . . . , um
k ),

the time to perform this minimization is typically exponential
in m. In this case, we can reformulate the problem by breaking
down the collective decisionuk into m individual component
decisions, thereby reducing the complexity of the control
space while increasing the complexity of the state space. The
potential advantage is that the extra state space complexity
does not affect the computational requirements of some RL
algorithms, including rollout.

To this end, we introduce a modified but equivalent problem,
involving one-agent-at-a-time control selection. At the generic
statexk, we break down the controluk into the sequence of
the m controlsu1

k, u2
k, . . . , um

k , and betweenxk and the next
statexk+1 = fk(xk, uk, wk), we introduce artificial interme-
diate “states”(xk, u1

k), (xk, u1
k, u2

k), . . . , (xk, u1
k, . . . , um−1

k ),
and corresponding transitions. The choice of the last control
componentum

k at “state” (xk, u1
k, . . . , um−1

k ) marks the tran-
sition to the next statexk+1 = fk(xk, uk, wk) according to
the system equation, while incurring costgk(xk, uk, wk); see
Fig. 3.

5The Cartesian product structure of the constraint set is adopted here
for simplicity of exposition, particularly when arguing about computational
complexity. The idea of trading off control space complexity and state space
complexity (cf. Section II-C), on which this paper rests, does not depend
on a Cartesian product constraint structure. Of course whenthis structure is
present, it simplifies the computations of our methods.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 255

Fig. 3. Equivalent formulation of theN -stage stochastic optimal control problem for the case where the controluk consists ofm componentsu1
k
, u2

k
, . . . , um

k
:

uk = (u1
k, . . . , um

k ) ∈ U1
k (xk) × · · · × Um

k (xk).

The figure depicts thekth stage transitions. Starting from statexk, we generate the intermediate states(xk, u1
k
), (xk , u1

k
, u2

k
), . . . , (xk, u1

k
, . . . , um−1

k
),

using the respective controlsu1
k
, . . . , um−1

k
. The final controlum

k
leads from(xk, u1

k
, . . . , um−1

k
) to xk+1 = fk(xk, u1

k
, . . . , um

k
, wk), and a random

stage costgk(xk, u1
k
, . . . , um

k
, wk) is incurred.

It is evident that this reformulated problem is equivalent to
the original, since any control choice that is possible in one
problem is also possible in the other problem, while the cost
structure of the two problems is the same. In particular, every
policy

π =
{
(µ1

k, . . . , µm
k ) | k = 0, . . . , N − 1

}

of the original problem, including a base policy in the context
of rollout, is admissible for the reformulated problem, and
has the same cost function for the original as well as the
reformulated problem.

The motivation for the reformulated problem is
that the control space is simplified at the expense
of introducing m − 1 additional layers of states, and
corresponding m − 1 cost-to-go functions J1

k (xk, u1
k),

J2
k (xk, u1

k, u2
k), . . . , Jm−1

k (xk, u1
k, . . . , um−1

k ), in addition
to Jk(xk). On the other hand, the increase in size of the
state space does not adversely affect the operation of rollout,
since the Q-factor minimization (5) is performed for just
one state at each stage. Moreover, in a different context, the
increase in size of the state space can be dealt with function
approximation, i.e., with the introduction of cost-to-go
approximations

J̃1
k (xk, u1

k, r1
k), J̃2

k (xk, u1
k, u2

k, r2
k), . . . ,

J̃m−1
k (xk, u1

k, . . . , um−1
k , rm−1

k ),

in addition toJ̃k(xk, rk), whererk, r1
k, . . . , rm−1

k are param-
eters of corresponding approximation architectures (suchas
feature-based architectures and neural networks); see Section
IV-E.

D. Multiagent Rollout and Cost Improvement

Consider now the standard rollout algorithm applied to the
reformulated problem shown in Fig. 3, with a given base policy
π = {µ0, . . . , µN−1}, which is also a policy of the original
problem [so thatµk = (µ1

k, . . . , µm
k ), with eachµℓ

k, ℓ =
1, . . . , m, being a function of justxk]. The algorithm generates
a rollout policy π̃ = {µ̃0, . . . , µ̃N−1}, where for each stage
k, µ̃k consists ofm components̃µℓ

k, i.e., µ̃k = (µ̃1
k, . . . , µ̃m

k ),
and is obtained for allxk according to the sequential one-step
lookahead minimizations

µ̃1
k(xk) ∈

arg min
u1

k
∈U1

k
(xk)

E
{
gk

(
xk, u1

k, µ2
k(xk), . . . , µm

k (xk), wk

)

+ Jk+1,π

(
fk

(
xk, u1

k, µ2
k(xk), . . . , µm

k (xk), wk

))}
,

µ̃2
k(xk) ∈

arg min
u2

k
∈U2

k
(xk)

E
{
gk

(
xk, µ̃1

k(xk), u2
k, . . . , µm

k (xk), wk

)

+ Jk+1,π

(
fk

(
xk, µ̃1

k(xk), u2
k, . . . , µm

k (xk), wk

))}
,

· · · · · · · · ·

µ̃m
k (xk) ∈

arg min
um

k
∈Um

k
(xk)

E
{
gk

(
xk, µ̃1

k(xk), . . . , µ̃m−1
k (xk), um

k , wk

)

+ Jk+1,π

(
fk

(
xk, µ̃1

k(xk), . . . , µ̃m−1
k (xk), um

k , wk

))}
. (8)

Thus, when applied on-line, atxk, the algorithm gen-
erates the controlµ̃k(xk) =

(
µ̃1

k(xk), . . . , µ̃m
k (xk)

)
via a

sequence ofm minimizations, once over each of the agent
controls u1

k, . . . , um
k , with the past controls determined by

the rollout policy, and the future controls determined by
the base policy; cf. Eq.(8). Assuming a maximum ofq
elements in the constraint setsU ℓ

k(xk), the computation re-
quired at each stagek is of order O(q) for each of the
“states” xk, (xk, u1

k), . . . , (xk, u1
k, . . . , um−1

k ), for a total of
orderO(qm) computation.

In the “standard” implementation of the algorithm, at each
(xk, u1

k, . . . , uℓ−1
k ) with ℓ ≤ m, and for each of the controls

uℓ
k, we generate by simulation a number of system trajectories

up to stageN , with all future controls determined by the base
policy. We average the costs of these trajectories, therebyob-
taining the Q-factor corresponding to(xk, u1

k, . . . , uℓ−1
k , uℓ

k).
We then select the controluℓ

k that corresponds to the minimal
Q-factor, with the controlsu1

k, . . . , uℓ−1
k held fixed at the

values computed earlier.
Prerequisite assumptions for the preceding algorithm to

work in an on-line multiagent setting are:
(a) All agents have access to the current statexk.
(b) There is an order in which agents compute and apply

their local controls.



256 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

(c) There is “intercommunication” between agents, so agent
ℓ knows the local controlsu1

k, . . . , uℓ−1
k computed by the

predecessor agents1, . . . , ℓ − 1 in the given order.
In Sections III and V, we will aim to relax Assumptions

(b) and (c), through the use of autonomous multiagent rollout.
Assumption (a) is satisfied if there is a central computation
center (a “cloud”) that collects all the information available
from the agents and from other sources, obtains the state (or
a belief state in the case of partial state information problem),
and broadcasts it to the agents as needed; cf. Fig. 1. To relax
this assumption, one may assume that the agents use an
estimate of the state in place of the unavailable true state
in all computations. However, this possibility has not been
investigated and is beyond our scope.

Note that the rollout policy (8), obtained from the refor-
mulated problem is different from the rollout policy obtained
from the original problem [cf. Eq.(5)]. Generally, it is unclear
how the two rollout policies perform relative to each other in
terms of attained cost. On the other hand, both rollout policies
perform no worse than the base policy, since the performance
of the base policy is identical for both the reformulated
problem and for the original problem. This is shown formally
in the following proposition.

Proposition 1:Let π be a base policy and let̃π be a corresponding
rollout policy generated by the multiagent rollout algorithm (8).
We have

Jk,π̃(xk) ≤ Jk,π(xk), for all xk andk. (9)

Proof: We will show Eq.(9) by induction, and for simplicity,
we will give the proof for the case of just two agents, i.e.,m =
2. Clearly Eq.(9) holds fork = N , sinceJN,π̃ = JN,π = gN .
Assuming that it holds for indexk +1, i.e.,Jk+1,π̃ ≤ Jk+1,π,
we have for allxk,

Jk,π̃(xk) = E
{

gk

(
xk, µ̃1

k(xk), µ̃2
k(xk), wk

)

+ Jk+1,π̃

(
fk

(
xk, µ̃1

k(xk), µ̃2
k(xk), wk

))}

≤ E
{

gk

(
xk, µ̃1

k(xk), µ̃2
k(xk), wk

)

+ Jk+1,π

(
fk

(
xk, µ̃1

k(xk), µ̃2
k(xk), wk

))}

= min
u2

k
∈U2

k
(xk)

E
{

gk(xk, µ̃1
k(xk), u2

k, wk)

+ Jk+1,π

(
fk

(
xk, µ̃1

k(xk), u2
k, wk

))}

≤ E
{

gk

(
xk, µ̃1

k(xk), µ2
k(xk), wk

)

+ Jk+1,π

(
fk

(
xk, µ̃1

k(xk), µ2
k(xk), wk

))}

= min
u1

k
∈U1

k
(xk)

E
{

gk

(
xk, u1

k, µ2
k(xk), wk

)

+ Jk+1,π

(
fk

(
xk, u1

k, µ2
k(xk), wk

))}

≤ E
{

gk

(
xk, µ1

k(xk), µ2
k(xk), wk

)

+ Jk+1,π

(
fk

(
xk, µ1

k(xk), µ2
k(xk), wk

))}

= Jk,π(xk),

where in the preceding relation:
(a) The first equality is the DP/Bellman equation for the

rollout policy π̃.
(b) The first inequality holds by the induction hypothesis.
(c) The second equality holds by the definition of the

multiagent rollout algorithm as it pertains to agent 2.
(d) The third equality holds by the definition of the multi-

agent rollout algorithm as it pertains to agent 1.
(e) The last equality is the DP/Bellman equation for the

base policyπ.
The induction proof of the cost improvement property (9) is

thus complete for the casem = 2. The proof for an arbitrary
number of agentsm is entirely similar. �

Note that there are cases where the all-agents-at-once stan-
dard rollout algorithm can improve strictly the base policy
but the one-agent-at-a-time algorithm will not. This possibility
arises when the base policy is “agent-by-agent-optimal,” i.e.,
each agent’s control component is optimal, assuming that the
control components of all other agents are kept fixed at some
known values.6 Such a policy may not be optimal, except
under special conditions (we give an example in the next
section). Thus if the base policy is agent-by-agent-optimal,
multiagent rollout will be unable to improve strictly the
cost function, even if this base policy is strictly suboptimal.
However, we speculate that a situation where a base policy is
agent-by-agent-optimal is unlikely to occur in rollout practice,
since ordinarily a base policy must be reasonably simple,
readily available, and easily simulated.

Let us provide an example that illustrates how the size of
the control space may become intractable for even moderate
values of the number of agentsm.

Example 1 (Spiders and Fly)
Here there arem spiders and one fly moving on a

2-dimensional grid. During each time period the fly moves
to some other position according to a given state-dependent
probability distribution. The spiders, working as a team, aim
to catch the fly at minimum cost (thus the one-stage cost is
equal to 1, until reaching the state where the fly is caught,
at which time the one-stage cost becomes 0). Each spider
learns the current state (the vector of spiders and fly locations)
at the beginning of each time period, and either moves to a
neighboring location or stays where it is. Thus each spiderℓ
has as many as five choices at each time period (with each
move possibly incurring a different location-dependent cost).
The control vector isu = (u1, . . . , um), whereuℓ is the choice
of the ℓth spider, so there are about5m possible values ofu.
However, if we view this as a multiagent problem, as per the
reformulation of Fig. 4, the size of the control space is reduced
to ≤ 5 moves per spider.

To apply multiagent rollout, we need a base policy. A
simple possibility is to use the policy that directs each spider
to move on the path of minimum distance to the current fly
position. According to the multiagent rollout formalism, the
spiders choose their moves in a given order, taking into account
the current state, and assuming that future moves will be chosen

6This is a concept that has received much attention in the theory of
team optimization, where it is known asperson-by-person optimality. It has
been studied in the context of somewhat different problems,which involve
imperfect state information that may not be shared by all theagents; see the
references on team theory cited in Section I.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 257

according to the base policy. This is a tractable computation,
particularly if the rollout with the base policy is truncated after
some stage, and the cost of the remaining stages is approximated
using a certainty equivalence approximation in order to reduce
the cost of the Monte Carlo simulation.

