
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS: Vol. 87, No. 1, pp. 69-101, OCTOBER 1995

An Auction Algorithm for the Max-Flow Problem 1'2

D . P. BERTSEKAS 3

Communicated by P. Tseng

Abstract. We propose a new algorithm for the max-flow problem. It
consists of a sequence of augmentations along paths constructed by an
auction-like algorithm. These paths are not necessarily shortest, that is,
they need not contain a minimum number of arcs. However, they can
be found typically with much less computation than the shortest aug-
menting paths used by competing methods. Our algorithm outperforms
these latter methods as well as state-of-the-art preflow-push algorithms
by a very large margin in tests with standard randomly generated
problems.

Key Words. Network optimization, max-flow problems, auction algo-
rithms, preflow-push algorithms.

1. Introduction

In this paper, we propose a new algori thm for the classical max-flow
problem, where we are given a directed graph (X , d) , and we want to push
a max imum amoun t o f flow f rom a source node 1 to a sink node N, subject
to the constraint that the flow of each arc (i, j) ~ d should lie in an interval
[0, co.], where c,-j is a given positive scalar, called the capacity o f (i , j) ; here,
the number o f nodes is N a n d the nodes are denoted 1, 2 N. The number
o f arcs is A and, to facilitate the presentation, we assume that there is at
mos t one arc (i,j) starting at i and ending at j , so that we can unambiguous ly
refer to an arc as (i , j) . A flow vector

x = {xu[(i,j) ~d}

1This paper is a substantially revised version of Ref. 1.
2Many thanks are due to David Castanon and Paul Tseng for several helpful comments. The
suggestions of the referees were also appreciated. David Castanon, Lakis Polymenakos, and
Won-Jong Kim helped with some of the computational experimentation. This research was
supported by NSF under Grant CCR-9103804.

3Professor, Department of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts.

69
0022-3239/95/1000-0069507.50/0 �9 1995 Plenum Publishing Corporation

70 JOTA: VOL. 87, NO. 1, OCTOBER 1995

is said to be capacity feasible if

O<xo.<ce j, for all (i , j) ~ r

The associated surplus of each node is defined by

gi = ~ xj i- ~, x~j, ViEX. (1)
{j[(j,i)ed} {jt (id) e,~'}

The flow vector is said to be feasible if it is capacity feasible and the node
surpluses satisfy

g~=0, VieJV, i r 1, i r (2)

The problem is to find a feasible flow such that gN is maximized.
The classical approach to the max-flow problem is the Ford-Fulkerson

algorithm (Ref. 2), which consists of successive augmentations; it moves
flow sequentially from the source to the sink along augmenting paths, until
a saturated cut separating the source and the sink is created. In its original
form, this algorithm had two drawbacks:

(a) If the augmenting paths are arbitrarily constructed, the number
of augmentations can be very large. In fact, if the arc capacities
are irrational, the algorithm may fail to terminate (see, e.g., Refs.
3-5).

(b) No mechanism is provided to pass helpful information from one
augmenting path construction to the next.

These two drawbacks have been addressed by much subsequent research.
The traditional approach to keep the number of augmentations small is to
ensure that the augmenting paths are shortest, in the sense that they contain
the smallest possible number of arcs. In fact, all polynomial augmenting
path methods of which we are aware use this approach. The simplest way
to construct the shortest augmenting paths is to use a breadth-first search
method, leading to an O(NA 2) running time (Ref. 6). In order to reuse
information from one shortest augmenting path construction to the next,
the idea of a layered network implementation was also suggested (Ref. 7)
and resulted in an O(N2A) running time.

The algorithm of this paper is of the Ford-Fulkerson type, but does not
use shortest augmenting paths. Instead, it constructs possibly nonshortest
augmenting paths using the ideas of the auction algorithm for the assignment
problem (Refs. 5, 8). In particular, our path construction algorithm is
obtained by converting the path construction problem to a special type of
unweighted matching problem, applying the auction algorithm, and stream-
lining the computations. A key feature here is that the price mechanism of
the auction algorithm is used to pass valuable information from one aug-
menting path construction to the next.

JOTA: VOL. 87, NO. I, OCTOBER 1995 71

Another relevant class of max-flow algorithms is the class of preflow-
push methods, which originated with the work of Refs. 9, 10 and has been
the subject of much recent development (Refs. 11-17). These methods move
flow along single-arc paths, and they share with the auction algorithm the
idea of using a price mechanism (within this context, prices are also called
labels). This connection is not accidental, and in fact it is shown in Ref. 18
that a generic preflow-push method for the max-flow problem (Ref. 12) can
be derived as a special case of the auction algorithm for the assignment
problem, using the reformulation of the max-flow problem as an assignment
problem. Preflow-push methods have excellent theoretical worst-case com-
plexity [O(N2A 1/2) with relatively simple implementation (Ref. 15), and even
better through the use of sophisticated but somewhat impractical data struc-
tures]. On the basis of some recent studies (Refs. 16, 17, 19, 20), they are
reputed to be the fastest in practice, when appropriately implemented.

Our algorithm has an O(N2A) worst-case running time, but according
to our experiments, it is substantially faster than both shortest augmenting
path and preflow-push methods. There is a twofold explanation for this.
First, the auction algorithm solves simpler path construction problems than
the competing shortest augmenting path methods, while at the same time it
passes useful price information from one path construction to the next.
Second, because flow changes take place over multiple-arc paths, the phe-
nomenon of ping-ponging of flow between pairs of nodes that is character-
istic of preflow-push methods is largely avoided. Indeed, our experiments
show that the number of arc flow changes required to solve the problem is
generally far smaller in our method than in preflow-push methods.

The paper is organized as follows. In Section 2, we describe our auction
algorithm for path construction. In Section 3, we embed the path construc-
tion algorithm of Section 2 within a sequential augmentation framework to
obtain our main max-flow algorithm. We establish the validity of the algo-
rithm, and we show that its running time is O(N2A). Efficient implementa-
tion is very important for the success of our algorithm, and in Section 4 we
outline a number of variations that can improve its performance. In Section
5, we present computational results with standard randomly generated prob-
lems. These results show that our algorithm outperforms state-of-the-art
preflow-push methods by a very large margin under identical test conditions.
Finally in the appendix, we describe briefly how our path construction
method can be viewed as an application of the auction algorithm for the
assignment problem to a special type of unweighted matching problem.

2. Path Construction Algorithms

In this section, we describe a method for finding a path between two
nodes of a graph. This method lies at the heart of our max-flow algorithm,

72 JOTA: VOL. 87, NO. 1, OCTOBER 1995

which will be presented in the next section. We give two versions of the
algorithm. The first is simple and easy to understand. The second is a more
complex variation of the first, but is apparently more efficient in practice.
We first introduce some terminology that is common to all sections of this
paper.

Consider the directed graph (X , d) given in the introduction. The set
of arcs outgoing from node i is denoted by A(i), and the corresponding set
of nodes {Jl (i, j)cA(i)} is denoted by N(i). A path P is a sequence of nodes
(nl, n2 , . . . , n,) with t>2 , and a corresponding sequence of t - 1 arcs such
that the ith arc in the sequence is either (ni, n~+ 1), in which case it is called
a forward arc of the path, or (ni+ 1, hi), in which case it is called a backward
arc of the path. Node nl is called the start node of P, and node nt is called
the terminal node of P. By slight abuse of terminology, we consider P = (nl)
to be a path, in which case nl is both the start and the terminal node of P.
For i - - 2 , . . . , t, the node ni-1 is called the predecessor of n~, and is denoted
by pred(ni). We denote by P+ and P- the sets of forward and backward
arcs of P, respectively. The path P is said to be forward if all its arcs are
forward. The path P is said to be simple if it contains no cycles, that is, if
the nodes nl nt are distinct. The length of a path is the number of its
arcs; all future references to shortest paths are with respect to this length.
All paths in this section will be forward paths. The paths to be considered
in the context of the max-flow problem, starting with the next section, may
contain both forward and backward arcs.

The following algorithm aims at finding a simple forward path that
starts at a given node nl and ends at node N. It maintains a simple forward
path P--- (n l , . . . , nt) and a set of integer node prices satisfying

p(i) <_p(j) + 1, V(i,j) e d , (3)

p(nl)<N, p (N) = 0 , (4)

p(i)>_p(j), V(i,j)eP. (5)

The conditions (3) and (5) are related to the �9 slackness
conditions of the auction algorithm (see the appendix); here, �9 = 1.

The algorithm is motivated by the max-flow context, where the objective
is not to find a single path, but rather to find a sequence of paths each in a
graph that differs slightly from its predecessor. Within this context, prices
are helpful in guiding the search for new paths. Loosely speaking, prices are
modified by the algorithm in a way that the desired paths have an approxi-
mate downhill direction, that is, they proceed from high price nodes to low
price nodes. Thus, if a set of prices is roughly appropriate for guiding the
search for a path in a given graph, it is also roughly appropriate for guiding
the search for a path in a slightly different graph.

