MULTIAGENT REINFORCEMENT LEARNING:
ROLLOUT AND POLICY ITERATION

Dimitri P. Bertsekas
Arizona State University

October 15, 2020

Bertsekas Reinforcement Learning 1/29

Sources

Based on material from my research monograph
Rollout, Policy Iteration, and Distributed Reinforcement Learning, Athena Scientific, ZOZ(J

Related research can be found at my website including:

@ An overview paper to be published in IEEE/CAA J. of Automatica Sinica

@ Several research papers and multiagent policy iteration, value iteration, and
discrete deterministic optimization (2019-2020, ArXiv)

@ A challenging multiagent POMDP repair problem paper, coauthored by S.
Bhatacharya, S. Kailas, S. Badyal, and S. Gil (2020)

Bertsekas Reinforcement Learning 2/29

@ Muittiagent Problems in General

e Dynamic Programming Formulation

e Agent-by-Agent Policy Improvement

0 Approximate Policy Iteration - Use of Value and/or Policy Networks
e Autonomous Multiagent Rollout with Signaling Policies

e Multirobot Repair - A Large-Scale Multiagent POMDP Problem

Bertsekas Reinforcement Learning 3/29

Multiagent Problems - A Very Old (1960s) and Well-Researched Field

@ Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

@ Agent / applies decision u; sequentially in discrete time based on info received

The major mathematical distinction between problem structures

@ The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by Dynamic Programming (DP)

@ The nonclassical information pattern: Agents are partially sharing information, and
may be antagonistic. HARD because it cannot be treated by DP

v

Bertsekas Reinforcement Learning 5/29

Our Starting Point: A Classical Information Pattern ... but we will
Generalize

At each time, the agents have exact state info, and choose their controls as functions of
the state

v

Model: A discrete-time (possibly stochastic) system with state x and control u
@ Decision/control has m components u = (us, . .., Un) corresponding to m “agents”

@ “Agents" is just a metaphor - the important math structure is u = (us, ..., Un)
@ The theoretical framework is DP. Our initial aim is faster computation

Deal with the exponential size of the search/control space
Be able to compute the agent controls in parallel (in the process we will deal in part with
nonclassical info pattern issues)

4

Bertsekas Reinforcement Learning 6/29

Spiders-and-Flies Example

(e.g., Delivery, Maintenance, Search-and-Rescue, Firefighting)

7 7
7 i 7
78 7
- - 15 spiders move in 4 directions with perfect vision
S = 78 3 blind flies move randomly
78
o ~ R
7

@ Objective is to catch the flies in minimum time
@ At each time we must select one out of ~ 55 joint move choices

@ We will reduce this to 5 - 15 = 75 choices (while maintaining good properties).
Idea: Break down the control into a sequence of one-spider-at-a-time moves

@ We will introduce “precomputed signaling/coordination" between the spiders, so
the 15 spiders will choose moves in parallel (an extra speedup factor of 15)

Bertsekas Reinforcement Learning

7129

Nonclassical Information Pattern Approaches: A Summary

Team theory/Decentralized control (also decentralized MDP and POMDP)

@ Agents have common goals but do not fully share information; a nonclassical
information pattern

@ For example, some of the spiders can see some of the flies, but others cannot

@ Notoriously difficult problems. Theory/algorithms here often try to exploit weak
couplings between some of the agents

A RL/policy gradient approach for nonclassical information patterns

@ Forget about DP. Parametrize the agent policies in a way that is consistent with the
information pattern

@ Tune the parameters using neural networks and gradient descent (policy gradient
methods)

@ Advantage: Can deal with a nonclassical information pattern

@ Drawback: Strictly off-line (and difficult) training (cannot adapt to on-line changes
of problem data)

@ No solid theory, lack of performance guarantees.

Bertsekas Reinforcement Learning 8/29

For this Talk we Focus on Finite-State Infinite Horizon Problems

Random Transition
_ Infinite Horizon
Tp+1 —f(fL'k,’LLk,'LUk) te Horizo

Random Cost

Stationary system and cost accumulated over an infinite number of stages

@ System xi.1 = f(Xk, Uk, wx) with state xx, m-component control uy (wk: random)

@ Policies ;v = (u1,- .., um) that map states x to control components pi(x) € Ui(x)
forallxandi=1,...,m
@ Cost of stage k: g (k. j11(Xk), - - ., im(X), Wi); @ € (0, 1] is the discount factor

@ Cost of policy u

N—1
Ju(x0) = I\/ll—r>noo Ew, {Z akg(xk, et (Xk)s - -y pom(X), Wk)}

k=0

@ Optimal cost function J*(xo) = min, J,.(xo)
@ Optimality condition: Minimize the RHS of Bellman’s equation

Bertsekas Reinforcement Learning 10/29

Policy lteration Algorithm

- Policy
Base POhC}" Improvement
> Policy » Evaluation > . >
I J Bellman Eq. with
w J,, instead of J*

Rollout Policy fi

<

fi(x) € arg(min Ew{g(x, Uty ..oy Um, W) + ady (F(X, u1,...,um,w))}
Uy

..... Uum)