Sample computations with this example indicate that the
multiagent rollout algorithm of this section performs about as
well as the standard rollout algorithm. Both algorithms perform
much better than the base policy, and exhibit some “intelli-
gence” that the base policy does not possess. In particular,in
the rollout algorithms the spiders attempt to “encircle” the fly
for faster capture, rather that moving straight towards thefly
along a shortest path.

Fig. 4. Illustration of the 2-dimensional spiders-and-fly problem. The state

is the set of locations of the spiders and the fly. At each time period, each

spider moves to a neighboring location or stays where it is. The spiders make

moves with perfect knowledge of the locations of each other and of the fly.

The fly moves randomly, regardless of the position of the spiders.

The following example is similar to the preceding one,
but involves two flies and two spiders moving along a line,
and admits an exact analytical solution. It illustrates howthe
multiagent rollout policy may exhibit intelligence and agent
coordination that is totally lacking from the base policy. In
this example, the base policy is a poor greedy heuristic, while
both the standard rollout and the multiagent rollout policyare
optimal.

Example 2 (Spiders and Flies)
This is a spiders-and-flies problem that admits an ana-

lytical solution. There are two spiders and two flies moving
along integer locations on a straight line. For simplicity we
will assume that the flies’ positions are fixed at some integer
locations, although the problem is qualitatively similar when the
flies move randomly. The spiders have the option of moving
either left or right by one unit; see Fig. 5. The objective is
to minimize the time to capture both flies (thus the one-stage
cost is equal to 1, until reaching the state where both flies are
captured, at which time the one-stage cost becomes 0). The
problem has essentially a finite horizon since the spiders can
force the capture of the flies within a known number of steps.

Here the optimal policy is to move the two spiders towards
different flies, the ones that are initially closest to them (with ties
broken arbitrarily). The minimal time to capture is the maximum
of the two initial distances of the two optimal spider-fly pairings.

Let us apply multiagent rollout with the base policy that
directs each spider to move one unit towards the closest fly
position (and in case of a tie, move towards the fly that lies to
the right). The base policy is poor because it may unnecessarily
move both spiders in the same direction, when in fact only
one is needed to capture the fly. This limitation is due to the
lack of coordination between the spiders: each acts selfishly,
ignoring the presence of the other. We will see that rollout
restores a significant degree of coordination between the spiders
through an optimization that takes into account the long-term
consequences of the spider moves.

According to the multiagent rollout mechanism, the spiders
choose their moves one-at-a-time, optimizing over the two
Q-factors corresponding to the right and left moves, while
assuming that future moves will be chosen according to the
base policy. Let us consider a stage, where the two flies are
alive while the spiders are at different locations as in Fig.5.
Then the rollout algorithm will start with spider 1 and calculate
two Q-factors corresponding to the right and left moves, while
using the base policy to obtain the next move of spider 2, as
well as the remaining moves of the two spiders. Depending on
the values of the two Q-factors, spider 1 will move to the right
or to the left, and it can be seen that it will choose tomove
away from spider 2even if doing so increases its distance to its
closest flycontrary to what the base policy will do; see Fig. 5.
Then spider 2 will act similarly and the process will continue.
Intuitively, spider 1 moves away from spider 2 and fly 2, because
it recognizes that spider 2 will capture earlier fly 2, so it might
as well move towards the other fly.

Thus the multiagent rollout algorithm induces implicit
move coordination, i.e., each spider moves in a way that takes
into account future moves of the other spider. In fact it can be
verified that the algorithm will produce an optimal sequenceof
moves starting from any initial state. It can also be seen that
ordinary rollout (both flies move at once) will also produce an
optimal move sequence. Moreover, the example admits a two-
dimensional generalization, whereby the two spiders, starting
from the same position, will separate under the rollout policy,
with each moving towards a different spider, while they will
move in unison in the base policy whereby they move along
the shortest path to the closest surviving fly. Again this will
typically happen for both standard and multiagent rollout.

The preceding example illustrates how a poor base policy
can produce a much better rollout policy, something that
can be observed in many other problems. Intuitively, the key
fact is that rollout is “farsighted” in the sense that it can
benefit from control calculations that reach far into future
stages. The qualitative behavior described in the example has
been confirmed by computational experiments with larger two-
dimensional problems of the type described in Example 1.
It has also been supported by the computational study [64],
which deals with a multi-robot repair problem.

E. Optimizing the Agent Order in Agent-by-Agent Rollout

In the multiagent rollout algorithm described so far, the
agents optimize the control components sequentially in a fixed
order. It is possible to improve performance by trying to
optimize at each stagek the order of the agents.

An efficient way to do this is to first optimize over all single
agent Q-factors, by solving them minimization problems that



258 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

Fig. 5. Illustration of the two-spiders and two-flies problem. The spiders move along integer points of a line. The two flies stay still at some integer
locations. The optimal policy is to move the two spiders towards different flies, the ones that are initially closest to them. The base policy directs each
spider to move one unit towards the nearest fly position.

Multiagent rollout with the given base policy starts with spider 1 at locationn, and calculates the two Q-factors that correspond to movingto
locationsn − 1 andn + 1, assuming that the remaining moves of the two spiders will bemade using the go-towards-the-nearest-fly base policy. The
Q-factor of going ton − 1 is smallest because it saves in unnecessary moves of spider 1towards fly 2, so spider 1 will move towards fly 1. The
trajectory generated by multiagent rollout is to move continuously spiders 1 and 2 towards flies 1 and 2, respectively. Thus multiagent rollout generates
the optimal policy.

correspond to each of the agentsℓ = 1, . . . , m being first in
the multiagent rollout order. Ifℓ1 is the agent that produces
the minimal Q-factor, we fixℓ1 to be the first agent in the
multiagent rollout order and record the corresponding control
component. Then we optimize over all single agent Q-factors,
by solving them − 1 minimization problems that correspond
to each of the agentsℓ 6= ℓ1 being second in the multiagent
rollout order. Letℓ2 be the agent that produces the minimal Q-
factor, fix ℓ2 to be the second agent in the multiagent rollout
order, record the corresponding control, and continue in the
same manner. In the end, after

m + (m − 1) + · · · + 1 =
m(m + 1)

2

minimizations, we obtain an agent orderℓ1, . . . , ℓm that pro-
duces a potentially much reduced Q-factor value, as well as
the corresponding rollout control component selections.

The method just described likely produces better perfor-
mance, and eliminates the need for guessing a good agent or-
der, but it increases the number of Q-factor calculations needed
per stage roughly by a factor(m + 1)/2. Still this is much
better than the all-agents-at-once approach, which requires an
exponential number of Q-factor calculations. Moreover, the Q-
factor minimizations of the above process can be parallelized,
so with m parallel processors, we can perform the number of
m(m + 1)/2 minimizations derived above in justm batches
of parallel minimizations, which require about the same time
as in the case where the agents are selected for Q-factor
minimization in a fixed order. We finally note that our earlier
cost improvement proof goes through again by induction,
when the order of agent selection is variable at each stage
k.

F. Truncated Rollout with Terminal Cost Function Approxi-
mation

An important variation of both the standard and the multia-
gent rollout algorithms istruncated rolloutwith terminal cost
approximation. Here the rollout trajectories are obtainedby
running the base policy from the leaf nodes of the lookahead
tree, but they are truncated after a given number of steps,
while a terminal cost approximation is added to the heuristic
cost to compensate for the resulting error. This is important for
problems with a large number of stages, and it is also essential
for infinite horizon problems where the rollout trajectories
have infinite length.

One possibility that works well for many problems is to sim-
ply set the terminal cost approximation to zero. Alternatively,
the terminal cost function approximation may be obtained by
using some sophisticated off-line training process that may
involve an approximation architecture such as a neural network
or by using some heuristic calculation based on a simplified
version of the problem. We will discuss multiagent truncated
rollout later in Section IV-F, in the context of infinite horizon
problems, where we will give a related error bound.

III. A SYNCHRONOUS ANDAUTONOMOUSROLLOUT

In this section we consider multiagent rollout algorithms
that are distributed and asynchronous in the sense that the
agents may compute their rollout controls in parallel rather
than in sequence, aiming at computational speedup. An exam-
ple of such an algorithm is obtained when at a given stage,
agentℓ computes the rollout control̃uℓ

k before knowing the
rollout controls of some of the agents1, . . . , ℓ − 1, and uses
the controlsµ1

k(xk), . . . , µℓ−1
k (xk) of the base policy in their

place.
This algorithm may work well for some problems, but it

does not possess the cost improvement property, and may
not work well for other problems. In fact we can construct
a simple example involving a single state, two agents, and
two controls per agent, where the second agent does not take
into account the control applied by the first agent, and as a
result the rollout policy performs worse than the base policy
for some initial states.

Example 3 (Cost Deterioration in the Absence of Adequate
Agent Coordination)

Consider a problem with two agents (m = 2) and a single
state. Thus the state does not change and the costs of different
stages are decoupled (the problem is essentially static). Each of
the two agents has two controls:u1

k ∈ {0, 1} andu2
k ∈ {0, 1}.

The cost per stagegk is equal to 0 ifu1
k 6= u2

k, is equal to 1
if u1

k = u2
k = 0, and is equal to 2 ifu1

k = u2
k = 1. Suppose

that the base policy appliesu1
k = u2

k = 0. Then it can be seen
that when executing rollout, the first agent appliesu1

k = 1, and
in the absence of knowledge of this choice, the second agent
also appliesu2

k = 1 (thinking that the first agent will use the
base policy controlu1

k = 0). Thus the cost of the rollout policy
is 2 per stage, while the cost of the base policy is 1 per stage.
By contrast the rollout algorithm that takes into account the
first agent’s control when selecting the second agent’s control
appliesu1

k = 1 and u2
k = 0, thus resulting in a rollout policy

with the optimal cost of 0 per stage.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 259

The difficulty here is inadequate coordination between the
two agents. In particular, each agent uses rollout to compute
the local control, each thinking that the other will use the base
policy control. If instead the two agents were to coordinatetheir
control choices, they would have applied an optimal policy.

The simplicity of the preceding example raises serious
questions as to whether the cost improvement property (9) can
be easily maintained by a distributed rollout algorithm where
the agents do not know the controls applied by the preceding
agents in the given order of local control selection, and use
instead the controls of the base policy. One may speculate that
if the agents are naturally “weakly coupled” in the sense that
their choice of control has little impact on the desirability
of various controls of other agents, then a more flexible
inter-agent communication pattern may be sufficient for cost
improvement.7 An important question is whether and to what
extent agent coordination is essential. In what follows in this
section, we will discuss a distributed asynchronous multiagent
rollout scheme, which is based on the use of a signaling policy
that provides estimates of coordinating information once the
current state is known.

1) Autonomous Multiagent Rollout
An interesting possibility for autonomous control selection

by the agents is to use a distributed rollout algorithm, which
is augmented by a precomputed signaling policy that em-
bodies agent coordination.8 The idea is to assume that the
agents do not communicate their computed rollout control
components to the subsequent agents in the given order of
local control selection. Instead,once the agents know the
state, they use precomputed approximations to the control
components of the preceding agents, and compute their own
control components in parallel and asynchronously. We call
this algorithmautonomous multiagent rollout. While this type
of algorithm involves a form of redundant computation, it
allows for additional speedup through parallelization.

Similar to Section II, the algorithm at thekth stage uses a
base policyµk = {µ1

k, . . . , µm−1
k }, but it also usesa second

policy µ̂k = {µ̂1
k, . . . , µ̂m−1

k }, called thesignaling policy,
which is computed off-line, is known to all the agents for on-
line use, and is designed to play an agent coordination role.
Intuitively, µ̂ℓ

k(xk) provides an intelligent “guess” about what
agentℓ will do at statexk. This is used in turn by all other
agentsi 6= ℓ to compute asynchronously their own rollout
control components on-line.

7In particular, one may divide the agents in “coupled” groups, and require
coordination of control selection only within each group, while the compu-
tation of different groups may proceed in parallel. Note that the “coupled”
group formations may change over time, depending on the current state. For
example, in applications where the agents’ locations are distributed within
some geographical area, it may make sense to form agent groups on the
basis of geographic proximity, i.e., one may require that agents that are
geographically near each other (and hence are more coupled)coordinate their
control selections, while agents that are geographically far apart (and hence
are less coupled) forego any coordination.

8The general idea of coordination by sharing information about the agents’
policies arises also in other multiagent algorithmic contexts, including some
that involve forms of policy gradient methods and Q-learning; see the surveys
of the relevant research cited earlier. The survey by Matignon, Laurent, and
Le Fort-Piat [46] focuses on coordination problems from an RL point of view.