JOTA: VOL. 87, NO. 1, OCTOBER 1995 73

At the start of the algorithm, we require that P = (n 0 , and that the
vector p = (p(1) p(N)) is such that Eqs. (3) and (4) hold. The path P
is modified repeatedly using the following two operations:

(a) A contraction of P, which deletes the last arc of P, that is, replaces
the path P = (n l , n,) by the path P=(n~ nt-1). In the
degenerate case where P = (nl), a contraction leaves P unchanged.

(b) An extension of P, which adds to P an arc outgoing from its
terminal node, that is, replaces the path P = (nl n,) by a path
P=(nt n~, nt+l), where (n,, n,+t) is an arc.

The prices p(i) may also be increased in the course of the algorithm so that,
together with P, they satisfy the conditions (3)-(5). A contraction always
involves a price increase of the terminal node n,. An extension may or may
not involve such a price increase. An extension of P is always done to a
neighbor of n, that has minimal price. The algorithm terminates if either
node N becomes the terminal node of P (then, P is the desired path), or
else p(n~)>N [in view o f p (N) = 0 and p(i)<p(j)+ 1 for all arcs (i , j) as
per Eqs. (3) and (4), this means that there is no forward path from nl to
N].

Algorithm A1. Path Construction Algorithm.
p such that Eqs. (3) and (4) hold.

Step 1.

Step 2.

Step 3.

Set P = (nt), and select

Check for Contraction or Extension. Let n, be the terminal
node of P. If the set N(n,) is empty, set p(n,) = N and go to
Step 3. Otherwise, find a node in N(nt) with minimal price and
denote it succ(nt),

succ(nt) = arg min p(j). (6)
jeN(nt)

Set

p(nt) =p(succ(n~)) + 1. (7)

If n, = nl and p(nl) < N, or if

n~ r nl and p(pred(n~)) >p(succ(n,)), (8)

go to Step 2; otherwise, go to Step 3.

Extend Path. Extend P by node succ(n~) and the correspond-
ing arc of A(nt). If succ(nt)= N, terminate the algorithm; oth-
erwise, go to Step 1.
Contract Path. If P = (n~) and p(n~) > N, terminate the algo-
rithm; otherwise, contract P and go to Step 1.

74 JOTA: VOL. 87, NO. 1, OCTOBER 1995

We note that maintaining a path that is extended or contracted at
each iteration, while maintaining a price vector that satisfies complementary
slackness conditions, is a central feature of the auction algorithm for shortest
paths (Refs. 5, 21) and its embedding in a sequential shortest path algorithm
for the minimum cost flow problem (Ref. 22). However, as mentioned ear-
lier, our path construction algorithm does not necessarily generate a shortest
path. Instead, we show in the appendix that it just solves a special type of
unweighted matching problem by means of the auction algorithm.

In the special case where all the initial prices are zero and there is a
path from each node to N, by tracing the steps, it can be seen that the
algorithm will work like depth-first search, raising to 1 the price of the nodes
of some path from nl to N in a sequence of extensions with no intervening
contractions. More generally, the algorithm terminates without performing
any contractions if the initial prices satisfy p(i)>_p(j) for all arcs (i,j) and
there is a path from each node to N.

We make the following observations:

(i) The prices remain integer throughout the algorithm [cf. Eq. (7)].
(ii) The conditions (3)-(5) are satisfied each time Step 1 is entered.

The proof is by induction. These conditions hold initially by assumption.
Condition (4) is maintained by the algorithm, since we have termination as
soon as p(nl)>_N. To verify conditions (3) and (5), we note that only the
price of nt can change in Step 1, and by Eqs. (6) and (7), this price change
maintains condition (3) for all arcs, and condition (5) for all arcs of P,
except possibly for the arc (pred(nt), nt) in the case of an extension with the
condition

p(pred(nt)) >p(succ(n,))

holding. In the latter case, we must have

p(pred(nt)) >p(succ(n3) + 1,

because the prices are integer, so by Eq. (7), we have

p(pred(nt)) >_p(nt)

at the next entry to Step 1. This completes the induction.
(iii) A contraction is always accompanied by a price increase. Indeed

by Eq. (5), which was just established, upon entering Step 1 with ntr nl, we
have

p(nt) < p(pred(n,)),

JOTA: VOL. 87, NO. 1, OCTOBER 1995 75

and to perform a contraction, we must have

p(pred(nt)) <_p(succ(nt)).

Hence,

p(n,) <p(succ(nt)),

implying by Eq. (7) that p(nt) must be increased to the level p(succ(nt)) + 1.
It can be seen, however, by example, that an extension may or may not be
accompanied by a price increase.

(iv) Upon return to Step 1 following an extension, the terminal node
nt satisfies [cf. Eq. (7)]

p(pred(nt)) =p(nt) + 1. (9)

This, together with the condition p(i)>_p(j) for all (i,j)~P [cf. Eq. (5)],
implies that the path P will not be extended to a node that already belongs
to P. Thus P remains a simple path throughout the algorithm.

To facilitate the presentation, let us introduce some additional terminol-
ogy. For a given integer price vector p, we say that an arc (i,j) is uphill if
p(i) <p(j) , downhill if p(i) >p(j), and strictly downhill if p(i) =p(j) + 1.
The following proposition summarizes the conclusions of the preceding
discussion and establishes the termination properties of the algorithm.

Proposition 2.1.

(a) Throughout the algorithm, the prices satisfy the conditions (3)
and (4), the path P is simple, its arcs are downhill, and following
an extension, the last arc of P is strictly downhill.

(b) If there exists a forward path from nl to N, the algorithm termin-
ates via Step 2 with such a path. Otherwise, the algorithm termin-
ates via Step 3.

Proof. Part (a) was established above, so we prove part (b). We first
note that the prices of the nodes of P are upper bounded by N in view of
Eqs. (4) and (5). Next, we observe that there is a price change of at least
one unit with each contraction, and since the prices of the nodes of P are
upper bounded by N, there can be only a finite number of contractions.
Since there can be at most N - 1 successive extensions without a contraction,
the algorithm must terminate. Since, throughout the algorithm, p(N)= 0
and the condition p(i)<p(j)+ 1 holds for all arcs (i,j), the existence of a
forward path starting at a node nl and ending at N implies that p(nl)< N

76 JOTA: VOL. 87, NO. 1, OCTOBER 1995

throughout the algorithm. Therefore, if termination occurs via Step 3, there
cannot exist a path from n~ to N. []

Improved Version of the Algorithm. Most of the calculation in the
preceding algorithm is needed to determine the nodes succ(n~) attaining the
minimum in Eq. (6) of Step 1. On the other hand, typically some of these
nodes and the corresponding arcs do not change frequently during the algo-
rithm. Thus, it makes sense to save them in a data structure and try to reuse
them as much as is possible without affecting the essential properties of the
algorithm [maintaining conditions (3)-(5) and precluding the formation of
a cycle within the path P]. This leads to a modification of the algorithm,
where in addition to the price vector p, we maintain for each node i ~ N, a
subset of outgoing arcs of i denoted Cand(i), and called the candidate set
of arcs of node i. The set of end nodes of arcs in Cand(i) which are opposite
to i is denoted Succ(i).

The sets of arcs Cand(i) together with the set of prices p(i) define a
graph, called the admissible graph, whose node set is Y = { 1 , . . . , N} and
arc set is

{(i,j) [j~Succ(i), p(i) >p(j), i= 1 , . . . , N}.

As the sets Succ(i) and the pricesp(i) change in the course of the algorithm,
the admissible graph also changes. We require that the initial sets Cand(i)
and prices p(i) are such that the admissible graph is acyclic. This condition
is satisfied in particular if we select the sets Cand(i) to be empty. The
algorithm is as follows:

Algorithm A2. Path Construction Algorithm: Second Version. Set
P = (n0, and select p such that Eqs. (3) and (4) hold.

Step 1. Check for Contraction or Extension. Let nt be the terminal
node of P. If there is a node)-~ Succ(nt) such that

p(n,) >_p(j), (10)

select such a node)- and go to Step 2. Otherwise, if the set
N(n,) is empty, set p(n,) = N and go to Step 3, otherwise, set

Succ(nt) = {f (J)=j~N(n,)min p(j)}, (11)

Cand(n,) = { (n , , f) eA(n3 If~Succ(n,) }, (12)

and select a node f e Succ(n~). Set

p(nt) = p (j) + 1. (13)

JOTA: VOL. 87, NO. 1, OCTOBER 1995 77

I fn t=nl andp(nl)<N, or if

nt ~ nl and p(pred(nt)) >p(j) , (14)

go to Step 2; otherwise, go to Step 3.

Step 2. Extend Path. Extend P by nodefand the corresponding arc
of Cand(nt). I f j = N , terminate the algorithm; otherwise, go
to Step 1.

Step 3. Contract Path. If P = (nl) and p(nl) > N, terminate the algo-
rithm; otherwise, contract P and go to Step 1.