Fundamental policy improvement property

Ji(x) < Ju(x), forall x

The rollout algorithm is a one-time policy iteration

It can be implemented on-line if values of J,, are (approximately) available, through
simulation (possibly in conjunction with a trained neural net)

A second major advantage of the rollout algorithm: Robustness

If implemented on-line, it can adapt to variations of the problem data through on-line
replanning

Bertsekas Reinforcement Learning 11/29

Outline of Our Approach for Multiagent Problems

@ We propose a policy iteration (PI) method with a new form of policy improvement,
namely one-agent-at-a-time policy improvement

@ Rollout is a single-iteration version of Pl; but can be implemented on-line

Extension to a nonclassical information pattern
@ We use “guesses" to make up for missing information
@ The “guesses" are precomputed, possibly through neural network training
@ Subject of ongoing research

Bertsekas Reinforcement Learning 12/29

A New Form of Policy Improvement Operation When u = (uy, ..., Un)

The standard rollout algorithm

(fi1(x), ..., fim(x)) € arg(u min)Ew{g(x, Uty .oy Umy W) + ady (F(X, Ut U, W))}
1

,,,,, Um

has a search space with size that is exponential in m

Proposed alternative: Multiagent rollout algorithm
Perform a sequence of m successive minimizations, one-agent-at-a-time

e (X) € arg nl'll:n EW{g(X’ Uy ’/JZ(X)» °oap :u'm(X)7 W) + O‘J,u (f(X: U1:/'L2(X)7 ooo 7:“‘"7()()7 W))}

ﬁZ(X) € arg nL]llzn EW{g(Xv /11 (X)v us, M3(X) ©o9y Mm(X)v W)+aJl—L(f(X7 /11 (X)v us, M3(X)7 EEER lum(x)7 w
ﬁm(X) € arg nJ,L,n EW{g(X>/~7‘1 (X)>ﬁ2(x)> oy fim—1 (X)> Um, W)J’_O‘JH (f(X>/11 (X)>ﬁ2(x)> ooy fim—1 (X)

@ Has a search space with size that is linear in m
@ ENORMOUS SPEEDUP!

Bertsekas Reinforcement Learning 14/29

)

Underlying Theory: Trading off Control and State Complexity (NDP

book, 1996)

Control uj*
Random Transition
m—1 Th1 = f(Tk, ur, W)

Random Cost
akg(zy, ur, wi)

Stage k
An equivalent reformulation - “Unfolding" the control action

@ The control space is simplified at the expense of m — 1 additional layers of states,
and corresponding m — 1 cost functions
IO,), P O, U, UR), - I (X, Uy U

@ Multiagent (one-agent-at-a-time) rollout is just standard rollout for the reformulated
problem

@ The increase in size of the state space does not adversely affect rollout
@ Key theoretical fact: The cost improvement property is maintained

@ Complexity reduction: The one-step lookahead branching factor is reduced from
n™ to nm, where n is the number of possible choices for each component uj

Bertsekas Reinforcement Learning 15/29

Four Spiders and Two Flies: lllustration of Various Forms of Rollout

Base Policy - Greedy Standard Rollout - All-at-once| Agent-by-Agent Rollout

Base policy: Move along the shortest path to the closest surviving fly (in the Manhattan
distance metric)

v

Time to catch the flies
@ Base policy (each spider follows the shortest path): Capture time = 85
@ Standard rollout (all spiders move at once, 4° = 625 move choices):
Capture time = 34

@ Agent-by-agent rollout (spiders move one at a time, 4 - 5 = 20 move choices):
Capture time = 34

—
Bertsekas Reinforcement Learning 16/29

Comparing Standard with Multiagent Rollout/Policy lteration

Comparison of agent-by-agent and standard (all-agents-at-once) rollout
@ They produce different rollout policies
@ One may be better than the other

@ ... BUT standard rollout requires intractable computation for even a modest
number of agents

@ We speculate that agent-by-agent rollout will often perform about as well as
standard rollout

Agent-by-agent Pl: Uses agent-by-agent policy improvement
@ Agent-by-agent Pl stops at an agent-by-agent optimal policy ... which may not be
optimal
@ Convergence result: Agent-by-agent Pl converges finitely to an agent-by-agent
optimal policy
@ Rate of convergence seems comparable to standard Pl

Bertsekas Reinforcement Learning 17/29

Approximate Policy lteration with Agent-by-Agent Policy Improvement

Base Approximation Approximation
»| Policy ,| in Value Space ,|in Policy Space _
1 Value Policy
Network Network
Value Data Policy Data
Rollout Policy f

A

@ Approximate policy improvement property: With approximations, policy
improvement holds approximately:

Ju(X) < Ju(x) + ¢, for all x

@ If a single policy iteration is done (rollout), no need to train value and policy
networks

@ Multiple policy iterations can be done only with off-line training

@ Many RL algorithms, including Alphazero, use schemes of this type (off-line Pl
plus on-line rollout)

Bertsekas Reinforcement Learning 19/29

Parallelization of Agent-by-Agent Policy Improvement

One-agent-at-a-time policy improvement is an inherently serial computation. How can
we parallelize it?