More precisely, the autonomous multiagent rollout algo-
rithm uses the base and signaling policies to generate a rollout
policy π̃ = {µ̃0, . . . , µ̃N−1} as follows. At stagek and state
xk, µ̃k(xk) =

(
µ̃1

k(xk), . . . , µ̃m
k (xk)

)
, is obtained according

to

µ̃1
k(xk) ∈ arg min

u1
k
∈U1

k
(xk)

E
{
gk

(
xk, u1

k, µ2
k(xk),

. . . , µm
k (xk), wk

)

+ Jk+1,π

(
fk

(
xk, u1

k, µ2
k(xk),

. . . , µm
k (xk), wk

))}
,

µ̃2
k(xk) ∈ arg min

u2
k
∈U2

k
(xk)

E
{
gk

(
xk, µ̂1

k(xk), u2
k,

. . . , µm
k (xk), wk

)

+ Jk+1,π

(
fk

(
xk, µ̂1

k(xk), u2
k,

. . . , µm
k (xk), wk

))}
,

· · · · · · · · ·

µ̃m
k (xk) ∈ arg min

um

k
∈Um

k
(xk)

E
{

gk

(
xk, µ̂1

k(xk),

. . . , µ̂m−1
k (xk), um

k , wk

)

+ Jk+1,π

(
fk

(
xk, µ̂1

k(xk),

. . . , µ̂m−1
k (xk), um

k , wk

))}
. (10)

Note that the preceding computation of the controls
µ̃1

k(xk), . . . , µ̃m
k (xk) can be done asynchronously and in par-

allel, and without direct agent coordination, since the signaling
policy valueŝµ1

k(xk), . . . , µ̂m−1
k (xk) are precomputed and are

known to all the agents.
The simplest choice is touse as signaling policŷµ the

base policy µ. However, this choice does not guarantee
policy improvement as evidenced by Example 3 (see also
Example 7 in Section V). In fact performance deterioration
with this choice is not uncommon, and can be observed in
more complicated examples, including the following.

Example 4 (Spiders and Flies - Use of the Base Policy for
Signaling)

Consider the problem of Example 2, which involves two
spiders and two flies on a line, and the base policyµ that moves
a spider towards the closest surviving fly (and in case where a
spider starts at the midpoint between the two flies, moves the
spider to the right). Assume that we use as signaling policyµ̂
the base policyµ. It can then be verified that if the spiders start
from different positions, the rollout policy will be optimal (will
move the spiders in opposite directions). If, however, the spiders
start from the same position, a completely symmetric situation
is created, whereby the rollout controls move both flies in the
direction of the flyfurthest awayfrom the spiders’ position (or
to the left in the case where the spiders start at the midpoint
between the two flies). Thus, the flies end up oscillating around
the middle of the interval between the flies and never catch the
flies.

The preceding example is representative of a broad class of
counterexamples that involve multiple identical agents. If the
agents start at the same initial state, with a base policy that has



260 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

identical components, and use the base policy for signaling, the
agents will select identical controls under the corresponding
multiagent rollout policy, ending up with a potentially serious
cost deterioration. This example also highlights the role of
the sequential choice of the control componentsu1

k, . . . , um
k ,

based on the reformulated problem of Fig. 3: it tends to break
symmetries and “group think” that guides the agents towards
choosing the same controls under identical conditions.

An alternative idea is to choose the signaling policyµ̂k

to approximate the multiagent rollout policy of Section II-
D [cf. Eq.(8)], which is known to embody coordination
between the agents. In particular, we may obtain the policy
µ̂k = (µ̂1

k, . . . , µ̂m
k ) by off-line training a neural network (or

m networks, one per agent) with training samples generated
through the rollout policy of Eq.(8); i.e.,use as signaling
policy µ̂k a neural network representation of the rollout policy
µ̃k of Eq.(8). Note that if the neural network representation
were perfect, the policy defined by Eq.(10) would be the same
as the rollout policy of Eq.(8). Thus we intuitively expect that
if the neural network provides a good approximation of the
rollout policy (8), the policy defined by Eq.(10) would have
better performance than the base policy. This expectation was
confirmed in the context of a large-scale multi-robot repair
application in the paper [64]. The advantage of autonomous
multiagent rollout with neural network approximations is that
it allows approximate policy improvement (to the extent that
the functionŝµi

k are good approximations tõµi
k), while at the

same time allowing asynchronous distributed agent operation
without on-line agent coordination through communicationof
their rollout control values (but still assuming knowledgeof
the exact state by all agents). We will return to this algorithm
and provide more details in Section V, in the context of infinite
horizon problems.

IV. M ULTIAGENT PROBLEM FORMULATION - INFINITE

HORIZON DISCOUNTEDPROBLEMS

The multiagent rollout ideas that we have discussed so far
can be modified and generalized to apply to infinite horizon
problems. In this context, we may also consider multiagent
versions of PI algorithms, which generate a sequence of
policies {µk}. They can be viewed as repeated applications
of multiagent rollout, with each policyµk in the sequence
being the multiagent rollout policy that is obtained when
the preceding policyµk−1 is viewed as the base policy.
For challenging problems, PI must be implemented off-line
and with approximations, possibly involving neural networks.
However, the final policy obtained off-line by PI (or its neural
network representation) can be used as the base policy for an
on-line multiagent rollout scheme.

We will focus on discounted problems with finite number
of states and controls, so that the problem has a contractive
structure (i.e., the Bellman operator is a contraction mapping),
and the strongest version of the available theory applies
(the solution of Bellman’s equation is unique, and strong
convergence results hold for PI); see [13], Chapters 1 and
2, [14], Chapter 2, or [2], Chapter 4. However, a qualitatively
similar methodology can be applied to undiscounted problems

involving a termination state (e.g., stochastic shortest path
problems, see [65], Chapter 2, [13], Chapter 3, and [14],
Chapters 3 and 4).

In particular, we consider a standard Markovian decision
problem (MDP for short) infinite horizon discounted version
of the finite horizonm-agent problem of Section I-B, where
m > 1. We assumen statesx = 1, . . . , n and a controlu that
consists ofm componentsuℓ, ℓ = 1, . . . , m,

u = (u1, . . . , um),

(for the MDP notation adopted for this section, we switch
for convenience to subscript indexing for agents and control
components, and reserve superscript indexing for policy iter-
ates). At statex and stagek, a controlu is applied, and the
system moves to a next statey with given transition probability
pxy(y) and costg(x, u, y). When at stagek, the transition cost
is discounted byαk, whereα ∈ (0, 1) is the discount factor.
Each control componentuℓ is separately constrained to lie in
a given finite setUℓ(x) when the system is at statex. Thus
the control constraint isu ∈ U(x), whereU(x) is the finite
Cartesian product set

U(x) = U1(x) × · · · × Um(x).

The cost function of a stationary policyµ that applies control
µ(x) ∈ U(x) at statex is denoted byJµ(x), and the optimal
cost [the minimum overµ of Jµ(x)] is denotedJ∗(x).

An equivalent version of the problem, involving a reformu-
lated/expanded state space is depicted in Fig. 6 for the case
m = 3. The state space of the reformulated problem consists
of

x, (x, u1), . . . , (x, u1, . . . , um−1), (11)

where x ranges over the original state space (i.e.,x ∈
{1, . . . , n}), and eachuℓ, ℓ = 1, . . . , m, ranges over the
corresponding constraint setUℓ(x). At each stage, the agents
choose their controls sequentially in a fixed order: from
statex agent 1 appliesu1 ∈ U1(x) to go to state(x, u1),
then agent 2 appliesu2 ∈ U2(x) to go to state(x, u1, u2),
and so on, until finally at state(x, u1, . . . , um−1), agent
m appliesum ∈ Um(x), completing the choice of control
u = (u1, . . . , um), and effecting the transition to statey at a
costg(x, u, y), appropriately discounted.

This reformulation involves the type of tradeoff between
control space complexity and state space complexity that was
proposed in the book [65], Section 6.1.4, and was discussed in
Section II-C. The reformulated problem involvesm cost-to-go
functions

J0(x), J1(x, u1), . . . , J
m−1(x, u1, . . . , um−1),

with corresponding sets of Bellman equations, but a much
smaller control space. Note that the existing analysis of rollout
algorithms, including implementations, variations, and error
bounds, applies to the reformulated problem; see Section 5.1
of the author’s RL textbook [2]. Moreover, the reformulated
problem may prove useful in other contexts where the size of
the control space is a concern, such as for example Q-learning.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 261

Fig. 6. Illustration of how to transform anm-agent infinite horizon problem into a stationary infinite horizon problem with fewer control choices available

at each state (in this figurem = 3). At the typical stage only one agent selects a control. For example, at statex, the first agent choosesu1 at no cost

leading to state(x, u1). Then the second agent appliesu2 at no cost leading to state(x, u1, u2). Finally, the third agent appliesu3 leading to some statey

at costg(x, u, y), whereu is the combined control of the three agents,u = (u1, u2, u3). The figure shows the first three transitions of the trajectories that

start from the statesx, (x, u1), and (x, u1, u2), respectively. Note that the state space of the transformedproblem is well suited for the use of state space

partitioned PI algorithms; cf. the book [3], and the papers [10]−[12], [15].

Similar to the finite horizon case, our implementation of the
rollout algorithm, which is described next, involves one-agent-
at-a-time policy improvement, while maintaining the basiccost
improvement and error bound properties of rollout, since these
apply to the reformulated problem.

A. Multiagent Rollout Policy Iteration

The policies generated by the standard PI algorithm for
the reformulated problem of Fig. 6 are defined over the larger
space and have the form

µ1(x), µ2(x, u1), . . . , µm(x, u1, . . . , um−1). (12)

We may consider a standard PI algorithm that generates a
sequence of policies of the preceding form (see Section IV-
E), and which based on standard discounted MDP results,
converges to an optimal policy for the reformulated problem,
which in turn yields an optimal policy for the original problem.
However, policies of the form (12) can also be represented in
the simpler form

µ1(x), µ2(x), . . . , µm(x)

i.e., as policies for the original infinite horizon problem.This
motivates us to consider an alternative multiagent PI algorithm
that uses one-agent-at-a-time policy improvement and operates
over the latter class of policies. We will see that this algorithm
converges to an agent-by-agent optimal policy (which need not
be an optimal policy for the original problem). By contrast,the
alternative multiagent PI algorithm of Section IV-E also uses
one-agent-at-a-time policy improvement, but operates over the
class of policies (12), and converges to an optimal policy
for the original problem (rather than just an agent-by-agent
optimal policy).

Consistent with the multiagent rollout algorithm of Section
IV-D, we introduce a one-agent-at-a-time PI algorithm that

uses a modified form of policy improvement, whereby the
control u = (u1, . . . , um) is optimized one-component-at-a-
time, with the preceding components computed according to
the improved policy, and the subsequent components computed
according to the current policy. In particular, given the current
policy µk, the next policy is obtained as

µk+1 ∈ M̃µk(Jµk), (13)

where for givenµ = (µ1, . . . , µm) and J , we denote by
M̃µ(J) the set of policies

µ̃ = (µ̃1, . . . , µ̃m)

satisfying for all statesx = 1, . . . , n,

µ̃1(x) ∈ arg min
u1∈U1(x)

n∑

y=1

pxy

(
u1, µ2(x), . . . , µm(x)

)

·
(
g
(
x, u1, µ2(x), . . . , µm(x), y

)
+ αJ(y)

)
,

µ̃2(x) ∈ arg min
u2∈U2(x)

n∑

y=1

pxy

(
µ̃1(x), u2, µ3(x), . . . , µm(x)

)

·
(
g
(
x, µ̃1(x), u2, µ3(x), . . . , µm(x), y

)
+ αJ(y)

)
,

· · · · · · · · ·

µ̃m(x) ∈ arg min
um∈Um(x)

n∑

y=1

pxy

(
µ̃1(x), µ̃2(x),

. . . , µ̃m−1(x), um

)

·
(
g
(
x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, y

)

+ αJ(y)
)
. (14)

Note thatM̃µ(J) may not consist of a single policy, since
there may be multiple controls attaining the minima in the
preceding equations.



262 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

Each of them minimizations (14) can be performed for
each statex independently, i.e., the computations for state
x do not depend on the computations for other states, thus
allowing the use of parallel computation over the different
states. On the other hand, the computations corresponding to
individual agent components must be performed in sequence
(in the absence of special structure related to coupling of the
control components through the transition probabilities and
the cost per stage). It will also be clear from the subsequent
analysis that for convergence purposes, the ordering of the
components is not important, and it may change from one
policy improvement operation to the next. In fact there are
versions of the algorithm, which aim to optimize over multiple
component orders, and are amenable to parallelization as
discussed in Section II-E.