Note that, similar to the first version of the algorithm, each contraction
is accompanied by an increase of the price p(nt), while each extension may
or may not be accompanied by an increase of p(nt). Note also that if the
downhill test p(n~)>p(j) of Eq. (10) were to be replaced by the strictly
downhill test p(n~) =p(j) + 1, the two versions of the algorithm would have
been essentially identical [the sets Cand(i) would just provide a specific
implementation of the successor node selection of Eq. (6)]. However,
because of the difference in the test for making an extension to a node of
Succ(n~), the two versions of the algorithm are not mathematically equiva-
lent. In particular, in the second version, we perform an extension when
upon entering Step 1, we have

p(nt) =p(j) , for somef~ Succ(nt),

in which case the last arc of the path P is not strictly downhill following the
extension. For this reason it is not obvious than an extension will not create
a cycle in P with an attendant breakdown of the algorithm.

It turns out, however, that such a cycle cannot be closed, because it
can be proved that throughout the algorithm:

(a) The arcs of P belong to the admissible graph.
(b) The admissible graph remains acyclic.

Both of these properties can be shown by induction. In particular, property
(a) is maintained because a contraction that deletes the terminal arc of P
does not affect the prices of the end nodes of the other arcs of P. Further-
more, each extension is done along an arc of Cand(nt) and, whether the test
(10) is passed or p(nt) is set via Eq. (13), this arc is downhill and its prede-
cessor arc continues to be downhill following the extension. Also, to show
that property (b) is maintained, suppose that property (b) holds at the start
of Step 1, and consider the two cases where a node f~Cand(nt) satisfying
the downhill test (10) can be found or cannot be found. In the first case,

78 JOTA: VOL. 87, NO. 1, OCTOBER 1995

the admissible graph remains unchanged. In the second case, the only poten-
tially new arcs of the admissible graphs are the arcs of the set Cand(n,),
after this set is recalculated. However, following the price setting of Eq.
(13), all the arcs of Cand(nt) are strictly downhill, so these arcs cannot be
part of a cycle of the admissible graph, all the arcs of which are downhill
by definition. Thus the admissible graph remains acyclic following Step 2
or 3, which shows that P remains a simple path at all times. We have the
following proposition.

Proposition 2.2.
Then:

Assume that the initial admissible graph is acyclic.

(a) Throughout the algorithm, the admissible graph remains acyclic.
(b) The flow-price pairs generated by the algorithm satisfy the condi-

tions (3) and (4), the path P is simple, and the arcs of P are
downhill.

(c) If there exists a path from nl to N, the algorithm terminates via
Step 2 with such a path. Otherwise, the algorithm terminates via
Step 3.

Proof. Part (a) was shown above and the remaining parts are proved
similarly to the corresponding parts of Proposition 2.1. []

3. Auction/Max-Flow Algorithm

We now consider the max-flow problem as described in Section 1. We
introduce some additional terminology.

Given a capacity feasible flow vector x, for each node i, we introduce
the set of eligible arcs of i, given by

A(i, x) = { (i , j)]x i j< co. } t3 {(j, i) 1 0 < xjl}, (15)

and the corresponding set of eligible neighbors of i, given by

N(i, x) = {Jl (i , j) cA (i , x) or (j, i)eA(i , x)}. (16)

The reduced graph is the graph with node set Y which contains an arc (i , j)
if and only i f j is an eligible neighbor of i. Thus, eligible arcs of a node i in
the original graph correspond to outgoing arcs from i in the reduced graph.
For a given capacity feasible x, a path P in the original graph is said to be
unblocked if it corresponds to a forward path of the reduced graph, that is,
if xo.< % for all forward arcs (i , j) e P + and O < x o. for all backward arcs
(i , j) e P - . An unblocked path is said to be augmenting if its start node has

JOTA: VOL. 87, NO. 1, OCTOBER 1995 79

positive surplus and its terminal node is the sink N. If P is an augmenting
path, an augmentation is an operation that increases the flow of all arcs
(i, j) e P + and decreases the flow of all arcs (i, j) E P - by a common increment
8>0 .

Following standard terminology, a cut is a partition (Y +, X -) of the
set of nodes Y into two subsets ~ + and ~ - with 1 ~ Y + and N e Y - .
The capacity of this cut is the sum of the capacities of all arcs (i,j) with
i ~ X + a n d j e ~ - . The max flow-min cut theorem states that the maximum
flow is equal to the minimal cut capacity. For a given flow vector x, a cut
(~ + , ~ -) is said to be saturated if xij=cu for all arcs (i,j) with i c y +
a n d j E ~ - , and xo.=O for all arcs (i,j) with i e ~ - a n d j e X +. The algo-
rithm of this section terminates with a capacity feasible flow vector x and
a cut (~ +, Y -) that is saturated and is such that the surpluses gi, given
by Eq. (1), satisfy

g~<0, (17a)

gi>0, Vie 1, (17b)

gi=0, Vi~JV-, i~N. (17c)

It is well known that such a cut is a minimum cut, and we will show how
it can be used together with x to obtain a maximum flow; see the remarks
following the proof of Proposition 3, which also prove that the cut obtained
upon termination is minimum.

A capacity feasible flow vector x together with a price vector

p = {p(i) li~JV}

are said to be a valid pair if

p(i) <p(j) + 1, Vj that are eligible neighbors of i. (18)

Our algorithm starts with and maintains a valid flow-price pair (x, p) such
that

gl <0, gi_>0, Vi# 1,

p(1) = N, p(N) =0, p(i) >_0, Vi# 1, N.

A possible initial choice is the flow vector x given by

I ca, if i = 1,
X0-=

[0, i f i r

(19)

(20)

(21a)

80 JOTA: VOL. 87, NO. 1, OCTOBER 1995

together with the price vector p given by

~N, if i= 1,
p(i) (length of a shortest unblocked path from i to N, if i ~ 1,

(21b)

which can be obtained by a breadth-first search starting from N. If there is
no forward path of the original graph from i to N, the above length is taken
to be equal to N.

Our algorithm maintains a flow-price pair (x, p) satisfying the condi-
tions (18)-(20), performs a sequence of iterations, and terminates with a
minimum cut. At the start of each iteration, a node n~ with

nl~N, p(nO<N, gn,>0

is selected. The iteration tries to construct an augmenting path starting at
nl by using the second path construction algorithm of the preceding section,
applied to the reduced graph and using the price vector p. If an augmenting
path is found, the iteration concludes with a corresponding augmentation.
If an augmenting path cannot be found, the path construction algorithm
terminates with p(nl)>__ N, so that node nl will not be chosen as the starting
node at any subsequent iteration. Consistently with the second path con-
struction algorithm of Section 2, we maintain, for each node i, a set of
incident arcs of i denoted Cand(i). The set Cand(i) is empty for i = 1, i =
N, and all i withp(i) = N. The set of end nodes of Cand(i) which are opposite
to i is denoted Succ(i).

We require that, initially, we have

p(i) = p (j) + 1, if j~Succ(i) ,

which will be true if all sets Cand(i) are empty or for all i we have

Cand(i) = {(i,j)~A(i, x)]p(i) = p (j) + 1}

u {(j, i)~A(i, x)Ip(i)=p(j)+ 1}, (22)

where (x, p) is the initial flow-price pair. If the shortest path initialization
of Eqs. (21a) and (21b) is used, then Cand(i) as given by Eq. (22) is the set
of arcs outgoing from i in a shortest augmenting path from i. The typical
iteration is as follows.

Algorithm A3. Auct ion/Max-Flow Typical Iteration. Select a node nl
with nl #N, p(nl) < N, and gnl > O; if no such node exists, the algorithm
terminates. Set P = (nl).

JOTA: VOL. 87, NO. 1, OCTOBER 1995 81

Step 1. Check for Contraction or Extension. Let nt be the terminal
node of P. If there is a node f~ Succ(n,) n N(n,, x) such that

p(n,, _>p(f,, (23,

select such a node f and go to Step 2. Otherwise, if the set
N(n,, x) is empty, set p(n,) = N and go to Step 3 ; otherwise,
set

Succ(nt) = { }- P(}-' =j~N(nt,xlmin p(j)} , (24,

Cand(n,) = {(nt,j) cA(n,, x) Ij~ Succ(nt)}

w {(j, n,)~A(nt, x)Ij~Succ(n,)}, (25)

and select a node fE Succ(n~). Set

p(nt) = p (j) + 1. (26)

If n,=nl andp(nl)<N, or if

n, Cn~ and p(pred(nt)) >p(j) ,

go to Step 2; otherwise, go to Step 3.

Step 2. Extend Path. Extend P by the node}-and the corresponding
arc of Cand(nt). I f j i s the sink N, go to Step 4; otherwise, go
to Step 1.

Step 3. Contract Path. If P = (nl) and p(nl) > N, terminate the itera-
tion; otherwise, contract P and go to Step 1.

Step 4. Augmentation. Perform an augmentation along P with flow
increment

~=min{gn,, {cij-xo. I (i,j)~P+}, {xijl (i,j)~P-}}, (27)

and terminate the iteration.

