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Multiagent Problems - A Very Old (1960s) and Well-Researched Field
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1

Multiple agents collecting and sharing information selectively with each other and
with an environment/computing cloud

Agent i applies decision ui sequentially in discrete time based on info received

The major mathematical distinction between problem structures
The classical information pattern: Agents are fully cooperative, fully sharing and
never forgetting information. Can be treated by Dynamic Programming (DP)

The nonclassical information pattern: Agents are partially sharing information, and
may be antagonistic. HARD because it cannot be treated by DP
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Our Starting Point: A Classical Information Pattern ... but we will
Generalize
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At each time, the agents have exact state info, and choose their controls as functions of
the state

Model: A discrete-time (possibly stochastic) system with state x and control u
Decision/control has m components u = (u1, . . . , um) corresponding to m “agents"

“Agents" is just a metaphor - the important math structure is u = (u1, . . . , um)

The theoretical framework is DP. Our initial aim is faster computation
I Deal with the exponential size of the search/control space
I Be able to compute the agent controls in parallel (in the process we will deal in part with

nonclassical info pattern issues)
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Spiders-and-Flies Example
(e.g., Delivery, Maintenance, Search-and-Rescue, Firefighting)
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1

Objective is to catch the flies in minimum time

At each time we must select one out of ≈ 515 joint move choices

We will reduce this to 5 · 15 = 75 choices (while maintaining good properties).
Idea: Break down the control into a sequence of one-spider-at-a-time moves

We will introduce “precomputed signaling/coordination" between the spiders, so
the 15 spiders will choose moves in parallel (an extra speedup factor of 15)
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Nonclassical Information Pattern Approaches: A Summary

Team theory/Decentralized control (also decentralized MDP and POMDP)
Agents have common goals but do not fully share information; a nonclassical
information pattern

For example, some of the spiders can see some of the flies, but others cannot

Notoriously difficult problems. Theory/algorithms here often try to exploit weak
couplings between some of the agents

A RL/policy gradient approach for nonclassical information patterns
Forget about DP. Parametrize the agent policies in a way that is consistent with the
information pattern

Tune the parameters using neural networks and gradient descent (policy gradient
methods)

Advantage: Can deal with a nonclassical information pattern

Drawback: Strictly off-line (and difficult) training (cannot adapt to on-line changes
of problem data)

No solid theory, lack of performance guarantees.
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For this Talk we Focus on Finite-State Infinite Horizon Problems
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ũk uk x̃k+1 xk+1 x̃N xN x′
N

Φr = Π
(
T

(λ)
µ (Φr)

)
Π(Jµ) µ(i) ∈ arg minu∈U(i) Q̃µ(i, u, r)

Subspace M = {Φr | r ∈ ℜm} Based on J̃µ(i, r) Jµk

minu∈U(i)

∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
Computation of J̃ :

Good approximation Poor Approximation σ(ξ) = ln(1 + eξ)

max{0, ξ} J̃(x)

Cost 0 Cost g(i, u, j) Monte Carlo tree search First Step “Future”
Feature Extraction

Node Subset S1 SN Aggr. States Stage 1 Stage 2 Stage 3 Stage N −1
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Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk,µk+1,...,µk+`�1

E
n

gk(xk, uk, wk) +
k+`�1X

m=k+1

gk

�
xm, µm(xm), wm

�
+ J̃k+`(xk+`)

o

Subspace S = {�r | r 2 <s} x⇤ x̃
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T (�)(x) = T (x) x = P (c)(x)

x � T (x) y � T (y) rf(x) x � P (c)(x) xk xk+1 xk+2 Slope = �1
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T (�)(x) = T (x) x = P (c)(x)

1
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Aggregate Problem Approximation Jµ(i) J̃µ(i) u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Con-

straint Relaxation

Tail problem approximation u1
k u2

k u3
k u4

k u5
k Self-Learning/Policy Iteration Constraint Relaxation dℓi

φjℓ

Learned from scratch ... with 4 hours of training! Current “Improved”