Similar to the finite horizon case of Section II, the salient
feature of the one-agent-at-a-time policy improvement opera-
tion (14) is that it is far more economical than the standard
policy improvement: it requires a sequence ofm minimiza-
tions, once over each of the control componentsu1, . . . , um. In
particular, for the minimization over the typical component uℓ,
the preceding componentsu1, . . . , uℓ−1 have been computed
earlier by the minimization that yielded the policy components
µ̃1, . . . , µ̃ℓ−1, while the following controlsuℓ+1, . . . , um are
determined by the current policy componentsµℓ+1, . . . , µm.
Thus, if the number of controls within each component con-
straint setUℓ(x) is bounded by a numberq, the one-agent-at-a-
time operation (14) requires at mostqm Q-factor calculations.

By contrast, since the number of elements in the constraint
setU(x) is bounded byqm, the corresponding number of Q-
factor calculations in the standard policy improvement opera-
tion is bounded byqm. Thusin the one-agent-at-a-time policy
improvement the number of Q-factors grows linearly withm,
as compared to the standard policy improvement, where the
number of Q-factor calculations grows exponentially withm.

B. Multipass Multiagent Policy Improvement

In trying to understand why multiagent rollout of the form
(13) succeeds in improving the performance of the base policy,
it is useful to think of the multiagent policy improvement oper-
ation as an approximation of the standard policy improvement
operation. We basically approximate the joint minimization
over all the control componentsu1, . . . , um with a single
“coordinate descent-type” iteration, i.e., a round of single
control component minimizations, each taking into account
the results of the earlier minimizations.

This coordinate descent view suggests that one may obtain
further policy improvements withmultiple rounds of coor-
dinate descent minimizations. By this we mean that for a
given and fixed statex, after computing the multiagent rollout
controls µ̃1(x), . . . , µ̃m(x) using Eq.(14), we use them to
replace the base controlsµ1(x), . . . , µm(x), and repeat once
more the multiagent policy improvement operation [while
keeping the functionJ in Eq.(14) equal to the base policy
cost functionJµ].

Mathematically, this amounts to using the control compo-
nents atx of a policy within the set

M̃2
µ(Jµ), (15)

defined as the set of all policies in the set̃Mµ′(Jµ), where
µ′ is any policy in the setM̃µ(Jµ) defined by Eq. (14)
[so µ′(x), . . . , µ′

m(x) are the rollout control components,
which are obtained with a single round of coordinate descent
minimizations (14)]. The set (15) corresponds to two rounds
of coordinate descent minimizations rather than one [note that
for the calculations of values ofJµ is Eq.(15), we use the
known base policyµ, so the values ofµ′(x), . . . , µ′

m(x) are
needed only at the given statex].

Similarly, we may considerk > 2 rounds of coordinate de-
scent iterations. This amounts to using the control components
at x of a policy within the set

M̃k
µ(Jµ),

defined for allk as the set of all policies in the set̃Mµ′(Jµ),
whereµ′ is any policy in the set̃Mk−1

µ (Jµ) [here we define
M̃1

µ(Jµ) to be the setM̃µ(Jµ) given by Eq.(14)]. After a
finite number of rounds of coordinate descent iterations the
values of

min
u1∈U1(x)

n∑

y=1

pxy

(
u1, µ̃2(x), . . . , µ̃m(x)

)

·
(
g
(
x, u1, µ̃2(x), . . . , µ̃m(x), y

)
+ αJµ(y)

)
,

· · · · · · · · ·

min
um∈Um(x)

n∑

y=1

pxy

(
µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um

)

·
(
g
(
x, µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um, y

)

+ αJµ(y)
)

will converge (since the control space is finite). However, the
limit of these values need not be the result of the joint control
component minimization9

min
(u1,...,um)∈U1(x)···Um(x)

n∑

y=1

pxy(u1, . . . , um)

·
(
g
(
x, u1, . . . , um, y

)
+ αJµ(y)

)
.

It will be instead a value with an agent-by-agent optimality
property, to be defined in the next section. This is consistent
will the convergence results that we will subsequently obtain
(cf. Prop. 2). Still, however, the policỹµ obtained through
the preceding multipass multiagent rollout policy has the
fundamental policy improvement propertyJµ̃(x) ≤ Jµ(x) for
all x. This can be seen by a slight extension of the proof of
the subsequent Prop. 2.

9Generally, the convergence of the coordinate descent method to the
minimum of a multivariable optimization cannot be guaranteed except under
special conditions, which are not necessarily satisfied within our context.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 263

C. Convergence to an Agent-by-Agent Optimal Policy

An important fact is that multiagent PI need not converge
to an optimal policy. Instead we will show convergence to a
different type of optimal policy, which we will now define.

We say that a policyµ = {µ1, . . . , µm} is agent-by-agent
optimal if µ ∈ M̃µ(Jµ), or equivalently [cf. Eq.(14)], if for
all statesx = 1, . . . , n, and agentsℓ = 1, . . . , m, we have

n∑

y=1

pxy

(
µ1(x), . . . , µm(x)

)

·
(
g
(
x, µ1(x), . . . , µm(x), y

)
+ αJµ(y)

)

= min
uℓ∈Uℓ(x)

n∑

y=1

pxy

(
µ1(x), . . . , µℓ−1(x), uℓ,

µℓ+1(x), . . . , µm(x)
)

·
(
g
(
x, µ1(x), . . . , µℓ−1(x), uℓ, µℓ+1(x),

. . . , µm(x), y
)

+ αJµ(y)
)
.

To interpret this definition, let a policyµ = {µ1, . . . , µm}
be given, and consider for everyℓ ∈ {1, . . . , m} the single
agent DP problem where for alli 6= ℓ the ith policy compo-
nents are fixed atµi, while theℓth policy component is subject
to optimization. Then by viewing the preceding definition as
the optimality condition for all the single agent problems,
we can conclude thatµ is agent-by-agent optimal if each
componentµℓ is optimal for theℓth single agent problem;
in other words by usingµℓ, each agentℓ acts optimally,
assuming all other agentsi 6= ℓ do not deviate from the policy
componentsµi. Note that agent-by-agent optimality is related
to the notion of a Nash equilibrium where we view the agents
as the players of a multi-person game with the same objective
function for all the players.

While an (overall) optimal policy is agent-by-agent optimal,
the reverse is not true as the following example shows.

Example 5 (Counterexample for Agent-by-Agent Optimality)
Consider an infinite horizon problem, which involves two

agents (m = 2) and a single statex. Thus the state does not
change and the costs of different stages are decoupled (the
problem is essentially static). Each of the two agents chooses
between the two controls 0 and 1:u1 ∈ {0, 1} andu2 ∈ {0, 1}.
The cost per stageg is equal to 2 ifu1 6= u2, is equal to 1 if
u1 = u2 = 0, and is equal to 0 ifu1 = u2 = 1. The unique
optimal policy is to applyµ1(x) = 1 andµ2(x) = 1. However,
it can be seen that the suboptimal policy that appliesµ1(x) = 0
andµ2(x) = 0 is agent-by-agent optimal.

The preceding example is representative of an entire class
of DP problems where an agent-by-agent optimal policy is
not overall optimal. Any static (single step) multivariable
optimization problem where there are nonoptimal solutions
that cannot be improved upon by a round of coordinate
descent operations (sequential component minimizations,one-
component-at-a-time) can be turned into an infinite horizonDP
example where these nonoptimal solutions define agent-by-
agent optimal policies that are not overall optimal. Conversely,
one may search for problem classes where an agent-by-agent

optimal policy is guaranteed to be (overall) optimal among the
type of multivariable optimization problems where coordinate
descent is guaranteed to converge to an optimal solution.
For example positive definite quadratic problems or problems
involving differentiable strictly convex functions (see [67],
Section 3.7). Generally, agent-by-agent optimality may be
viewed as an acceptable form of optimality for many types
of problems, but there are exceptions.

Our main result is that the one-agent-at-a-time PI algorithm
generates a sequence of policies that converges in a finite
number of iterations to a policy that is agent-by-agent optimal.
However, we will show that even if the final policy produced
by one-agent-at-a-time PI is not optimal, each generated policy
is no worse than its predecessor. In the presence of approxima-
tions, which are necessary for large problems, it appears that
the policies produced by multiagent PI are often of sufficient
quality for practical purposes, and not substantially worse than
the ones produced by (far more computationally intensive)
approximate PI methods that are based on all-agents-at-once
lookahead minimization.

For the proof of our convergence result, we will use a special
rule for breaking ties in the policy improvement operation
in favor of the current policy component. This rule is easy
to enforce, and guarantees that the algorithm cannot cycle
between policies. Without this tie-breaking rule, the following
proof shows that while the generated policies may cycle, the
corresponding cost function values converge to a cost function
value of some agent-by-agent optimal policy.

In the following proof and later all vector inequalities are
meant to be componentwise, i.e., for any two vectorsJ and
J ′, we write

J ≤ J ′ if J(x) ≤ J ′(x) for all x.

For notational convenience, we also introduce the Bellman
operatorTµ that maps a function of the stateJ to the function
of the stateTµJ given by

(TµJ)(x) =

n∑

y=1

pxy

(
µ(x)

)(
g
(
x, µ(x), y

)
+ αJµ(y)

)
,

x = 1, . . . , n.

Proposition 2: Let {µk} be a sequence generated by the one-
agent-at-a-time PI algorithm (13) assuming that ties in thepolicy
improvement operation of Eq.(14) are broken as follows: If for
anyℓ = 1, . . . , m andx, the control componentµℓ(x) attains the
minimum in Eq.(14), we choose

µ̃ℓ(x) = µℓ(x)

[even if there are other control components withinUℓ(x) that
attain the minimum in addition toµℓ(x)]. Then for all x andk,
we have

Jµk+1(x) ≤ Jµk (x),

and after a finite number of iterations, we haveµk+1 = µk, in
which case the policiesµk+1 andµk are agent-by-agent optimal.

Proof: We recall that for givenµ and J , we denote by
M̃µ(J) the set of policies̃µ satisfying Eq.(14). The critical



264 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

step of the proof is the following monotone decrease inequal-
ity:

Tµ̃J ≤ TµJ ≤ J, for all J with TµJ ≤ J

and µ̃ ∈ M̃µ(J), (16)

which yields as a special caseTµ̃Jµ ≤ Jµ, sinceTµJµ = Jµ.
This parallels a key inequality for standard PI, namely that
Tµ̃Jµ ≤ Jµ, for all µ̃ such thatTµ̃Jµ = TJµ, which lies at
the heart of its convergence proof. Once Eq.(16) is shown, the
monotonicity of the operatorTµ̃ implies the cost improvement
propertyJµ̃ ≤ Jµ, and by using the finiteness of the set of
policies, the finite convergence of the algorithm will follow.