Note that, except for the at most N - 2 contractions in which p(nt) is
set to N, all contractions involve an increase of the price p(nt) and a recalcula-
tion of the set Succ(r/t). Extensions can occur either through a discovery of
a node f~Succ(n,) n N(n,, x) such that p(n~)>p(f) or through a recalcula-
tion of the set Succ(n,), in which case an increase ofp(n,) may or may not
occur.

We assume that the search through the set Succ(n,)n N(n~, x) for a
node}-such that p(nt)>p(j) is organized as follows. When a set Cand(i) is
initially calculated, via, for example, Eq. (22), or is recalculated via Eq. (25),

82 JOTA: VOL. 87, NO. 1, OCTOBER 1995

it is organized as a queue, which allows the deletion of its top element with
O(1) work. Each iteration is started by retrieving sequentially arcs from the
top of Cand(n,) and checking to see if these arcs are eligible and their
endnode j-opposite to nt satisfies p(nt)>_p(j). Each arc not passing these
tests is deleted from Cand(n,), and the checking is stopped when either a
node j w i t h the required properties is found or the set Cand(n,) becomes
empty. To simplify the following complexity accounting, the work for check-
ing and deleting the arcs of Cand(n,) is lumped into the work for calculating
Cand(nt). With this convention, the work involved in an extension for which
we recalculate the set Cand(n~) via Eq. (25) is proportional to the degree of
n,, while the work involved in an extension, where after checking and possi-
bly deleting enough arcs of Cand(n,) we find an eligible neighbor node f
that passes the test p(nt) >_p(j), is O(1). Similarly, the work involved in a
contraction is proportional to the degree of nt.

The next proposition establishes the basic properties of the algorithm.

Proposition 3.1.
section:

The following hold for the max-flow algorithm of this

(a) Each iteration of the max-flow algorithm up to the discovery of
the corresponding augmenting path consists of an application of
the second path construction algorithm of the preceding section
to the reduced graph, with the start node of the path being the
chosen node n~ for this iteration, and the end node of the path
being N.

(b) The algorithm terminates and, upon termination, there is a satu-
rated cut separating the sink from all nodes with nonzero surplus,
which is a minimum capacity cut.

(c) The running time of the algorithm is O(N2A).

ProoL

(a) By comparing the descriptions of the second path construction
algorithm and the iteration of the max-flow algorithm, we see that the condi-
tion (3) that is maintained by the path construction algorithm is equivalent
to the condition (18) for the pair (x,p) to be valid, the price change (13)
corresponds to the price change (26), and the downhill test (10) for an
extension corresponds to the downhill test (23). Let us define the admissible
graph of the max-flow algorithm as the graph whose node set is X = { 1
N} and arc set is

{(i,j) Ije Succ(i) c~ N(i, x) ,p(i) >_p(j), i = 1 N}.

JOTA: VOL. 87, NO. 1, OCTOBER 1995 83

Then the sets Succ(i) and the admissible graph of the path construction
algorithm correspond to the sets Succ(i) c~ N(i, x) and the admissible graph
in the max-flow algorithm, respectively.

Based on the preceding associations, it is seen that, if at the start of an
iteration of the max-flow algorithm the admissible graph is acyclic, then the
iteration up to the discovery of an augmenting path is equivalent to the
application of the path construction algorithm to the reduced graph. Thus,
to prove the result, we must show that the admissible graph of the max-
flow algorithm remains acyclic throughout the algorithm.

To this end, we note that, in view of the initial restrictionp(i) =p (j) + 1
for allje Succ(i), the admissible graph is acyclic at the start of the algorithm.
Furthermore, if the admissible graph is acyclic at the start of an iteration,
the same is true during the iteration up to the discovery of the augmenting
path, since the path construction algorithm maintains the acyclicity of the
admissible graph. We claim that an augmentation does not add any new
arcs to the admissible graph, and thus maintains its acyclicity. Indeed, sup-
pose that an augmentation occurs along the path (il, i2 , ik, N), and
that one of the arcs (i,,, ira-l), m=2 , k, is added to the reduced graph
and to the admissible graph as a result of the augmentation. Then, we must
have

p(im) >p(im-- 1), i,.- l ~ SUCC(i,~),

by the definition of the admissible graph, and also

p(i,,,_ l) >P(i,~), imGSucc(im-1),

since the arc (im-1, in) belongs to the augmenting path, so that p(i,,,-O =
p(im). This implies that p(im-1) and p(im) have been increased at least once
since the start of the algorithm [since we havep(i) =p (j) + 1 for allj~Succ(i)
at the start of the algorithm and also following each recalculation of the set
Succ(i)]. Furthermore, the conditions p(i,,_ l) <P(im) + 1 and im~SUCC(im-1)
imply that the last increase of p(i,,) occurred after the last recalculation of
SUCC(im-1) [since following a recalculation of Succ(i) at a node i, we have
p(i) =p(j) + 1 for alljeSucc(i)]. Therefore the last increase ofp(im) occurred
after the last increase of p(im-O [since each increase of p(i) involves a
recalculation of Succ(i)]. Similarly, the conditions p(im)<p(im-1)+ 1 and
i,,-1 E Succ(im) imply that the opposite is true. We thus reach a contradiction.

(b) From part (a) and Proposition 2.2, it follows that each iteration
terminates. At the end of an iteration, either we have p(nl)>N, indicating
that there is no augmenting path starting at nl, or we have an augmentation.
In the former case, the number of nodes i with p(i)>N increases strictly,
so there can be at most N - 2 iterations of this type. To show that the
number of augmentations is finite, we first note that there are at most N

84 JOTA: VOL. 87, NO. 1, OCTOBER 1995

price increases per node, since prices take nonnegative integer values, and
once the price of a node exceeds N - 1, it increases no further. We next
observe that each augmentation either exhausts the surplus of nl, or saturates
at least one arc (that is, it drives the flow of the arc to zero or its upper
bound). When an arc with end nodes i and j is saturated in the direction
from i to j, there are two possibilities,

Case 1 :p(i) = p (j) + 1, Case 2:p(i) =p(j) .

In Case 2, since j~Succ(i), we cannot have ieSucc(j) , since this would
violate the acyclicity of the admissible graph. In either Case 1 or Case 2, we
see that one of the at most N increases o f p (j) must occur before this arc
can become unsaturated and then saturated again in the direction from i to
j. Thus, the number of arc saturations is O(N) per arc, and the total number
of arc saturations is O(NA), leading to an O(NA) bound in the number of
iterations and the number of augmentations.

We thus see that the algorithm terminates, and since augmentations
preserve the condition gi> 0 for all iS 1, upon termination, we must have
ge_>0 for all i S 1, p(1) =N, p(i)>N for all i r with g;>0, and p(N)=0.
It follows that there can be no augmenting path starting at node 1 or at a
node i with g~>0, implying that there is a saturated cut (X § Y -) such
that 1 ~Jff+, N~J f f - , g~>0 for all iS 1, and g i=0 for all i#N with i ~ - .
As discussed earlier, this is a minimum cut.

(c) We first note that, as shown in the proof of part (b) :

(i) There are at most N price increases per node.
(ii) There are at most O(NA) iterations and

at most O(NA) augmentations.

In view of (i) above, there can be at most N contractions and extensions
that involve a price increase at each node, and the work for each is propor-
tional to the degree of n,. Thus, the work for these contractions and exten-
sions is O(NA). Also, since each augmentation involves a flow change for
each of at most N - 1 arcs, the work for augmentations is O(N2A).

There remains to bound the work for extensions that do not involve a
price increase. We argue by contradiction that each such extension does not
involve the recalculation of the set Succ(n,), that is, either it involves the
first calculation of Succ(nt) or the downhill test (23) is failed for all
f~Succ(nt) n N(nt, x). Indeed, suppose that the set Succ(n,) is recalculated
via Eq. (24) and we find that p(n,)=p(j)+ 1 for all jESucc(n,), so that an
extension is performed without an increase ofp(nt). Then, everyj~Succ(n~)
must have been an eligible neighbor of nt and its price must have remained
unchanged continuously since the preceding time Succ(n,) was calculated
[andp(nt) was set to p(j)+ 1]. But this is a contradiction, since in order for

JOTA: VOL. 87, NO. 1, OCTOBER 1995 85

Succ(n,) to be recalculated, all nodes j in the set Succ(nt) n N(nt, x) must
satisfy p(n,)<p(j). Thus, if an extension at nt does not involve a price
increase, it also does not involve a recalculation of Succ(n,) ; therefore, using
the accounting method described in the paragraph preceding Proposition
3.1, it requires only O(1) work, unless it involves the calculation of Succ(nt)
for the first time. Now, the total number of extensions is O(N2A), because
in each iteration the number of extensions exceeds the number of con-
tractions by at most N - 1 , the total number of contractions in the entire
algorithm is O(N2), while the total number of iterations is O(NA).
Thus, the total work for extensions that do not involve a price increase is
O(N2A). []