AlphaZero (Google-Deep Mind) Plays much better than all computer programs F (i) Cost Ĵ
(
F (i)

)

Plays different! Approximate Value Function Player Features Mapping

At State xk Current state x0 ... MCTS Lookahead Minimization Cost-to-go Approximation

Empty schedule LOOKAHEAD MINIMIZATION ROLLOUT States xk+2

min
uk ,µk+1,...,µk+ℓ−1

E
{
gk(xk, uk, wk) +

k+ℓ−1∑

m=k+1

gk

(
xm, µm(xm), wm

)
+ J̃k+ℓ(xk+ℓ)

}

Subspace S = {Φr | r ∈ ℜs} x∗ x̃

Rollout: Simulation with fixed policy Parametric approximation at the end Monte Carlo tree search

T (λ)(x) = T (x) x = P (c)(x)

x − T (x) y − T (y) ∇f(x) x − P (c)(x) xk xk+1 xk+2 Slope = −1

c

T (λ)(x) = T (x) x = P (c)(x)

1

Stationary system and cost accumulated over an infinite number of stages
System xk+1 = f (xk , uk ,wk ) with state xk , m-component control uk (wk : random)

Policies µ = (µ1, . . . , µm) that map states x to control components µi(x) ∈ Ui(x)
for all x and i = 1, . . . ,m

Cost of stage k : αk g
(
xk , µ1(xk ), . . . , µm(x),wk

)
; α ∈ (0, 1] is the discount factor

Cost of policy µ

Jµ(x0) = lim
N→∞

Ewk

{
N−1∑
k=0

αk g
(
xk , µ1(xk ), . . . , µm(x),wk

)}

Optimal cost function J∗(x0) = minµ Jµ(x0)

Optimality condition: Minimize the RHS of Bellman’s equation

µ∗(x) ∈ arg min
(u1,...,um)

Ew

{
g(x , u1, . . . , um,w) + αJ∗

(
f (x , u1, . . . , um,w)

)}
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Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement
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1

Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement µ̃

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

u = µ̃(x, r) Current State x µ Rollout Policy µ̃ Randomized

Jµ instead of J* Bellman Eq. with

Approximate Policy Evaluation Approximate Policy Improvement

Value Network Policy Network J̃ State-Control Pairs Data-Trained
Classifier

1

µ̃(x) ∈ arg min
(u1,...,um)

Ew

{
g(x , u1, . . . , um,w) + αJµ

(
f (x , u1, . . . , um,w)

)}
Fundamental policy improvement property

Jµ̃(x) ≤ Jµ(x), for all x

The rollout algorithm is a one-time policy iteration
It can be implemented on-line if values of Jµ are (approximately) available, through
simulation (possibly in conjunction with a trained neural net)

A second major advantage of the rollout algorithm: Robustness
If implemented on-line, it can adapt to variations of the problem data through on-line
replanning
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Outline of Our Approach for Multiagent Problems

We propose a policy iteration (PI) method with a new form of policy improvement,
namely one-agent-at-a-time policy improvement

Rollout is a single-iteration version of PI; but can be implemented on-line

Extension to a nonclassical information pattern
We use “guesses" to make up for missing information

The “guesses" are precomputed, possibly through neural network training

Subject of ongoing research
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A New Form of Policy Improvement Operation When u = (u1, . . . ,um)

The standard rollout algorithm(
µ̃1(x), . . . , µ̃m(x)

)
∈ arg min

(u1,...,um)
Ew

{
g(x , u1, . . . , um,w) + αJµ

(
f (x , u1, . . . , um,w)

)}
has a search space with size that is exponential in m

Proposed alternative: Multiagent rollout algorithm
Perform a sequence of m successive minimizations, one-agent-at-a-time

µ̃1(x) ∈ arg min
u1

Ew

{
g(x , u1, µ2(x), . . . , µm(x),w) + αJµ

(
f (x , u1, µ2(x), . . . , µm(x),w)

)}
µ̃2(x) ∈ arg min

u2
Ew

{
g(x , µ̃1(x), u2, µ3(x) . . . , µm(x),w)+αJµ

(
f (x , µ̃1(x), u2, µ3(x), . . . , µm(x),w)

)}
. . . . . . . . . . . .