We will give the proof of the monotone decrease inequality
(16) for the casem = 2. The proof for an arbitrary number
of componentsm > 2 is entirely similar. Indeed, ifTµJ ≤ J

and µ̃ ∈ M̃µ(J), we have for all statesx,

(Tµ̃J)(x) =

n∑

y=1

pxy

(
µ̃1(x), µ̃2(x)

)

·
(
g
(
x, µ̃1(x), µ̃2(x), y

)
+ αJ(y)

)

= min
u2∈U2(x)

n∑

y=1

pxy

(
µ̃1(x), u2

)

·
(
g
(
x, µ̃1(x), u2, y

)
+ αJ(y)

)

≤

n∑

y=1

pxy

(
µ̃1(x), µ2(x)

)

·
(
g
(
x, µ̃1(x), µ2(x), y

)
+ αJ(y)

)

= min
u1∈U1(x)

n∑

y=1

pxy

(
u1, µ2(x)

)

·
(
g
(
x, u1, µ2(x), y

)
+ αJ(y)

)

≤
n∑

y=1

pxy

(
µ1(x), µ2(x)

)

·
(
g
(
x, µ1(x), µ2(x), y

)
+ αJ(y)

)

=(TµJ)(x)

≤J(x),

where:
(1) The first equality uses the definition of the Bellman

operator forµ̃.
(2) The first two inequalities hold by the definition of

policies µ̃ ∈ M̃µ(J).
(3) The last equality is the definition of the Bellman operator

for µ.
(4) The last inequality is the assumptionTµJ ≤ J .
By letting J = Jµk in the monotone decrease inequality

(16), we haveTµk+1Jµk ≤ Jµk . In view of the monotonicity
of Tµk+1 , we also haveT ℓ+1

µk+1Jµk ≤ T ℓ
µk+1Jµk for all ℓ ≥ 1,

so that

Jµk+1 = lim
ℓ→∞

T ℓ
µk+1Jµk ≤ Tµk+1Jµk ≤ Jµk . (17)

It follows that eitherJµk+1 = Jµk , or else we have strict
policy improvement, i.e.,Jµk+1(x) < Jµk(x) for at least one
statex. As long as strict improvement occurs, no generated
policy can be repeated by the algorithm. Since there are only
finitely many policies, it follows that within a finite number
of iterations, we will haveJµk+1 = Jµk . Once this happens,
equality will hold throughout in Eq.(17). This implies, using
also the preceding proof, that

n∑

y=1

pxy

(
µk+1

1 (x), µk+1
2 (x)

)

·
(
g
(
x, µk+1

1 (x), µk+1
2 (x), y

)
+ αJµk (y)

)

= min
u2∈U2(x)

n∑

y=1

pxy

(
µk+1

1 (x), u2

)

·
(
g
(
x, µk+1

1 (x), u2, y
)

+ αJµk (y)
)

=

n∑

y=1

pxy

(
µk+1

1 (x), µk
2(x)

)

·
(
g
(
x, µk+1

1 (x), µk
2(x), y

)
+ αJµk (y)

)
, (18)

and
n∑

y=1

pxy

(
µk+1

1 (x), µk
2(x)

)

·
(
g
(
x, µk+1

1 (x), µk
2(x), y

)
+ αJµk(y)

)

= min
u1∈U1(x)

n∑

y=1

pxy

(
u1, µ

k
2(x)

)

·
(
g
(
x, u1, µ

k
2(x), y

)
+ αJµk(y)

)

=

n∑

y=1

pxy

(
µk

1(x), µk
2(x)

)

·
(
g
(
x, µk

1(x), µk
2(x), y

)
+ αJµk(y)

)
.

In view of our tie breaking rule, this equation implies that
µk+1

1 = µk
1 , and then Eq.(18) implies thatµk+1

2 = µk
2 . Thus

we haveµk+1 = µk, and from the preceding two equations,
it follows that µk+1 andµk are agent-by-agent optimal. �

D. Variants - Value and Policy Approximations

An important variant of multiagent PI is an optimistic
version, whereby policy evaluation is performed by using a
finite number of one-agent-at-a-time value iterations. This type
of method together with a theoretical convergence analysisof
multiagent value iteration is given in the paper [5] and in the
monograph [3] (Sections 5.4−5.6). It is outside the scope of
this paper.

As Example 5 shows, there may be multiple agent-by-agent
optimal policies, with different cost functions. This illustrates
that the policy obtained by the multiagent PI algorithm may
depend on the starting policy. It turns out that the same
example can be used to show that the policy obtained by
the algorithm depends also on the order in which the agents



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 265

select their controls.

Example 6 (Dependence of the Final Policy on the Agent
Iteration Order)

Consider the problem of Example 5. In this problem there
are two agent-by-agent optimal policies: the optimal policy µ∗

whereµ∗

1(x) = 1 andµ∗

2(x) = 1, and the suboptimal policȳµ
whereµ̄1(x) = 0 and µ̄2(x) = 0. Let the starting policy beµ0

whereµ0
1(x) = 1 andµ0

2(x) = 0. Then if agent 1 iterates first,
the algorithm will terminate with the suboptimal policy,µ1 = µ̄,
while if agent 2 iterates first, the algorithm will terminatewith
the optimal policy,µ1 = µ∗.

As noted in Section II-E, it is possible to try to optimize
the agent order at each iteration. In particular, first optimize
over all single agent Q-factors, by solving them minimization
problems that correspond to each of the agentsℓ = 1, . . . , m
being first in the multiagent rollout order. Ifℓ1 is the agent
that produces the minimal Q-factor, we fixℓ1 to be the first
agent in the multiagent rollout order. Then we optimize over
all single agent Q-factors, by solving them− 1 minimization
problems that correspond to each of the agentsℓ 6= ℓ1 being
second in the multiagent rollout order, etc.

1) Value and Policy Neural Network Approximations
There are also several possible versions for approximate

one-agent-at-a-time PI, including the use of value and policy
neural networks. In particular, the multiagent policy improve-
ment operation (14) may be performed at a sample set of states
xs, s = 1, . . . , q, thus yielding a training set of state-rollout
control pairs

(
xs, µ̃(xs)

)
, s = 1, . . . , q, which can be used to

train a (policy) neural network to generate an approximation µ̂
to the policyµ̃.10 The policy µ̂ becomes the new base policy
and can be used in turn to train a (value) neural network
that approximates its cost function valueJµ̂. The approximate
multiagent PI cycle can thus be continued (cf. Fig. 7). Note
that the training of the agent policieŝµ1, . . . , µ̂m may be done
separately for each agent, withm separate neural networks.
With this scheme, the difficulty with a large control space is
overcome by one-agent-at-a-time policy improvement, while
the difficulty with a potentially large state space is overcome
by training value and policy networks.

The RL books [2] and [3] provide a lot of details relating
to the structure and the training of value and policy networks
in various contexts, some of which apply to the algorithms
of the present paper. These include the use of distributed
asynchronous algorithms that are based on partitioning of the
state space and training different networks on different sets
of the state space partition; see also the paper [15], which
applies partitioning to the solution of a challenging classof
partial state information problems.

Note also that the policy evaluatioñJµ of the base policyµ
in the context of approximate PI may be done in several differ-
ent ways. These include methods that compute iteratively the

10There are quite a few methods for training an approximation architecture
to represent a given policy by using training data that is generated by using this
policy. In principle, these methods can be based on classification methodology,
whereby a policy is represented as a classifier that associates states to
controls; see [68]−[70]. There are also several related methods, known by
names such as imitation learning, apprenticeship learning, or learning from
demonstrations; see [71]−[78].

projection ofJµ onto a subspace spanned by basis functions
or features, such as temporal difference methods, including
TD(λ) and LSPE(λ), or methods based on matrix inversion
such as LSTD(λ). We refer to RL textbooks, such as [65],
[79], and the approximate DP book [13] for detailed accounts
of these methods. We next discuss an alternative that is based
on aggregation.

2) Value and Policy Approximations with Aggregation
One of the possibilities for value and policy approximations

in multiagent rollout arises in the context of aggregation;see
the books [13] and [2], and the references quoted there. In
particular, let us consider the aggregation with representative
features framework of [2], Section 6.2 (see also [13], Section
6.5). The construction of the features may be done with sophis-
ticated methods, including the use of a deep neural network
as discussed in the paper [80]. Briefly, in this framework
we introduce an expanded DP problem involving a finite
number of additional statesi = 1, . . . , s, called aggregate
states. Each aggregate statei is associated with a subsetXi

of the system’s state spaceX . We assume that the setsXi,
i = 1, . . . , s, are nonempty and disjoint, and collectively
include every state ofX . We also introduce aggregation
probabilities mapping an aggregate statei to the subsetXi,
and disaggregation probabilitiesφyj mapping system statesy
to subsets of aggregate statesXj .

A base policyµ defines a set of aggregate state costsrµ(j),
j = 1, . . . , s, which can be computed by simulation involving
an “aggregate” Markov chain (see [2], [13]). The aggregate
costsrµ(j) define an approximation̂Jµ of the cost function
Jµ of the base policy, through the equation

Ĵµ(y) =

s∑

j=1

φyjrµ(j), y ∈ X.

Then an (approximate) multiagent rollout policỹµ can be
defined by one-step lookahead usingĴµ in place ofJµ, i.e.,
µ̃ ∈ M̃µ(Ĵµ), where the setM̃µ(J) is defined for anyµ
and J by Eq.(14). In other words, the multiagent rollout
algorithm with aggregation is defined bỹµ ∈ M̃µ(Ĵµ) instead
of its counterpart without aggregation, which is defined by
µ̃ ∈ M̃µ(Jµ).

Note that using an approximation architecture based on
aggregation has a significant advantage over a neural net-
work architecture because aggregation induces a DP structure
that facilitates PI convergence and improves associated error
bounds (see [2] and [13]). In particular, a multiagent PI algo-
rithm based on aggregation admits a convergence result like
the one of Prop. 2, except that this result asserts convergence to
an agent-by-agent optimal policy for the associated aggregate
problem. By contrast, approximate multiagent PI with value
and policy networks (cf. Fig. 7) generically oscillates, as
shown in sources such as [2], [13], [65], [81].

E. Policy Iteration and Q-Learning for the Reformulated
Problem

Let us return to the equivalent reformulated problem intro-
duced at the beginning of Section IV and illustrated in Fig. 6.



266 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

Fig. 7. Approximate multiagent PI with value and policy networks. The value network provides a trained approximation tothe current base policyµ. The

policy network provides a trained approximation̂µ to the corresponding multiagent rollout policỹµ. The policy network may consist ofm separately trained

policy networks, one for each of the agent policiesµ̂1, . . . , µ̂m.

Instead of applying approximate multiagent PI to generate a
sequence of multiagent policies

µk(x) =
(
µk

1(x), µk
2(x), . . . , µk

m(x)
)

(19)

as described in Section IV-A [cf. Eqs.(13) and (14)], we
can use an ordinary type of PI method for the reformulated
problem. The policies generated by this type of PI will exhibit
not only a dependence on the statex [like the policies
(19)], but also a dependence on the agents’ controls, i.e., the
generated policies will have the form

(
µk

1(x), µk
2(x, u1), . . . , µ

k
m(x, u1, . . . , um−1)

)
; (20)

cf. the state space of Eq.(11) of the reformulated problem.
Thus the policies are defined over a space that grows exponen-
tially with the number of agents. This is a different PI method
than the one of Section IV-A, and will generate a different
sequence of policies, even when the initial policy is the same.

The exact form of this PI algorithm starts iterationk with a
policy of the form (20), computes its corresponding evaluation
(i.e., the cost function of the policy, defined over the statespace
of the reformulated problem)

J0
k (x), J1

k (x, u1), . . . , J
m−1
k (x, u1, . . . , um−1), (21)

and generates the new policy
(
µk+1

1 (x), µk+1
2 (x, u1), . . . , µ

k+1
m (x, u1, . . . , um−1)

)

through the following policy improvement operation:

µk+1
1 (x) ∈ arg min

u1∈U1(x)
J1

k (x, u1),

µk+1
2 (x, u1) ∈ arg min

u2∈U2(x)
J2

k (x, u1, u2),

· · · · · · · · ·

µk+1
m−1(x, u1, . . . , um−2) ∈

arg min
um−1∈Um−1(x)

Jm−1
k (x, u1, . . . , um−2, um−1),

µk+1
m (x, u1, . . . , um−1) ∈

arg min
um∈Um(x)

n∑

y=1

pxy(u1, . . . , um)

·
(
g(x, u1, . . . , um, y) + αJ0

k (y)
)
. (22)

According to the standard theory of discounted MDP, the
preceding exact form of PI will terminate in a finite number
of iterations with an optimal policy

(
µ̂1(x), µ̂2(x, u1), . . . , µ̂m(x, u1, . . . , um−1)

)

for the reformulated problem, which in turn can yield an
optimal policy µ∗ = (µ∗

1, . . . , µ
∗

m) for the original problem
through the successive substitutions

µ∗

1(x) = µ̂1(x),

µ∗

2(x) = µ̂2

(
x, µ∗

1(x)
)
,

· · ·

µ∗

m(x) = µ̂m

(
x, µ∗

1(x), . . . , µ∗

m−1(x)
)
,

for all x = 1, . . . , n.

For example, the reader can verify that the algorithm will
find the optimal policy of the one-state/two controls prob-
lem of Example 5 in two iterations, when started with the
strictly suboptimal agent-by-agent optimal policyµ1(x) = 0,
µ2(x, u1) ≡ 0 of that problem.

Note that the policy improvement operation (22) requires
optimization over single control components rather over the
entire vectoru = (u1, . . . , um), but it is executed over a larger
and more complex state space, whose size grows exponentially
with the number of agentsm. The difficulty with the large state
space can be mitigated through approximate implementation
with policy networks, but for this it is necessary to construct m
policy networks at each iteration, with theℓth agent network
having as input(x, u1, . . . , uℓ−1); cf. Eq.(20). Similarly, in
the case of approximate implementation with value networks,
it is necessary to constructm value networks at each iteration,
with the ℓth agent network having as input(x, u1, . . . , uℓ−1);
cf. Eq.(21). Thus generating policies of the form (20) requires
more complex value and policy network approximations. For
a moderate number of agents, however, such approximations
may be implementable without overwhelming difficulty, while
maintaining the advantage of computationally tractable one-
agent-at-a-time policy improvement operations of the form
(22).