Given the cut (~Ar +, N-) and the flow vector x obtained upon termina-
tion of the algorithm, we can obtain a maximum flow by applying the same
algorithm to a certain feasibility problem, that aims to retum to the source
the excess flow that has entered the graph from the source and has accumula-
ted at the other nodes of X +. In particular, we delete all nodes in JV- and
all arcs with at least one endnode in X - , and for each node i r 1 with ie X +
and

c U > O, (28)
{ (i,j)IjE JV'- }

we introduce an arc (i, 1) with flow and capacity

Nil = Cil = 2 Cij ; (29)
{ (i , j) l j e X - }

if the arc (i, 1) already exists, we just change its capacity and flow to the
above value. In the resulting graph, call it f#, we pose the problem of finding
a flow vector ff such that the corresponding surpluses are all zero. It can be
seen that the surpluses corresponding to the flow vector x restricted to fr
are equal to the nonnegative surpluses gi obtained upon termination for all
i r 1. We can thus apply the max-flow algorithm of this section starting with
this flow vector, and the prices

0, if i = 1,

p(i) = length of a shortest unblocked path from i to 1, if i • 1,

which together with x form a valid pair for the graph ~. It can be shown
then that each iteration of the algorithm will terminate with an augmentation
from some node i with gi> 0 to the source 1. [Given any capacity feasible
flow vector in a graph with arc capacities, and a node i with positive surplus,
there is always an augmenting path starting at i and ending at some node
with negative surplus; this follows from the conformal realization theorem

86 JOTA: VOL. 87, NO. l, OCTOBER 1995

(see, e.g., Ref. 5, p. 7). Here node 1 is the only node with negative surplus.]
Thus, the algorithm will terminate when the surpluses of all the nodes i r 1
will be reduced to 0, while upon termination the flows of the arcs (i, 1) will
still be equal to their initial values given by Eq. (29), since these arcs cannot
participate in an augmenting path. If ff,~ is the final flow of each arc (i,j)
of fr it can be seen, using also the fact gi=0 for all i ~ S - with ir that
the flow vector x* defined for each arc (i , j)sd by

.X~__Y2ij, if i eJK+, jeJK + ,
/j--]

,Xo, otherwise,

will have surpluses g* satisfying g* = 0 for all i ~ 1, N, g* < 0, g* > 0, while
saturating the cut (JV" +, Y -) . Thus, by the max flow-min cut theorem, x*
must be a maximum flow and (~4r +, Y -) must be a minimum cut.

Note, from the proof of Proposition 3.1, that the complexity bottleneck
is the O(N2A) bound for augmentations and for extensions that do not
involve a price increase. Our computational experience, however, indicates
that the O(NA) work for price increases is at least as much of a bottleneck.
This is similar to preflow-push methods where the O(NA) work for price
increases usually dominates the computation, even though the worst case
complexity bound is worse than O(NA). It thus appears that the practical
computation bottlenecks are comparable for preflow-push methods and our
method.

We finally note two variants of the max-flow algorithm. In the first
variant, we use the first version of the path construction algorithm, given in
Section 2, in place of the second version. The statement of the typical itera-
tion of this algorithm is identical with the one given above, except that the
downhill test p(nt)>p(j) of Eq. (23) is replaced by the strictly downhill
p(nt) =p(j) + 1. Proposition 3.1 can also be proved for this variant of the
algorithm using a similar (in fact, simpler) proof.

In the second variant of the max-flow algorithm, instead of maintaining
the entire set Cand(i), we maintain just one arc of Cand(i). The iteration
of the algorithm is modified so that, if the unique arc of Cand(nt) passes
the downhill test of Eq. (23), it is used as earlier. Otherwise, assuming that
N(n,, x) is nonempty, the set Succ(n,) is computed and a single arc of
Cand(n,) is retained. This variant can be shown to terminate with a minimum
cut as stated in Proposition 3.1. Its complexity analysis is similar to the one
given in the proof of Proposition 3.1 (c), except that the work for extensions
that do not involve a price increase can be estimated as O(NA 2) rather
than O(NZA), raising the complexity bound to O(NA2). However, when
combined with the second best data structure given in the next section, this
second variant of the max-flow algorithm proved the most effective in our
computational results.

JOTA: VOL. 87, NO. 1, OCTOBER 1995 87

4. Efficient Implementation

In this section, we describe a number of variations of the auction/max-
flow algorithm of the preceding section, which have been found empirically
to improve performance.

Tests for a Saturated Cut. It has been observed that, for some prob-
lems (particularly those involving a sparse graph), our method can create a
saturated cut very quickly and may then spend a great deal of additional
time to raise to the level N the prices of the nodes that are left with positive
surplus. This characteristic is shared with preflow-push methods. Computa-
tional studies (Refs. 16, 17, 19, 20) of preflow-push methods have shown
that it is extremely important to use a procedure that detects early the
presence of a saturated cut. Several schemes have been suggested in the
literature.

One possibility is to test periodically for a saturated cut by an O(A)
breadth-first search from the sink, which tries to find the set ~ of nodes
from which there is an unblocked path to the sink. I f all nodes in 5 e have
zero surplus, then 5 ~ defines a minimum cut. Note that, once a node of 5 Q
with positive surplus is found, the breadth-first search can be terminated.
However, in an alternative version of this scheme, one can also perform
global repricing, whereby all the nodes in 5 ~ are obtained, and their prices
are recalculated and are set to their shortest distances from the sink. Further-
more, all the nodes not in 5e can effectively be purged from the computation
by setting their price equal to N. While global repricing can be costly, it is
known to be beneficial for several problem types (Refs. 17, 19, 20). It is
important to use an appropriate heuristic scheme that ensures that global
repricing is not too frequent, in view of the associated overhead. In practice,
repeating the test after a number of contractions, which is of the order of
N, seems to work well.

Another possibility, suggested in the context of preflow-push methods
in Ref. 16, is to maintain in a suitable data structure, for each integer k in
the range [1, N - 1], the number of nodes re(k) whose price is equal to k. If
for some k we have re(k) = 0 (this is called a gap at price k), then there is a
saturated cut separating all nodes with price greater than k from all nodes
whose price is less than k.. All the nodes with price greater than k can be
purged effectively from the computation by setting their price equal to N.
Furthermore, if all nodes with price less than k have zero surplus, the separat-
ing saturated cut is a minimum cut. In our experiments, we have found this
second procedure in conjunction with the highest price selection rule to be
more effective than the first. Note an advantage of both of these procedures:

88 JOTA: VOL. 87, NO. 1, OCTOBER 1995

they can purge from the computation a significant number of nodes before
finding a minimum cut.

Method for Selecting the Starting Node of the Path. Our algorithm
leaves unspecified the choice of the positive surplus node used as the starting
node of the path P. One possibility is to select a node with the highest price
among all positive surplus nodes i with p(i)< N. Each time the path P
degenerates to its start node, following a contraction, it is possible to make
a new start node selection based on the highest price criterion without affect-
ing the termination properties of the algorithm.

An alternative is to maintain all nodes i with positive surplus and
p(i) < N in a FIFO queue, and use as starting node the first node in the
queue. Note that the preflow-push method that uses a highest price scheme
is superior to the method that uses a FIFO scheme in terms of worst-case
complexity [O(N2A 1/2) versus O(N3)].

Greedy Augmentations. Once an augmenting path is constructed,
instead of pushing the same amount of flow along each arc of the path, it
is possible to push along each arc (i,j) the maximum possible amount of
flow, that is, max{g;, cg-x~}, if (i , j) is a forward arc of the path, or
max{gj, x~}, if (i,j) is a backward arc of the path. We call this a greedy
augmentation. For an example where such augmentations are helpful, see
Fig. 1.

There is a possible weakness of our algorithm that cannot be corrected
via greedy augmentations. This arises when many augmentations involve

S i n _ . k

�9 �9

p_

Capacity = 1 Capacity: Large

Fig. 1. An example where greedy augmentations are helpful. When the augmentations are
done as in the preceding section [cf. Eq. (27)], flow moves in single units along the
long path from node 2 to node N, and the number of arc flow changes is re(N- 2),
where m is the number of arcs joining nodes N - 1 and N. If greedy augmentations
are used instead, the first augmentation moves a large amount of flow to node N - 1,
and all subsequent augmentations involve a single-arc path from N - 1 to N. The
number of arc flow changes is m + N - 3.

JOTA: VOL. 87, NO. 1, OCTOBER 1995 89

Source

4

Capacity: Large Capacity = 1

A potential weakness of the auction/max-flow algorithm that cannot be corrected
through greedy augmentations. In this example, flow moves in single units along the
long paths from node 2 to node N.

Fig. 2.

small increments along long paths. For an example, see Fig. 2. In the imple-
mentation used in our tests, we have employed a heuristic procedure that
identifies situations of this type, and appropriately compensates for it by
occasionally moving flow along shorter portions of very long paths. How-
ever, even without this heuristic procedure, our method outperforms sub-
stantially preflow-push methods in the experiments reported in the next
section.