Precomputed signaling

@ Obstacle to parallelization: To compute the kth agent rollout control we need the
rollout controls of the preceding agents i < k

@ Signaling remedy: Use precomputed substitute “guesses” 1ui(x) in place of the
preceding rollout controls fi;(x)

Signaling possibilities
@ Use the base policy controls for signaling wi(x) = pi(x), i =1,...,k — 1 (this may
work poorly)
@ Use a neural net representation of the rollout policy controls for signaling
wi(x) = fi(x), i=1,...,k — 1 (this requires off-line computation)
@ Other, problem-specific possibilities

Bertsekas Reinforcement Learning 21/29

The Pitfall of Using the Base Policy for Signaling

Fly 1 Spider 1 Spider 2 Fly 2
@ *—0—0—0—0—90

Two spiders trying to catch two stationary flies in minimum time
@ The spiders have perfect vision/perfect information
@ Base policy for each fly: Move one step towards the closest surviving fly

Performance of various algorithms

@ Optimal policy: Splits the spiders towards their closest flies
@ Standard rollout is optimal for all initial states
@ Agent-by-agent rollout is also optimal for all initial states

@ Agent-by-agent rollout with base policy signaling is optimal for most initial states,
with A SIGNIFICANT EXCEPTION

@ When the spiders start at the same location, the spiders oscillate and never caich
the flies

Bertsekas Reinforcement Learning 22/29

Multirobot Repair of a Network of Damaged Sites (BKBGB Paper)

Agent 1
Agent 2
Agent 3

Agent 4
Damage level 0
Damage level 1

Damage level 2

Damage level 3

[J
=
e=:
[_
[]
[

Damage level 4

@ Damage level of each site is unknown, except when inspected. It deteriorates
according to a known Markov chain unless the site is repaired

@ Control choice of each robot: Inspect and repair (which takes one unit time), or
inspect and move to a neighboring site

@ State of the system: The set of robot locations, plus the belief state of the site
damages (the joint probability distribution of the damage levels of the sites)

@ Stage cost at each unrepaired site: Depends on the level of its damage

Bertsekas Reinforcement Learning

24/29

Multirobot Repair in a Network of Damaged Sites

Agents Start from the Same Location

Base Policy (Shortest Path)

Multiagent Rollout

Approx. Multiagent Rollout with Base Policy

Approx. Multiagent Rollout with Policy Net

Cost comparisons

@ Base policy cost: 5294 (30 steps)
@ Multiagent rollout : 1124 (9 steps)
@ Approx. Multiagent Rollout with base policy: 31109 (Never stops)

@ Approx. Multiagent Rollout with neural network policy: 2763 (15 steps)

Bertsekas

Reinforcement Learning

25/29

Multirobot Repair in a Network of Damaged Sites

Agents Start from Different Locations

Base Policy (Shortest Path) Multiagent Rollout

Approx. Multiagent Rollout with Base Policy Approx. Multiagent Rollout with Policy Net

Cost comparisons
@ Base policy cost: 12945 (62 steps)
@ Multiagent rollout : 5294 (19 steps)
@ Approx. Multiagent Rollout with base policy: 6920 (25 steps)
@ Approx. Multiagent Rollout with neural network policy: 7241 (21 steps)

Bertsekas Reinforcement Learning 26/29

Approximate Policy lteration with Policy Nets (BKBGB Paper)

Cost improvement of approximate PI

6180 I 8 agents
6000 5551 B 10 agents

2000 1958

1299 1341463 | 1377

Base policy Iter1l Ilter 2 Ilter 3

@ Recall that a policy network must be used to represent a policy generated by PI
@ As a result the Pl training must be done off-line

@ Typical performance: Large cost improvement at first few iterations, which tails off
and ends up in an oscillation as the number of generated policies increases

Bertsekas Reinforcement Learning 27/29

Concluding Remarks

@ We have focused on multiagent rollout and policy iteration

@ These are approximation in value space methods that can be applied to very
complex RL problems with multi-component controls

@ We have introduced a simplified form of policy improvement for multiagent
problems

@ They offer a solid performance guarantee (performance improvement property)

@ They have interesting theoretical properties (Pl convergence to an agent-by-agent
optimal policy)

@ Our methods require a classical information pattern (key assumption is the sharing
of perfect state info)

@ They admit extensions to nonclassical information pattern problems through
precomputed signaling policies

@ Our methods compare very favorably on the multi-robot repair problem with
existing methods (POMCP, DESPOT, MADDPG)

@ Important research question: Can perfect state info be replaced by state
estimates?

@ A broad range of very challenging analytical and algorithmic questions lie ahead

v

Bertsekas Reinforcement Learning 28/29

Thank you!

Bertsekas Reinforcement Learning 29/29

	Multiagent Problems in General
	Dynamic Programming Formulation
	Agent-by-Agent Policy Improvement
	Approximate Policy Iteration - Use of Value and/or Policy Networks
	Autonomous Multiagent Rollout with Signaling Policies
	Multirobot Repair - A Large-Scale Multiagent POMDP Problem