We may also note that the policy improvement operations
(22) can be executed in parallel for all states of the reformu-
lated problem. Moreover, the corresponding PI method has a
potentially significant advantage: it aims to approximate an



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 267

optimal policy rather than one that is merely agent-by-agent
optimal.

1) Q-Learning for the Reformulated Problem
The preceding discussion assumes that the base policy for

the multiagent rollout algorithm is a policy generated through
an off-line exact or approximate PI algorithm. We may also use
the reformulated problem to generate a base policy through an
off-line exact or approximate value iteration (VI) or Q-learning
algorithm. In particular, the exact form of the VI algorithmcan
be written in terms of multiple Q-factors as follows:

Jk+1(x) = min
u1∈U1(x)

Qk
1(x, u1), x = 1, . . . , n,

Qk+1
1 (x, u1) = min

u2∈U2(x)
Qk

2(x, u1, u2),

x = 1, . . . , n, u1 ∈ U1(x), (23)

· · · · · · · · ·

Qk+1
m−1(x, u1, . . . , um−1)

= min
um∈Um(x)

Qk
m(x, u1, . . . , um−1, um),

x = 1, . . . , n, uℓ ∈ Uℓ(x), ℓ = 1, . . . , m − 1,

Qk+1
m (x, u1, . . . , um) =

n∑

y=1

pxy(u1, . . . , um)

·
(
g(x, u1, . . . , um, y) + αJk(y)

)
,

x = 1, . . . , n, (u1, . . . , um) ∈ U(x).

It gives both the value iterate sequence{Jk} and the Q-factor
iterate sequences{Qk

ℓ}, ℓ = 1, . . . , m, at the states of the
reformulated problem [cf. Eq.(11)]. The convergence of the
preceding algorithm, as well as its asynchronous stochastic
approximation/Q-learning variants, is covered by the classical
theory of infinite horizon DP and the theory of the Q-learning
method applied to the reformulated problem (see the analysis
of Tsitsiklis [82], and subsequent mathematical works on
the convergence of Q-learning and variations). In particu-
lar, the sequence{Jk} converges toJ∗ (the optimal cost
function), while each sequence{Qk

ℓ (x, u1, . . . , uℓ)} converges
to Q∗

ℓ (x, u1, . . . , uℓ), the optimal cost that can obtained if
we start atx, the agents1, . . . ℓ choose next the controls
u1, . . . , uℓ, respectively, and all the subsequent agent controls
are chosen optimally.

Note that all of the iterations (23) involve minimization over
a single agent control component, but are executed over a state
space that grows exponentially with the number of agents.
On the other hand one may use approximate versions of the
VI and Q-learning iterations (23) (such as SARSA [78], and
DQN [83]) to mitigate the complexity of the large state space
through the use of neural networks or other approximation
architectures. Once an approximate policy is obtained through
a neural network-based variant of the preceding algorithm,it
can be used as a base policy for on-line multiagent rollout that
involves single agent component minimizations.

F. Truncated Multiagent Rollout and Error Bound

Another approximation possibility, which may also be
combined with value and policy network approximations is

truncated rollout, which operates similar to the finite horizon
case described in Section II-E. Here, we use multiagent one-
step lookahead, we then apply rollout with base policyµ for a
limited number of steps, and finally we approximate the cost of
the remaining steps using some terminal cost function approxi-
mationJ . In truncated rollout schemes,J may be heuristically
chosen, may be based on problem approximation, or may
be based on a more systematic simulation methodology. For
example, the valuesJµ(x) can be computed by simulation
for all x in a subset of representative states, andJ can be
selected from a parametric class of functions through training,
e.g., a least squares regression of the computed values. This
approximation may be performed off-line, outside the time-
sensitive restrictions of a real-time implementation, andthe
result may be used on-line in place ofJµ as a terminal cost
function approximation.

We have the following performance bounds the proofs of
which are given in [3] (Prop. 5.2.7).

Proposition 2: (Performance Bounds for Multiagent Truncated
Rollout)
Let µ be a base policy, and letJ be a function of the state.
Consider the multiagent rollout scheme that consists of one-step
lookahead, followed by rollout with a policyµ for a given number
of steps, and followed by a terminal cost function approximation
J . Let µ̃ be the generated rollout policy.
(a) We have

Jµ̃(x) ≤ J(x) +
c

1 − α
, x = 1, . . . , n,

where

c = max
x=1,...,n

(
(TµJ)(x) − J(x)

)
.

(b) We have

Jµ̃(x) ≤ Jµ(x) +
2

1 − α
max

y=1,...,n

∣∣J(y) − Jµ(y)
∣∣,

x = 1, . . . , n.

These error bounds provide some guidance for the imple-
mentation of truncated rollout, as discussed in Section 5.2.6
of the book [3]. An important point is that the error bounds
do not depend on the number of agentsm, so the preceding
proposition guarantees the same level of improvement of the
rollout policy over the base policy for one-agent-at-a-time
and all-agents-at-once rollout. In fact there is no known error
bound that is better for standard rollout than for multiagent
rollout. This provides substantial analytical support forthe
multiagent rollout approach, and is consistent with the results
of computational experimentation available so far.

V. AUTONOMOUSMULTIAGENT ROLLOUT FOR INFINITE

HORIZON PROBLEMS - SIGNALING POLICIES

The autonomous multiagent rollout scheme of Section III
can be extended to infinite horizon problems. The idea is again
to use in addition to the base policyµ = (µ1, . . . , µm), a
signaling policyµ̂ = (µ̂1, . . . , µ̂m), which is computed off-
line and embodies agent coordination.

In particular, given a base policyµ and a signaling pol-
icy µ̂, the autonomous multiagent rollout algorithm gener-



268 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

ates a policyµ̃ as follows. At statex, it obtains µ̃(x) =(
µ̃1(x), . . . , µ̃m(x)

)
, according to

µ̃1(x) ∈ arg min
u1∈U1(x)

E
{
g
(
x, u1, µ2(x), . . . , µm(x), w

)

+ αJµ

(
f
(
x, u1, µ2(x), . . . , µm(x), w

))}
,

µ̃2(x) ∈ arg min
u2∈U2(x)

E
{
g
(
x, µ̂1(x), u2, . . . , µm(x), w

)

+ αJµ

(
f
(
x, µ̂1(x), u2, . . . , µm(x), w

))}
,

· · · · · · · · ·

µ̃m(x) ∈ arg min
um∈Um(x)

E
{

g
(
x, µ̂1(x), . . . , µ̂m−1(x), um, w

)

+ αJµ

(
f
(
x, µ̂1(x), . . . , µ̂m−1(x), um, w

))}
.

(24)

Note that the preceding computation of the controls
µ̃1(x), . . . , µ̃m(x) can be done asynchronously and in parallel,
without agent intercommunication of their computed controls,
since the signaling policy valueŝµ1(x), . . . , µ̂m−1(x) and the
base policy valuesµ1(x), . . . , µm−1(x) are available to all the
agents.

There is no restriction on the signaling policy, but of
course its choice affects the performance of the corresponding
autonomous multiagent rollout algorithm. The simplest possi-
bility is to use as signaling policy the base policy; i.e.,µ̂ = µ.
However, this choice does not guarantee policy improvement
and can lead to poor performance, as evidenced by Example
3. Still, using the base policy as signaling policy can be an
attractive possibility, which one may wish to try (perhaps in
some modified form) on specific problems, in view of its
simplicity and its parallelization potential. On the otherhand,
if the signaling policy is taken to be the (nonautonomous)
multiagent rollout policyµ̃ ∈ M̃µ(Jµ) [cf. Eq.(14)], i.e.,
µ̂ = µ̃, the autonomous and nonautonomous multiagent rollout
policies coincide, so nothing is gained from the use of this
signaling policy.

A related interesting possibility is to choose the signal-
ing policy µ̂ to approximate the multiagent rollout policy
µ̃ ∈ M̃µ(Jµ). In particular, we may obtain the policy
µ̂ = (µ̂1, . . . , µ̂m−1), by off-line training and approximation
in policy space using a neural network, with the training set
generated by the multiagent rollout policỹµ ∈ M̃µ(Jµ); cf.
Section IV-C and Fig. 7. Here are two possibilities along these
lines:

(a) We may use the approximate multiagent PI algorithm
with policy network approximation (cf. Section IV-D), start
with some initial policy µ0, and producek new policies
µ1, . . . , µk. Then the rollout scheme would useµk as signaling
policy, andµk−1 as base policy. The final rollout policy thus
obtained can be implemented on-line with the possibility of
on-line replanning and the attendant robustness property.

(b) We may generate a base policyµ by a policy gradient
or random search method, and approximate the corresponding
multiagent rollout policyµ̃ ∈ M̃µ(Jµ) by off-line neural
network training. Then the rollout scheme would use the neural
network policy thus obtained as signaling policy, andµ as base

policy. Again, the final rollout policy thus obtained can be
implemented on-line with the possibility of on-line replanning
and the attendant robustness property.

Note that if the neural network were to provide a perfect
approximation of the rollout policy, the policy defined by
Eq.(24) would be the same as the rollout policy, as noted
earlier. Thus, intuitively, if the neural network providesa good
approximation of the rollout policy (14), the policy defined
by Eq.(24) will have better performance than both the base
policy and the signaling policy. This was confirmed by the
computational results of the paper [64], within the contextof a
multi-robot repair application. The advantage of autonomous
multiagent rollout with neural network approximations is
that it allows approximate policy improvement (to the extent
that the functionŝµi are good approximations tõµi), while
allowing the speedup afforded by autonomous agent operation,
as well as on-line replanning when the problem data varies
over time. The following example aims to illustrate these ideas.

Example 7 (Autonomous Spiders and Flies)

Let us return to the two-spiders-and-two-flies problem of
Examples 2 and 4, and use it as a test of the sensitivity of au-
tonomous multiagent rollout algorithm with respect to variations
in the signaling policy. Formally, we view the problem as an
infinite horizon MDP of the stochastic shortest path type. Recall
that the base policy moves each spider selfishly towards the
closest surviving fly with no coordination with the other spider,
while both the standard and the multiagent rollout algorithms
are optimal.

We will now apply autonomous multiagent rollout with
a signaling policy that isarbitrary. This also includes the
case where the signaling policy is an error-corrupted version
of the standard (nonautonomous) multiagent rollout policy; cf.
the preceding discussion. The errors can be viewed as the
result of the approximation introduced by a policy network
that aims to represent the multiagent rollout policy (whichis
optimal as discussed in Example 2). Then it can be verified
that the autonomous multiagent rollout policy with arbitrary
signaling policy acts optimally as long as the spiders are initially
separated on the line by at least one unit. What is happening
here is that the Q-factors that are minimized in Eq.(24) involve
a first stage cost (which is fixed at 1 and is independent of
the signaling policy), and the cost of the base policyJµ(y)
starting from the next statey, which is not sufficiently affected
by the signaling policŷµ to change the outcome of the Q-factor
minimizations (24).

On the other hand, we saw in Example 4 that if we use as
signaling policy the base policy, and the two spiders start at the
same position, the spiders cannot coordinate their move choices,
and they never separate. Thus the algorithm gets locked onto
an oscillation where the spiders keep moving together back and
forth, and (in contrast with the base policy) never capture the
flies!

The preceding example shows how a misguided choice of
signaling policy (namely the base policy), may lead to very
poor performance starting from some initial states, but also
a very good performance starting from other initial states.
Since detecting the “bad” initial states may be tricky for a
complicated problem, it seems that one should be careful
to support with analysis (to the extent possible), as well as
substantial experimentation the choice of a signaling policy.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 269

The example also illustrates a situation where approxima-
tion errors in the calculation of the signaling policy matter
little. This is the case where at the current state the agentsare
sufficiently decoupled so that there is a dominant Q-factor in
the minimization (24) whose dominance is not affected much
by the choice of the signaling policy. As noted in Section
III, one may exploit this type of structure by dividing the
agents in “coupled” groups, and require coordination of the
rollout control selections only within each group, while the
computation within different groups may proceed in parallel
with a signaling policy such as the base policy. Then the
computation time/overhead for selecting rollout controlsone-
agent-at-a-time using on-line simulation will be proportional
to the size of the largest group rather than proportional to
the number of agents.11 Note, however, that the “coupled”
groups may depend on the current state, and that deciding
which agents to include within each group may not be easy.