Using a Second Best Candidate. Consider the variant of the algorithm,
where only one node of the set Succ(i), call it jl(i), is maintained for each
i, together with a corresponding arc of Cand(i). Suppose that, for the termi-
nal node nt of the current path P, we have available a lower bound fl(nt)
on the prices of all the nodes in N(nt, x), except for the price of node jl (nt).
Suppose also that, in Step 1, the downhill test p(n~)>p(j~(nt)) of Ineq. (23)
for an extension is failed. Then, we can check to see whether we have

P(jl(nt)) <_ fl (nt),

and if this is so, we know that p(j~(nt)) is still less or equal to the prices of
all nodes in N(x, n~), thereby making the computation of this minimum as
per Eq. (24) unnecessary, A lower bound of this type can be obtained by
calculating, together with jl(n~), the second best node in N(nt, x) that is, a
node jz(n,) given by

j2(nt) = arg rain p (j) .
jeN(nt,x),jv~jl(nt)

Then, as long as j~(nt) remains unchanged and no new node is added to
N(nt, x), we can use

fl(nt) =p(j2(n,))

as a suitable lower bound [if a new node is added to N(n~, x) due to an
augmentation, we must suitably modify fl(nt) and jz(n,)]. This idea can be
further strengthened by checking to see ifjz(n,) still belongs to N(nt, x) and

90 JOTA: VOL. 87, NO. I, OCTOBER 1995

whether its price is still/3(n,), in the case where the test p(jl(nt))<p(j2(n,))
is failed. If this is so, we can set j~(nt) to j2(nO, thereby obviating again the
calculation of the minimum in Eq. (24).

The idea of using a second best candidate arc and node is known to be
very effective in auction algorithms for the assignment problem (Ref. 5,
p. 176 and Ref. 23) and the shortest path problem (Refs. 21, 24). It similarly
improves the performance of our max-flow algorithm.

5. Computational Results

To test the ideas of this paper, we have developed a FORTRAN code,
called AUCTION-MF, which is based on the variant of the algorithm that
maintains just a single element of each set Cand(i). This code is available
to use for research purposes from the author (bertsekas@lids.mit.edu). The
code uses some of the implementation ideas of Section 4 as follows:

(a)
(b)

(c)

Greedy augmentations.
Choice of the highest price node with positive surplus as the start-
ing node, and use of a gap scheme for saturated cut detection.
The second best candidate data structure.

These implementation ideas gave the best results for the problems tested.
We have experimented with several other versions of the code, which

differ in the way they select the starting node of the path and in the way
they detect the presence of a saturated cut. For example, we have tested a
code that, instead of (b) above, maintains the positive surplus nodes in a
cyclic queue, chooses the top node of the queue as the starting node, and
uses periodic breadth-first search for saturated cut detection and global
repricing. This version performed quite well relative to preflow-push
methods, but was uniformly slower than AUCTION-MF.

Random Problem Generators. We have used for experimentation test
problems obtained with a variety of standard random problem generators.
Max-flow problems generated by several types of random problem genera-
tors tend to be easy and can be solved very quickly by state-of-the-art
codes soon after initialization. Since all the codes we tested use very similar
initialization, based on breadth-first search [cf. Eqs. (21), (22)], we have
focused our experimentation on problems that are quite difficult and require
considerable computation beyond initialization. These problems are
typically characterized by large differences between the initial and the final
price vectors, as well as a large number of price changes.

JOTA: VOL. 87, NO. 1, OCTOBER 1995 91

RMFGEN. This code generates three-dimensional grid graphs, as
described in Ref. 25. The problem is specified by two parameters a and b,
called the side and the height, respectively. The grid has b frames numbered
consecutively, each consisting of a two-dimensional grid of a 2 nodes. Node
1 of frame 1 is the source, and node a 2 of frame b is the sink. Within a
frame, each pair of neighbor nodes is connected with an arc of capacity
103a 2. Between two successive frames, say k and k + 1, there are 2a 2 arcs; a 2
arcs that start at nodes of frame k and end at nodes of frame k + 1, and
another a 2 arcs that start at nodes of frame k + 1 and end at nodes of frame
k. These arcs have capacity randomly chosen from the integer range [1,103].
Furthermore, the end nodes of these arcs are determined by a random per-
mutation rule; that is, for each node of a frame, there must be exactly one
arc incoming from, and exactly one arc outgoing to, each of the neighboring
frames. There are several possible permutation rules. The one that we used
for our experiments works as follows. The nodes of each frame are sequen-
tially numbered from 1 to a2; that is, the first row consists of nodes 1 to a,
the second row consists of nodes a + 1 to a 2, etc. For each ordered pair of
neighboring frames, an integer r is randomly chosen from the range [1, a2].
Then, for each node i of the first frame, an arc is created that starts at i and
ends at node r + i modulo a 2 of the second frame. This random permutation
rule results apparently in more challenging problems than those obtained
using other permutation rules, such as a 2 successive random interchanges of
node pairs.

GRID-SQ. This code generates a two-dimensional square grid prob-
lem. The source is connected to all nodes of the bottom row of the grid with
arcs of very large capacity. All nodes of the top row of the grid are connected
to the sink with arcs of very large capacity. Also, each node of the grid is
connected to all its immediate neighbors with an arc of capacity randomly
chosen from the integer range [1,106].

NETGEN. This is a standard generator described in Ref. 26, which
generates random graphs with given number of nodes and arcs, and with
capacities chosen from a given range. A tree of arcs of high capacity, whose
value is specified by the user, connects all nodes.

Codes Used for Comparison. Extensive computational studies (e.g.,
Refs. 16, 17, 19, 20) have established that preflow-push algorithms are the
fastest of the presently available max-flow methods. We have accordingly
compared our auction code with two state-of-the-art preflow-push codes.

92 JOTA: VOL. 87, NO. 1, OCTOBER 1995

These are:

PFP-AO. This is a FORTRAN code due to Ahuja and Orlin. It is an
efficient implementation of the preflow-push method with the highest price
selection rule and the gap scheme for saturated cut detection.

PFP-DM. This is a FORTRAN code due to Derigs and Meier (Ref.
16). It is a preflow-push method that is similar to PFP-AO in that it also
uses the highest price selection rule and the gap scheme for saturated cut
detection. However, the implementations of PFP-AO and PFP-DM are
somewhat different.

AUCTION-MF, PFP-AO, and PFP-DM were tested under identical
conditions on two machines:

(a) A Macintosh Ilci with 32 Megabytes of memory using the Absoft
FORTRAN compiler.

(b) A DECStation 5025 with 128 Megabytes of memory using the
FORTRAN compiler under UNIX.

We have also performed some experimentation on the NeXTStation
68040 running UNIX with the code of Anderson and Setubal (Ref. 19).
This is an efficient implementation in C of the preflow-push method that
uses a FIFO node selection rule, periodic breadth-first tests for a saturated
cut, and global repricing. The results of this experimentation were consistent
with the results given here for the other two preflow-push codes, and can be
found in an earlier report (Ref. 1). However, in our experience, comparisons
between C and FORTRAN codes tend to be highly unreliable because of
the compiler differences, and for this reason we will not present these results. 4

Summary of Results. We have found that the auction code outper-
forms substantially the preflow-push codes for all problem classes tested.
The closest competitor depends on the problem class. Our algorithm is faster
than the closest competitor by at least two to three times for all problem
classes. Significantly, it consistently outperforms (sometimes by an order of
magnitude) the Ahuja and Orlin code and the Derigs and Meier code, which
use a similar node selection rule (highest price) and the same termination
scheme (gap detection).

The comparison of the computation times is corroborated by other
statistics, which are independent of the computer and the compiler used. In

4A line-by-line translation into C of RELAXTII, the FORTR AN code given in Ref. 27 that
implements the relaxation method for minimum cost flow, runs consistently about three times
faster than the FO RTRAN version on a UNIX workstation (Ref. 28).

JOTA: VOL. 87, NO. 1, OCTOBER 1995 93

particular, we have recorded for each code the average number of flow
changes per arc and the average number of price changes per node. Gen-
erally, the auction algorithm performs substantially (and often dramatically)
fewer price and arc flow changes relative to the preflow-push algorithms.
Note, however, that the ratios between the number of flow and price changes
do not faithfully correspond to the ratios of run times because the different
codes involve different data structures and varying amounts of overhead.

The results are given in four tables. In these tables, an asterisk indicates
that the corresponding problem was not run due to limited memory of the
corresponding machine. The top entries in each box give the running time
in seconds on a MacIIci and the running time in seconds on a DECStation
5025. The bottom entries in each box give the average number of flow
changes per arc and the average number of price changes per node.

Tables 1 and 2 compare AUCTION-MF, PFP-AO, and PFP-DM on
RMFGEN problems.

Table 3 compares AUCTION-MF, PFP-AO, and PFO-DM on GRID-
SQ problems.

Table 4 compares AUCTION-MF, PFP-AO, and PFP-DM on
NETGEN problems.

Table 1. Experiments with constant side RMFGEN problems. Each
entry corresponds to an average over 5 problems.