µ̃m(x) ∈ arg min
um

Ew

{
g(x , µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um,w)+αJµ

(
f (x , µ̃1(x), µ̃2(x), . . . , µ̃m−1(x), um,w)

)}
Has a search space with size that is linear in m

ENORMOUS SPEEDUP!
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Underlying Theory: Trading off Control and State Complexity (NDP
book, 1996)

...
Permanent trajectory P k Tentative trajectory T k

Control uk Cost gk(xk, uk) xk xk+1 xN xN x′
N

ũk uk x̃k+1 xk+1 x̃N xN x′
N
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T

(λ)
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)
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∑n
j=1 pij(u)

(
g(i, u, j) + J̃(j)

)
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Cost G(u) Heuristic N -Solutions u = (u1, . . . , uN−1)

Candidate (m + 1)-Solutions (ũ1, . . . , ũm, um+1)
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An equivalent reformulation - “Unfolding" the control action
The control space is simplified at the expense of m − 1 additional layers of states,
and corresponding m − 1 cost functions

J1(xk , u1
k ), J

2(xk , u1
k , u

2
k ), . . . , J

m−1(xk , u1
k , . . . , u

m−1
k )

Multiagent (one-agent-at-a-time) rollout is just standard rollout for the reformulated
problem

The increase in size of the state space does not adversely affect rollout

Key theoretical fact: The cost improvement property is maintained

Complexity reduction: The one-step lookahead branching factor is reduced from
nm to nm, where n is the number of possible choices for each component u i

k
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Four Spiders and Two Flies: Illustration of Various Forms of Rollout

Base Policy - Greedy Standard Rollout - All-at-once Agent-by-Agent Rollout

Base policy: Move along the shortest path to the closest surviving fly (in the Manhattan
distance metric)

Time to catch the flies
Base policy (each spider follows the shortest path): Capture time = 85

Standard rollout (all spiders move at once, 45 = 625 move choices):
Capture time = 34

Agent-by-agent rollout (spiders move one at a time, 4 · 5 = 20 move choices):
Capture time = 34
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Comparing Standard with Multiagent Rollout/Policy Iteration

Comparison of agent-by-agent and standard (all-agents-at-once) rollout
They produce different rollout policies

One may be better than the other

... BUT standard rollout requires intractable computation for even a modest
number of agents

We speculate that agent-by-agent rollout will often perform about as well as
standard rollout

Agent-by-agent PI: Uses agent-by-agent policy improvement
Agent-by-agent PI stops at an agent-by-agent optimal policy ... which may not be
optimal

Convergence result: Agent-by-agent PI converges finitely to an agent-by-agent
optimal policy

Rate of convergence seems comparable to standard PI
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Approximate Policy Iteration with Agent-by-Agent Policy Improvement
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Alphazero has discovered a new way to play! Base Policy Evaluation
One-Step Lookahead Policy Improvement µ̃

Policy Evaluation Policy Improvement Rollout Policy µ̃ Base Policy µ

Assigns x to µ(x, r) Pairs (xs, us) Training Data

u = µ(x, r) Current State x µ Rollout Policy µ̃ Randomized µ(·, r)

Jµ instead of J* Bellman Eq. TRUNCATED ROLLOUT with BASE
POLICY µ

Approximate Policy Evaluation Approximate Policy Improvement

(Assigns x to u)

Value Network Policy Network Value Data

J̃ State-Control Pairs Data-Trained Classifier with µ

Initial State Current State Approximation Truncated Rollout Using
a Local Policy Network

State Space Partition

Each Set Has a Local Value Network and a Local Policy Network

Terminal Cost Supplied by Local Value Network Terminal State

1

Approximate policy improvement property: With approximations, policy
improvement holds approximately:

Jµ̃(x) ≤ Jµ(x) + ε, for all x

If a single policy iteration is done (rollout), no need to train value and policy
networks

Multiple policy iterations can be done only with off-line training

Many RL algorithms, including Alphazero, use schemes of this type (off-line PI
plus on-line rollout)
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Parallelization of Agent-by-Agent Policy Improvement

One-agent-at-a-time policy improvement is an inherently serial computation. How can
we parallelize it?