Analysis that quantifies the sensitivity of the performance
of the autonomous multiagent rollout policy with respect
to problem structure is an interesting direction for further
research. The importance of such an analysis is magnified
by the significant implementation advantages of autonomous
versus nonautonomous rollout schemes: the agents can com-
pute on-line their respective controls asynchronously andin
parallel without explicit inter-agent coordination, while taking
advantage of local information for on-line replanning.

VI. CONCLUDING REMARKS

We have shown that in the context of multiagent problems,
an agent-by-agent version of the rollout algorithm has greatly
reduced computational requirements, while still maintaining
the fundamental cost improvement property of the standard
rollout algorithm. There are several variations of rolloutal-
gorithms for multiagent problems, which deserve attention.
Moreover, additional computational tests in some practical
multiagent settings will be helpful in comparatively evaluating
some of these variations.

We have primarily focused on the cost improvement prop-
erty, and the important fact that it can be achieved at a
much reduced computational cost. The fact that multiagent
rollout cannot improve strictly over a (possibly suboptimal)
policy that is agent-by-agent optimal is a theoretical limitation,
which, however, for many problems does not seem to prevent
the method from performing comparably to the far more
computationally expensive standard rollout algorithm (which
is in fact intractable for only a modest number of agents).

It is useful to keep in mind that the multiagent rollout policy
is essentially the standard (all-agents-at-once) rolloutpolicy
applied to the (equivalent) reformulated problem of Fig. 3 (or
Fig. 6 in the infinite horizon case). As a result, known insights,

11The concept of weakly coupled subsystems figures prominently in the
literature of decentralized control of systems with continuous state and control
spaces, where it is usually associated with a (nearly) blockdiagonal structure
of the Hessian matrix of a policy’s Q-factors (viewed as functions of the
agent control componentsu1, . . . , um for a given state). In this context, the
blocks of the Hessian matrix correspond to the coupled groups of agents.
This analogy, while valid at some conceptual level, does notfully apply to
our problem, since we have assumed a discrete control space.

results, error bounds, and approximation techniques for stan-
dard rollout apply in suitably reformulated form. Moreover, the
reformulated problem may form the basis for an approximate
PI algorithm with agent-by-agent policy improvement, as we
have discussed in Section IV-E.

In this paper, we have assumed that the control constraint
set is finite in order to argue about the computational efficiency
of the agent-by-agent rollout algorithm. The rollout algorithm
itself and its cost improvement property are valid even in the
case where the control constraint set is infinite, includingthe
model predictive control context (cf. Section II-E of the RL
book [2]), and linear-quadratic problems. However, it is as
yet unclear whether agent-by-agent rollout offers an advantage
in the infinite control space case, especially if the one-step
lookahead minimization in the policy improvement operation
is not done by discretization of the control constraint set,and
exhaustive enumeration and comparison of the associated Q-
factors.

The two multiagent PI algorithms that we have proposed in
Sections IV-A and IV-E differ in their convergence guarantees
when implemented exactly. In particular the PI algorithm of
Section IV-A, in its exact form, is only guaranteed to terminate
with an agent-by-agent optimal policy. Still in many cases
(including the problems that we have tested computationally) it
may produce comparable performance to the standard PI algo-
rithm, which however involves prohibitively large computation
even for a moderate number of agents. The PI algorithm of
Section IV-E, in its exact form, is guaranteed to terminate with
an optimal policy, but its implementation must be carried out
over a more complex space. Its approximate form with policy
networks has not been tested on challenging problems, and
it is unclear whether and under what circumstances it offers
a tangible performance advantage over approximate forms of
the PI algorithm of Section IV-A.

Our multiagent PI convergence result of Prop.2 can be
extended beyond the finite-state discounted problem to more
general infinite horizon DP contexts, where the PI algorithmis
well-suited for algorithmic solution. Other extensions include
agent-by-agent variants of value iteration, optimistic PI, Q-
learning and other related methods. The analysis of such
extensions is reported separately; see [3] and [5].

We have also proposed new autonomous multiagent rollout
schemes for both finite and infinite horizon problems. The
idea is to use a precomputed signaling policy, which embodies
sufficient agent coordination to obviate the need for interagent
communication during the on-line implementation of the algo-
rithm. In this way the agents may apply their control compo-
nents asynchronously and in parallel. We have still assumed,
however, that the agents share perfect state information (or
perfect belief state information in the context of partial state
observation problems). Intuitively, for many problems it should
be possible to implement effective autonomous multiagent
rollout schemes that use state estimates in place of exact
states. Analysis and computational experimentation with such
schemes should be very useful and may lead to improved
understanding of their properties.



270 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

Several unresolved questions remain regarding algorithmic
variations and conditions that guarantee that our PI algorithm
of Section IV-A obtains an optimal policy rather than one
that is agent-by-agent optimal (the paper [5] provides relevant
discussions). Moreover, approximate versions of our PI algo-
rithms that use value and policy network approximations are
of great practical interest, and are a subject for further investi-
gation (the papers by Bhattacharyaet al. [15] and [64] discuss
in detail various neural network-based implementations, in
the context of some challenging POMDP multi-robot repair
applications). Finally, the basic idea of our approach, namely
simplifying the one-step lookahead minimization defining the
Bellman operator while maintaining some form of cost im-
provement or convergence guarantee, can be extended in other
directions to address special problem types that involve multi-
component control structures.

We finally mention that the idea of agent-by-agent rollout
also applies within the context of challenging deterministic
discrete/combinatorial optimization problems, which involve
constraints that couple the controls of different stages. While
we have not touched upon this subject in the present paper,
we have discussed the corresponding constrained multiagent
rollout algorithms separately in the book [3] and the paper [6].

REFERENCES

[1] D. P. Bertsekas,Dynamic Programming and Optimal Control, Vol. I.
4th ed. Belmont, USA: Athena Scientific, 2017.

[2] D. P. Bertsekas,Reinforcement Learning and Optimal Control. Bel-
mont, USA: Athena Scientific, 2019.

[3] D. P. Bertsekas,Rollout, Policy Iteration, and Distributed Reinforce-
ment Learning. Belmont, USA: Athena Scientific, 2020.

[4] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A.
Guez, M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K.
Simonyan, and D. Hassabis, “Mastering chess and Shogi by self-play
with a general reinforcement learning algorithm,” arXiv preprint arXiv:
1712.01815, 2017.

[5] D. P. Bertsekas, “Multiagent value iteration algorithms in dynamic
programming and reinforcement learning,” arxiv: 2005.01627, 2020.

[6] D. P. Bertsekas, “Constrained multiagent rollout and multidimensional
assignment with the auction algorithm,” arXiv:2002.07407, 2020.

[7] D. P. Bertsekas, “Distributed dynamic programming,”IEEE Trans.
Autom. Control, vol. 27, no. 3, pp. 610−616, Jun. 1982.

[8] D. P. Bertsekas, “Asynchronous distributed computation of fixed
points,” Math. Programming, vol. 27, no. 1, pp. 107−120, Sep. 1983.

[9] D. P. Bertsekas and J. N. Tsitsiklis,Parallel and Distributed Com-
putation: Numerical Methods. Englewood Cliffs, USA: Prentice-Hall,
1989.

[10] D. P. Bertsekas and H. Z. Yu, “Asynchronous distributedpolicy
iteration in dynamic programming,” inProc. 48th Annu. Allerton
Conf. Communication, Control, and Computing, Allerton, USA, 2010,
pp. 1368−1374.

[11] D. P. Bertsekas and H. Z. Yu, “Q-learning and enhanced policy
iteration in discounted dynamic programming,”Math. Oper. Res.,
vol. 37, pp. 66−94, Feb. 2012.

[12] H. Z. Yu and D. P. Bertsekas, “Q-learning and policy iteration algo-
rithms for stochastic shortest path problems,”Ann. Oper. Res., vol. 208,
no. 1, pp. 95−132, Sep. 2013.

[13] D. P. Bertsekas,Dynamic Programming and Optimal Control, Vol. II.
4th ed. Belmont, USA: Athena Scientific, 2012.

[14] D. P. Bertsekas,Abstract Dynamic Programming. Belmont, USA:
Athena Scientific, 2018.

[15] S. Bhattacharya, S. Badyal, T. Wheeler, S. Gil, and D. P.Bertsekas,
“Reinforcement learning for POMDP: Partitioned rollout and policy
iteration with application to autonomous sequential repair problems,”
IEEE Rob. Autom. Lett., vol. 5, no. 3, pp. 3967−3974, Jul. 2020.

[16] H. S. Witsenhausen, “A counterexample in stochastic optimum control,”
SIAM J. Control, vol. 6, no. 1, pp. 131−147, 1968.

[17] H. S. Witsenhausen, “Separation of estimation and control for discrete
time systems,”Proc. IEEE, vol. 59, no. 11, pp. 1557−1566, Nov. 1971.

[18] J. Marschak, “Elements for a theory of teams,”Manage. Sci., vol. 1,
no. 2, pp. 127−137, Jan. 1975.

[19] R. Radner, “Team decision problems,”Ann. Math. Statist., vol. 33,
no. 3, pp. 857−881, Sep. 1962.

[20] H. S. Witsenhausen, “On information structures, feedback and causal-
ity,” SIAM J. Control, vol. 9, no. 2, pp. 149−160, 1971.

[21] J. Marschak and R. Radner,Economic Theory of Teams. New Haven,
USA: Yale University Press, 1976.

[22] N. Sandell, P. Varaiya, M. Athans, and M. Safonov, “Survey of
decentralized control methods for large scale systems,”IEEE Trans.
Autom. Control, vol. 23, no. 2, pp. 108−128, Apr. 1978.

[23] T. Yoshikawa, “Decomposition of dynamic team decisionproblems,”
IEEE Trans. Autom. Control, vol. 23, no. 4, pp. 627−632, Aug. 1978.

[24] Y. C. Ho, “Team decision theory and information structures,” Proc.
IEEE, vol. 68, no. 6, pp. 644−654, Jun. 1980.

[25] D. Bauso and R. Pesenti, “Generalized person-by-person optimization
in team problems with binary decisions,” inProc. American Control
Conf., Seattle, USA, 2008, pp. 717−722.

[26] D. Bauso and R. Pesenti, “Team theory and person-by-person opti-
mization with binary decisions,”SIAM J. Control Optim., vol. 50, no. 5,
pp. 3011−3028, Jan. 2012.

[27] A. Nayyar, A. Mahajan, and D. Teneketzis, “Decentralized stochastic
control with partial history sharing: A common informationapproach,”
IEEE Trans. Autom. Control, vol. 58, no. 7, pp. 1644−1658, Jul. 2013.

[28] A. Nayyar and D. Teneketzis, “Common knowledge and sequen-
tial team problems,”IEEE Trans Autom. Control, vol. 64, no. 12,
pp. 5108−5115, Dec. 2019.

[29] Y. Y. Li, Y. J. Tang, R. Y. Zhang, and N. Li, “Distributed reinforcement
learning for decentralized linear quadratic control: A derivative-free
policy optimization approach,” arXiv:1912.09135, 2019.

[30] G. Qu and N. Li, “Exploiting Fast Decaying and Locality in Multi-
Agent MDP with Tree Dependence Structure,” inProc. of CDC, Nice,
France, 2019.

[31] A. Gupta, “Existence of team-optimal solutions in static teams with
common information: A topology of information approach,”SIAM J.
Control Optim., vol. 58, no. 2, pp. 998−1021, Apr. 2020.

[32] F. Bullo, J. Cortes, and S. Martinez,Distributed Control of Robotic Net-
works: A Mathematical Approach to Motion Coordination Algorithms.
St. Princeton, USA: Princeton University Press, 2009.



BERTSEKAS: MULTIAGENT REINFORCEMENT LEARNING: ROLLOUT AND POLICY ITERATION 271

[33] M. Mesbahi and M. Egerstedt,Graph Theoretic Methods in Multiagent
Networks. Princeton, USA: Princeton University Press, 2010.

[34] M. S. Mahmoud,Multiagent Systems: Introduction and Coordination
Control. Boca Raton, USA: CRC Press, 2020.

[35] R. Zoppoli, M. Sanguineti, G. Gnecco, and T. Parisini,Neural Approx-
imations for Optimal Control and Decision, Springer, 2020.

[36] F. A. Oliehoek and C. Amato,A Concise Introduction to Decentralized
POMDPs, Springer International Publishing, 2016.

[37] P. Hernandez-Leal, M. Kaisers, T. Baarslag, and E. M. deCote, “A
survey of learning in multiagent environments: Dealing with non-
stationarity,” arXiv:1707.09183, 2017.

[38] K. Q. Zhang, Z. R. Yang, and T. Başar, “Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms,”
arXiv:1911.10635, 2019.