Side Height AUCTION-MF PFP-AO PFP-DM

15 40 12 .57 /2 .659 78.09/13.04 68.27/9.720
1.375/6.455 7.292/29.40 6.340/27.46

15 80 19 .49 /4 .286 199.5/36.22 179.7/25.55
1.119/4.303 8.944/39.35 7.914/36.62

15 120 26 .18 /5 .815 283.7/49.67 262.1/36.88
1.023/3.469 10.96/50.83 7.641/35.62

15 160 33 .55 /7 .623 435.4/77.87 369.8/52.18
0.993/3.280 9.570/44.20 7.998/37.82

15 200 41.24/9.442 493.4/95.36 378.3/53.34
0.985/3.198 11.00/52.04 6.550/30.85

15 240 45 .89 /10 .61 611.1/109.8 483.5/68.15
0.934/2.7480 9.942/46.84 6.920/33.00

15 280 */12.27 */161.2 */85.82
0.928/2.679 11.66/55.85 7.427/35.46

15 320 */13.96 */162.9 */87.54
0.912/2.552 10.57/60.67 6.650/31.70

15 360 */15.28 */177.1 */94.98
0.890/2.411 10.07/48.19 6.343/30.34

94

Table 2.

JOTA: VOL. 87, NO. 1, OCTOBER 1995

Experiments with constant height RMFGEN problems.
Each entry corresponds to an average over 5 problems.

Side Height AUCTION-MF PFP-AO PFP-DM

10 40 3 . 8 3 7 / 0 . 6 9 4 16.15/2.227 14.94/2.335
1.050/3.693 4.383/16.24 3.505/13.41

15 40 1 2 . 5 7 / 2 . 6 5 9 78.09/13.04 68.27/9.720
1.375/6.455 7.292/29.40 6.340/27.46

20 40 3 0 . 3 8 / 6 . 7 5 8 173.7/30.92 190.2/28.02
1.828/9.250 10.10/42.91 9.617/42.86

25 40 5 3 . 0 7 / 1 2 . 4 4 340.7/61.92 325.7/49.66
1.971/10.59 12.04/52.80 10.21/46.83

30 40 117 .1 / 26 .35 667.4/125.8 693.9/106.8
3.117/16.89 15.00/69.76 14.37/69.70

35 40 162 .3 / 35 .88 989.4/184.8 928.2/146.5
2.977/16.29 15.94/73.56 14.20/67.99

40 40 2 1 8 . 8 / 5 0 . 1 8 1526./280.8 1377./214.0
3.027/17.61 18.24/85.55 15.66/75.72

Table 3. Experiments with GRID-SQ problems. Each entry Corre-
sponds to an average over 5 problems.

Side Height AUCTION-MF PFP-AO PFP-DM

100 100 12 .78 /2 .111 26.79/3.438 27.94/4.109
2.095/7.421 5.289/13.91 4.222/11.06

150 150 31 .58 /5 .670 68.66/8.633 72.80/10.33
2.210/8.313 5.493/14.90 4.547/12.19

200 200 79 .75 /14 .98 214.6/31.07 223.1/30.59
2.930/12.65 9.246/26.27 7.928/22.66

250 250 121.1 /23 .41 406.5/57.50 340.5/48.86
2.694/10.97 10.34/30.09 7.606/22.03

300 300 192 .7 /40 .65 674.2/123.7 626.2/89.60
3.105/13.59 13.10/38.76 9.526/27.99

350 350 */63.40 */148.9 */143.1
3.482/15.77 12.43/36.74 10.89/32.15

400 400 */92.14 */259.9 */209.6
3.740/17.29 15.97/47.78 12.12/36.19

450 450 */129.9 */390.2 */310.9
4.019/18.97 17.85/59.04 13.78/41.61

500 500 */189.0 */665.0 */461.8
4.664/22.52 22.71/69.45 16.68/51.13

Table 4.

JOTA: VOL. 87, NO. 1, OCTOBER 1995

Experiments with N E T G E N problems. The total supply
used was 106, and the capacity range was used [1, 1000].

95

Nodes Arcs AUCTION-MF PFP-AO PFP-DM

24.35 72.90 67.05
1000 10000

21.05/101.0 42.34/197.6 21.59/132.8

84.17 170.6 219.5
2000 20000

32.46/163.3 38.89/210.9 29.84/201.1

121.3 263.7 320.0
3000 30000

27.28/154.6 35.31/204.5 28.04/203.1

159.2 371.3 443.4
4000 40000

25.46/146.4 33.43/205.4 26.83/206.1

202.7 482.2 569.7
5000 50000

24.31/146.3 32.05/207.8 25.87/209.2

Figures 3-5 show the factor of superiority of AUCTION-MF over
the preflow-push codes on RMFGEN and GRID-SQ problems in terms of
computation time. The figures indicate that this factor tends to increase with
problem dimension, particularly for the square grid problems.

6. Conclusions

There are two main methodological conclusions of this paper:

(i) Using shortest path augmentations within the Ford-Fulkerson
framework is not essential for good worst-case or practical performance.

15

S p e e d u p "

Fac to r

10

- - PFP-AO/UNIX

-- -- PFP-DM/UNIX

H PFP-AO/Mac

PFP-DM/Mac

. . . . i i i

100 2 0 0 300 4 0 0
H e i g h t

Fig. 3. Speedup factor of AUCTION-MF over the PFP-AO and PFP-DM codes for
RMFGEN problems with constant side = 15. Compare with Table 1.

96 JOTA: VOL. 87, NO. 1, OCTOBER 1995

Speedup
Factor 6

: = PFP-AO/UNIX

5 PFP-DM/UNIX

4 H PFP-AO/Mac

PFP-DM/Mac

Fig. 4.

3 I 2

1

0
. . . . I i

10 20 30 Side 40

Speedup factor of AUCTION-MF over the preflow-push codes for RMFGEN prob-
lems with constant height =40. Compare with Table 2.

Instead, it is important to transfer efficiently useful information from one
augmenting path construction to the next. The prices of the auction algo-
rithm provide an effective mechanism for such a transfer.

(ii) The augmenting path approach, when properly implemented
through the use of a path construction algorithm based on price adjustment
and auction ideas, can substantially outperform the preflow-push approach.
This contradicts the current mainstream thinking in the field, which follow-
ing extensive recent numerical experimentation, considers preflow-push
methods as superior to augmenting path methods.

4
Speedup
Factor

3.

2,

Fig. 5.

: z PFP-AO/UNIX

. . PFP-DM/UNIX

---- ---- PFP-AO/Mar

PFP-DM/Mac

i i i i

00 200 300 400 Slde 800

Speedup fac to r o f A U C T] O N - M F over the p re f low-push codes f o r G R I D - S Q p r o b -

lems. Compare with Table 3.

JOTA: VOL. 87, NO. 1, OCTOBER 1995 97

The new max-flow algorithm given in this paper is supported by strong
computational evidence. It is substantially faster than preflow-push methods
on standard randomly generated problems, and tends to perform far fewer
flow changes and price changes. What is happening here is that, in our
method, arc flows change only after the node prices have risen to the proper
level for an augmentation, whereas in preflow-push methods flows change
simultaneously, and often unnecessarily, with the prices. Deferring flow
changes until an augmentation can be performed has an additional side
effect: it does not disturb the reduced graph unnecessarily, thereby confusing
the search for an augmenting path. This, together with some additional
special features of our method, such as performing extensions along arcs of
Cand(i) which are not strictly downhill, explains the experimentally observed
large reduction in the number of price changes over preflow-push methods.
It is generally thought that the larger flow increments resulting from the use
of single-arc versus multiple-arc paths in preflow-push methods is a signifi-
cant advantage. However, it appears that the use of greedy augmentations
nullifies to a large extent this perceived advantage. Furthermore, the inferior-
ity of the worst-case running time of our method relative to the one of
the best preflow-push methods is of little practical significance, because the
practical computational bottleneck is the work for price increases, which is
comparable [O(NA)] for both methods.

The ideas of the present paper admit extension to minimum cost flow
problems along the lines of the auction/sequential shortest path algorithm
developed in Ref. 22. One may simply substitute the auction algorithm for
constructing shortest augmenting paths of Ref. 22 with the simpler path
construction algorithms used here. Results using this approach will be
reported elsewhere.

7. Appendix: Relation of the Path Construction Algorithm and the Auction
Algorithm

Assuming that the reader is familiar with the auction algorithm for the
assignment problem, as given, for example, in Ref. 5 or Ref. 29, we will
draw the connection of the auction algorithm with the first path construction
algorithm of Section 2. To this end, we note that the path construction
problem can be converted into a pure, unweighted matching problem as
shown in Fig. 6. In particular, each arc (i,j) of the reduced graph (~, with
i~nl, N, is replaced by an object labeled (i,j). Each node i~N is replaced
by R(i) persons, where R(i) is the number of arcs of f9 that are incoming
to node i; for example, in Fig. 6, node 2 is replaced by the two persons 2
and 2'. Finally, there is one person corresponding to node nl and one object

98 JOTA: VOL. 87, NO. 1, OCTOBER 1995

PERSONS OBJECTS

11 1

1
~ta

,

1

Reduced Graph Equivalent Unweighted Matching Problem
Fig. 6. Converting the augmenting path construction problem into an equivalent problem of

(unweighted) matching of "persons" to "objects."

corresponding to node N. For every arc (i,j) of fg, with i#N, there are
R(i) +R(j) incoming arcs from the persons corresponding to i and j. For
every arc (i, N) of f~, there are R(i) incoming arcs from the persons corre-
sponding to i.