Precomputed signaling
Obstacle to parallelization: To compute the k th agent rollout control we need the
rollout controls of the preceding agents i < k

Signaling remedy: Use precomputed substitute “guesses" µ̂i(x) in place of the
preceding rollout controls µ̃i(x)

Signaling possibilities

Use the base policy controls for signaling µ̂i(x) = µi(x), i = 1, . . . , k − 1 (this may
work poorly)

Use a neural net representation of the rollout policy controls for signaling
µ̂i(x) ≈ µ̃i(x), i = 1, . . . , k − 1 (this requires off-line computation)

Other, problem-specific possibilities
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The Pitfall of Using the Base Policy for Signaling
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Stochastic Problems

1

Two spiders trying to catch two stationary flies in minimum time
The spiders have perfect vision/perfect information

Base policy for each fly: Move one step towards the closest surviving fly

Performance of various algorithms
Optimal policy: Splits the spiders towards their closest flies

Standard rollout is optimal for all initial states

Agent-by-agent rollout is also optimal for all initial states

Agent-by-agent rollout with base policy signaling is optimal for most initial states,
with A SIGNIFICANT EXCEPTION

When the spiders start at the same location, the spiders oscillate and never catch
the flies
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Multirobot Repair of a Network of Damaged Sites (BKBGB Paper)

Damage level of each site is unknown, except when inspected. It deteriorates
according to a known Markov chain unless the site is repaired

Control choice of each robot: Inspect and repair (which takes one unit time), or
inspect and move to a neighboring site

State of the system: The set of robot locations, plus the belief state of the site
damages (the joint probability distribution of the damage levels of the sites)

Stage cost at each unrepaired site: Depends on the level of its damage
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Multirobot Repair in a Network of Damaged Sites
Agents Start from the Same Location

Base Policy (Shortest Path) Multiagent Rollout

Approx. Multiagent Rollout with Base Policy Approx. Multiagent Rollout with Policy Net

Cost comparisons
Base policy cost: 5294 (30 steps)

Multiagent rollout : 1124 (9 steps)

Approx. Multiagent Rollout with base policy: 31109 (Never stops)

Approx. Multiagent Rollout with neural network policy: 2763 (15 steps)
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Multirobot Repair in a Network of Damaged Sites
Agents Start from Different Locations

Base Policy (Shortest Path) Multiagent Rollout

Approx. Multiagent Rollout with Base Policy Approx. Multiagent Rollout with Policy Net

Cost comparisons
Base policy cost: 12945 (62 steps)

Multiagent rollout : 5294 (19 steps)

Approx. Multiagent Rollout with base policy: 6920 (25 steps)

Approx. Multiagent Rollout with neural network policy: 7241 (21 steps)
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Approximate Policy Iteration with Policy Nets (BKBGB Paper)

Recall that a policy network must be used to represent a policy generated by PI

As a result the PI training must be done off-line

Typical performance: Large cost improvement at first few iterations, which tails off
and ends up in an oscillation as the number of generated policies increases
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Concluding Remarks

We have focused on multiagent rollout and policy iteration

These are approximation in value space methods that can be applied to very
complex RL problems with multi-component controls

We have introduced a simplified form of policy improvement for multiagent
problems

They offer a solid performance guarantee (performance improvement property)

They have interesting theoretical properties (PI convergence to an agent-by-agent
optimal policy)

Our methods require a classical information pattern (key assumption is the sharing
of perfect state info)

They admit extensions to nonclassical information pattern problems through
precomputed signaling policies

Our methods compare very favorably on the multi-robot repair problem with
existing methods (POMCP, DESPOT, MADDPG)

Important research question: Can perfect state info be replaced by state
estimates?

A broad range of very challenging analytical and algorithmic questions lie ahead
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Thank you!
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