[39] L. S. Shapley, “Stochastic games,”Proc. Natl. Acad. Sci., vol. 39,
no. 10, pp. 1095−1100, 1953.

[40] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” inMachine Learning Proceedings 1994, W.
W. Cohen and H. Hirsh, Eds. Amsterdam, The Netherlands: Elsevier,
1994, pp. 157−163.

[41] K. P. Sycara, “Multiagent systems,”AI Mag., vol. 19, no. 2, pp. 79−92,
Jun. 1998.

[42] P. Stone and M. Veloso, “Multiagent systems: A survey from a machine
learning perspective,”Auton. Rob., vol. 8, no. 3, pp. 345−383, Jun.
2000.

[43] L. Panait and S. Luke, “Cooperative multi-agent learning: The state of
the art,” Auton. Agen. Multi-Agent Syst., vol. 11, no. 3, pp. 387−434,
Nov. 2005.

[44] L. Busoniu, R. Babuska, and B. De Schutter, “A comprehensive
survey of multiagent reinforcement learning,”IEEE Trans. Syst., Man,
Cybern., Part C, vol. 38, no. 2, pp. 156−172, Mar. 2008.

[45] L. Busoniu, R. Babus̆ka, and B. De Schutter, “Multi-agent reinforce-
ment learning: An overview,” inInnovations in Multi-Agent Systems
and Applications-1, D. Srinivasan and L. C. Jain, Eds. Berlin, Germany:
Springer, 2010, pp. 183−221.

[46] L. Matignon, G. J. Laurent, and N. Le Fort-Piat, “Independent rein-
forcement learners in cooperative Markov games: A survey regarding
coordination problems,”Knowl. Eng. Rev., vol. 27, no. 1, pp. 1−31, Feb.
2012.

[47] P. Hernandez-Leal, B. Kartal, and M. E. Taylor, “A survey and critique
of multiagent deep reinforcement learning,”Auton. Agent. Multi-Agent
Syst., vol. 33, no. 6, pp. 750−797, Oct. 2019.

[48] A. OroojlooyJadid and D. Hajinezhad, “A review of cooperative multi-
agent deep reinforcement learning,” arXiv:1908.03963, 2019.

[49] T. T. Nguyen, N. D. Nguyen, and S. Nahavandi, “Deep reinforcement
learning for multiagent systems: A review of challenges, solutions, and
applications,”IEEE Trans Cybern., vol. 50, no. 9, pp. 3826−3839, Sep.
2020.

[50] G. Tesauro, “Extending Q-learning to general adaptivemulti-agent
systems,” in Proc. 16th Int. Conf. Neural Information Processing
Systems, 2004, pp. 871−878.

[51] F. A. Oliehoek, J. F. P. Kooij, and N. Vlassis, “The cross-entropy
method for policy search in decentralized POMDPs,”Informatica,
vol. 32, no. 4, pp. 341−357, 2008.

[52] P. Pennesi and I. C. Paschalidis, “A distributed actor-critic algorithm

and applications to mobile sensor network coordination problems,”
IEEE Trans. Autom. Control, vol. 55, no. 2, pp. 492−497, Feb. 2010.

[53] I. C. Paschalidis and Y. W. Lin, “Mobile agent coordination via a
distributed actor-critic algorithm,” inProc. 19th Mediterranean Conf.
Control Automation, Corfu, Greece, 2011, pp. 644−649.

[54] S. Kar, J. M. F. Moura, and H. V. Poor, “QD-Learning: A collaborative
distributed strategy for multi-agent reinforcement learning through
consensus + innovations,”IEEE Trans. Signal Process., vol. 61, no. 7,
pp. 1848−1862, Apr. 2013.

[55] J. N. Foerster, Y. M. Assael, N. De Freitas, and S. Whiteson, “Learning
to Communicate with Deep Multi-Agent Reinforcement Learning,”
in Proc. 30th Int. Conf. Neural Information Processing Systems,
Barcelona, Spain, 2016, pp. 2137−2145.

[56] S. Omidshafiei, A. A. Agha-Mohammadi, C. Amato, S. Y. Liu, J. P.
How, and J. Vian, “Graph-based cross entropy method for solving
multi-robot decentralized POMDPs,” inProc. IEEE Int. Conf. Robotics
and Automation, Stockholm, Sweden, 2016, pp. 5395−5402.

[57] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-
agent control using deep reinforcement learning,” inProc. Int. Conf.
Autonomous Agents and Multiagent Systems, Best Papers, Brazil, 2017,
pp. 66−83.

[58] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, and I. Mordatch, “Multi-
agent actor-critic for mixed cooperative-competitive environments,” in
Proc. 31st Int. Conf. Neural Information Processing Systems, Long
Beach, USA, 2017, pp. 6379−6390.

[59] M. Zhou, Y. Chen, Y. Wen, Y. D. Yang, Y. F. Su, W. N. Zhang, D.
Zhang, and J. Wang, “Factorized Q-learning for large-scalemulti-agent
systems,” arXiv:1809.03738, 2018.

[60] K. Q. Zhang, Z. R. Yang, H. Liu, T. Zhang, and T. Başar, “Fully de-
centralized multi-agent reinforcement learning with networked agents,”
arXiv:1802.08757, 2018.

[61] Y. Zhang and M. M. Zavlanos, 2019 “Distributed off-policy actor-
critic reinforcement learning with policy consensus,” inProc. IEEE
58th Conf. Decision and Control, Nice, France, 2018, pp. 4674−4679.

[62] C. S. de Witt, J. N. Foerster, G. Farquhar, P. H. S. Torr, W. Boehmer,
and S. Whiteson, “Multi-agent common knowledge reinforcement
learning”, in Proc. 31st Int. Conf. Neural Information Processing
Systems, Vancouver, Canada, 2019, pp. 9927−9939.

[63] D. P. Bertsekas, “Multiagent rollout algorithms and reinforcement
learning,” arXiv: 2002.07407, 2019.

[64] S. Bhattacharya, S. Kailas, S. Badyal, S. Gil, and D. P. Bertsekas,
“Multiagent rollout and policy iteration for POMDP with application
to multi-robot repair problems,” inProc. Conf. Robot Learning, 2020;
also arXiv preprint, arXiv:2011.04222.

[65] D. P. Bertsekas and J. N. Tsitsiklis,Neuro-Dynamic Programming.
Belmont, USA: Athena Scientific, 1996.

[66] G. Tesauro, and G. R. Galperin, “On-line policy improvement using
Monte-Carlo search,” inProc. 9th Int. Conf. Neural Information
Processing Systems, Denver, USA, 1996, pp. 1068−1074.

[67] D. P. Bertsekas,Nonlinear Programming. 3rd ed. Belmont, USA:
Athena Scientific, 2016.

[68] M. G. Lagoudakis and R. Parr, “Reinforcement learning as classifica-
tion: Leveraging modern classifiers,” inProc. 20th Int. Conf. Machine
Learning, Washington, USA, 2003, pp. 424−431.

[69] C. Dimitrakakis and M. G. Lagoudakis, “Rollout sampling approximate
policy iteration,” Mach. Learn., vol. 72, no. 3, pp. 157−171, Jul. 2008.



272 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 8, NO. 2, FEBRUARY 2021

[70] A. Lazaric, M. Ghavamzadeh, and R. Munos, “Analysis of a
classification-based policy iteration algorithm,” inProc. 27th Int. Conf.
Machine Learning, Haifa, Israel, 2010.

[71] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” inProc. 21st Int. Conf. Machine Learning, Banff,
Canada, 2004.

[72] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “Asurvey of
robot learning from demonstration,”Rob. Auton. Syst., vol. 57, no. 5,
pp. 469−483, May 2009.

[73] G. Neu and C. Szepesvari, “Apprenticeship learning using inverse
reinforcement learning and gradient methods,” arXiv:1206.5264, 2012.

[74] H. Ben Amor, D. Vogt, M. Ewerton, E. Berger, B. Jung, and J.
Peters, “Learning responsive robot behavior by imitation,” in Proc.
IEEE/RSJ Int. Conf. Intelligent Robots and Systems, Tokyo, Japan,
2013, pp. 3257−3264.

[75] J. Lee, “A survey of robot learning from demonstrationsfor human-
robot collaboration,” arXiv:1710.08789, 2017.

[76] M. K. Hanawal, H. Liu, H. H. Zhu, and I. C. Paschalidis, “Learning
policies for Markov decision processes from data,”IEEE Trans. Autom.
Control, vol. 64, no. 6, pp. 2298−2309, Jun. 2019.

[77] D. Gagliardi and G. Russo, “On a probabilistic approachto synthesize
control policies from example datasets,” arXiv:2005.11191, 2020.

[78] T. T. Xu, H. H. Zhu, and I. C. Paschalidis, “Learning parametric
policies and transition probability models of Markov decision processes
from data,”Eur. J. Control, 2020.

[79] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduction,
2nd Ed. Cambridge, USA: MIT Press, 2018.

[80] D. P. Bertsekas, “Feature-based aggregation and deep reinforcement
learning: A survey and some new implementations,”IEEE/CAA J.
Autom. Sinica, vol. 6, no. 1, pp. 1−31, Jan. 2019.

[81] D. P. Bertsekas, “Approximate policy iteration: A survey and some
new methods,”J. Control Theory Appl., vol. 9, no. 3, pp. 310−335, Jul.
2011; Expanded version appears as Lab. for Info. and Decision System
Report LIDS-2833, MIT, 2011.

[82] J. N. Tsitsiklis, “Asynchronous stochastic approximation and Q-
learning,” Mach. Learn., vol. 16, no. 3, pp. 185−202, Sep. 1994.

[83] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level controlthrough

deep reinforcement learning,”Nature, vol. 518, no. 7540, pp. 529−533,
2015.

Dimitri Bertsekas undergraduate studies were in
engineering at the National Technical University of
Athens, Greece. He obtained his MS in electrical
engineering at the George Washington University,
Wash. DC in 1969, and his Ph.D. in system science
in 1971 at the Massachusetts Institute of Technol-
ogy.

Dr. Bertsekas has held faculty positions with
the Engineering-Economic Systems Dept., Stanford
University (1971-1974) and the Electrical Engineer-

ing Dept. of the University of Illinois, Urbana (1974-1979). From 1979
to 2019 he was with the Electrical Engineering and Computer Science
Department of the Massachusetts Institute of Technology (M.I.T.), where
he served as McAfee Professor of Engineering. In 2019, he wasappointed
Fulton Professor of Computational Decision Making, and a full time faculty
member at the department of Computer, Information, and Decision Systems
Engineering at Arizona State University, Tempe, while maintaining a research
position at MIT. His research spans several fields, including optimization,
control, large-scale computation, and data communicationnetworks, and is
closely tied to his teaching and book authoring activities.He has written
numerous research papers, and eighteen books and research monographs,
several of which are used as textbooks in MIT classes. Most recently Dr
Bertsekas has been focusing on reinforcement learning, andauthored a
textbook in 2019, and a research monograph on its distributed and multiagent
implementation aspects in 2020.

Professor Bertsekas was awarded the INFORMS 1997 Prize for Research
Excellence in the Interface Between Operations Research and Computer
Science for his book “Neuro-Dynamic Programming”, the 2000Greek Na-
tional Award for Operations Research, the 2001 ACC John R. Ragazzini
Education Award, the 2009 INFORMS Expository Writing Award, the 2014
ACC Richard E. Bellman Control Heritage Award for “contributions to the
foundations of deterministic and stochastic optimization-based methods in sys-
tems and control,” the 2014 Khachiyan Prize for Life-Time Accomplishments
in Optimization, and the SIAM/MOS 2015 George B. Dantzig Prize. In 2018,
he was awarded, jointly with his coauthor John Tsitsiklis, the INFORMS John
von Neumann Theory Prize, for the contributions of the research monographs
“Parallel and Distributed Computation” and “Neuro-Dynamic Programming”.
In 2001, he was elected to the United States National Academyof Engi-
neering for “pioneering contributions to fundamental research, practice and
education of optimization/control theory, and especiallyits application to data
communication networks.”

Dr. Bertsekas’ recent books are “Introduction to Probability: 2nd Edition”
(2008), “Convex Optimization Theory” (2009), “Dynamic Programming and
Optimal Control,” Vol. I, (2017), and Vol. II: (2012), “Abstract Dynamic
Programming” (2018), “Convex Optimization Algorithms” (2015), “Rein-
forcement Learning and Optimal Control” (2019), and “Rollout, Policy
Iteration, and Distributed Reinforcement Learning”(2020), all published by
Athena Scientific.