Each path that starts at n~ and ends at N can be associated with a
feasible matching. For example, in Fig. 6, the path (nl, 3, 2, N) corresponds
to the feasible matching

(na, (nl, 3)), (3, (3, 2)), (2, (2, N)), (2', (nl, 2)),

or the same pairs with the roles of 2 and 2' interchanged. Conversely, given
a feasible matching, one can construct an alternating path (a sequence of
alternatively assigned and unassigned pairs) starting at n~ and ending at N,
which defines a path from nl to N. For example, in Fig. 6, the feasible
matching comprising the pairs

(hi, (n,, 3)), (3, (3, N)), (2, (nl, 2)), (2', (3, 2))

corresponds to the path (nl, 3, N).
A set of valid prices for the nodes of f# defines the prices of the objects

of the matching problem by

ri/=p(i), V(i,j) e~r

rN=p(N).

JOTA: VOL. 87, NO. 1, OCTOBER 1995 99

These prices together with the incomplete matching that pairs a person
corresponding to node j with some arc (i , j) incoming to j, satisfy the e-
complementary slackness condition of the auction algorithm with e = 1. In
such a matching, the only unassigned person is the one corresponding to
node nl, and the only unassigned object is the one corresponding to node
N. If we apply the auction algorithm with e = 1, starting from this matching-
price pair, it can be verified that the sequence of generated prices and match-
ings correspond to the sequence of prices and paths generated by the first
path construction algorithm of Section 2.

References

1. BERTSEKAS, D. P., An Auction Algorithm for the Max-Flow Problem, Report
LIDS-P-2193, Laboratory for Information and Decision Systems, Massachusetts
Institute of Technology, Cambridge, Massachusetts, 1993.

2. FORD, L. R., JR., and FULKERSON, D. R., Maximal Flow through a Network,
Canadian Journal of Mathematics, Vol. 8, pp. 339-404, 1956.

3. FORD, L. R., JR., and FULKERSON, D. R., Flows in Networks, Princeton Univer-
sity Press, Princeton, New Jersey, 1962.

4. PAPADIMITRIOU, C. H., and STEIGL~TZ, K., Combinatorial Optimization: Algo-
rithms and Complexity, Prentice-Hall, Englewood Cliffs, New Jersey, 1982.

5. BERTSEKAS, D. P., Linear Network Optimization: Algorithms and Codes, MIT
Press, Cambridge, Massachusetts, 1991.

6. EDMONDS, J., and KARP, R. M., Theoretical Improvements in Algorithmic Effi-
ciency for Network Flow Problems, Journal of the ACM, Vol. 19, pp. 248-264,
1972.

7. DINIC, E. A., Algorithm for Solution of a Problem of Maximum Flow in Networks
with Power Estimation, Soviet Mathematics Doklady, Vol. 11, pp. 1277-1280,
1970.

8. BERTSEI(AS, D. P., A Distributed Algorithm for the Assignment Problem, Working
Paper, Laboratory for Information and Decision Systems, Massachusetts Insti-
tute of Technology, Cambridge, Massachusetts, 1979.

9. KARZANOV, A. V., Determining the Maximal Flow in a Network with the Method
of Preflows, Soviet Mathematics Doklady, Vol. 15, pp. 434-437, 1974.

10. SHILOACH, Y., and VISHKIN, U., An O(n e log n) Parallel Max-Flow Algorithm,
Journal of Algorithms, Vol. 3, pp. 128-146, 1982.

11. GOLDBERO, A. V., A New Max-Flow Algorithm, Technical Memorandum MIT/
LCS/TM-291, Laboratory for Computer Science, Massachusetts Institute of
Technology, Cambridge, Massachusetts, 1985.

12. GOLDBERG, A. V., and TARJAN, R. E., A New Approach to the Maximum Flow
Problem, Proceedings of the 18th ACM STOC, pp. 136-146, 1986.

13. AHUJA, R. K., and ORLIN, J. B., A Fast andSimple Algorithm for the Maximum
Flow Problem, Operations Research, Vol. 37, pp. 748-759, 1989.

100 JOTA: VOL. 87, NO. 1, OCTOBER 1995

14. AHUJA, R. K., MAGNANTI, T. L., and ORLIN, J. B., Network Flows, Handbooks
in Operations Research and Management Science, Vol. 1 ; Optimization, Edited
by G. L. Nemhauser, A. H. G. Rinnooy-Han, and M. J. Todd, North Holland,
Amsterdam, Holland, pp. 211-369, 1989.

15. CHERIYAN, J., and MAHESHWARI, S. N., Analysis of Preflow-Push Algorithms
for Maximum Network Flow, SIAM Journal on Computing, Vol. 18, pp. 1057-
1086, 1989.

16. DERIGS, U., and MEIER, W., Implementing Goldberg's Max-Flow Algorithm: A
Computational Investigation, Zeitschrift fiir Operations Research, Vol. 33,
pp. 383-403, 1989.

17. MAZZONI, G., PALLOTINO, S., and SCUTELLA', M. G., The Maximum Flow
Problem: A Max-Preflow Approach, European Journal of Operational Research,
Vol. 53, pp. 257-278, 1991.

18. BERTSEKAS, D. P., Mathematical Equivalence of the Auction Algorithm for
Assignment and the E-Relaxation (Preflow-Push) Method, Large-Scale Optimiza-
tion: State of the Art, Edited by W. W. Hager, D. W. Hearn, and P. M. Pardalos,
Kluwer Academic Publishers, Amsterdam, Holland, pp. 26-44, 1994.

19. ANDERSON, R. J., and SETUBAL, J. C., Goldberg's Algorithm for Maximum
Flow in Perspective: A Computational Study, Algorithms for Network Flows and
Matching, Edited by D. S. Johnson and C. C. McGeoch, American Mathemati-
cal Society, Providence, Rhode Island, pp. 1-18, 1993.

20. NGUYEN, Q. C., and VENKATESWARAN, V., Implementations of the Goldberg-
Tarjan Maximum Flow Algorithm, Algorithms for Network Flows and Matching,
Edited by D. S. Johnson and C. C. McGeoch, American Mathematical Society,
Providence, Rhode Island, pp. 19-41, 1993.

21. BERTSEKAS, D. P., The Auction Algorithm for Shortest Paths, SIAM Journal on
Optimization, Vol. 1, pp. 425-447, 1991.

22. BERTSEKAS, D. P., An Auction~Sequential Shortest Path Algorithm for the Min
Cost Flow Problem, Report LIDS-P-2146, Laboratory for Information and Deci-
sion Systems, Massachusetts Institute of Technology, Cambridge, Massachu-
setts, 1992.

23. CASTANON, D. A., Reverse Auction Algorithms for Assignment Problems, Algo-
rithms for Network Flows and Matching, Edited by D. S. Johnson and C. C.
McGeoch, American Mathematical Society, Providence, Rhode Island, pp. 407-
429, 1993.

24. BERTSEKAS, D. P., PALLOTTINO, S., and SCUTELLA', M. G., Polynomial Auction
Algorithms for Shortest Paths, Report LIDS-P-2107, Laboratory for Information
and Decision Systems, Massachusetts Institute of Technology, Cambridge, Mas-
sachusetts, 1992.

25. GOLDFARB, D., and GRIGORIADIS, M. D., A Computational Comparison of the
Dinic and Network Simplex Methods for Maximum Flow, Fortran Codes for
Network Optimization, Edited by B. Simeone et al., Annals of Operations
Research, Vol. 13, pp. 83-123, 1988.

26. KLINOMAN, D., NAPIER~ A., and STUTZ, J., NETGEN: A Program for Generat-
ing Large-Scale (Un) Capacitated Assignment, Transportation, and Minimum Cost
Flow Network Problems, Management Science, Vol. 20, pp. 814-822, 1974.

JOTA: VOL. 87, NO. 1, OCTOBER 1995 101

27. BERTSEKAS, D. P., and TSENG, P., RELAX: A Computer Code for Minimum Cost
Network Flow Problems, Fortran Codes for Network Optimization, Edited by
B. Simeone et al., Annals of Operations Research, Vol. 13, pp. 127-190, 1988.

28. CAPITANI~ G., CATONI, O., and GALLO, G., Private Demonstration and Com-
munication, 1994.

29. BERTSEKAS, D. P., Auction Algorithms for Network Flow Problems: A Tutorial
Introduction, Computational Optimization and Applications, Vol. l, pp. 7-66,
1992.

