
Three Interrelated Research Directions Aggregation and Seminorm Projected Equations Simulation-Based Solution

Some New Directions in
Dynamic Programming with Cost Function Approximation

Dimitri P. Bertsekas
joint work with

Huizhen Yu

Department of Electrical Engineering and Computer Science
Laboratory for Information and Decision Systems

Massachusetts Institute of Technology

IEEE Symposium on ADPRL
December 2014



Three Interrelated Research Directions Aggregation and Seminorm Projected Equations Simulation-Based Solution

Outline

1 Three Interrelated Research Directions
Seminorm Projections (Unifying Projected Equation and Aggregation
Approaches)
Generalized Bellman Equations (Multistep with State-Dependent
Weights)
Free Form Sampling (A Flexible Alternative to Single Long Trajectory
Simulation)

2 Aggregation and Seminorm Projected Equations

3 Simulation-Based Solution
Iterative and Matrix Inversion Methods
Free-Form Sampling
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Bellman Equations and their Fixed Points

Bellman equation for a policy µ of an n-state α-discounted MDP

J = TµJ

where

(TµJ)(i) def
=

n∑
j=1

pij
(
µ(i)

)(
g(i, µ(i), j) + αJ(j)

)
, i = 1, . . . , n

pij (µ(i)): transition probs, g(i, µ(i), j): cost per stage for µ

Bellman equation for the optimal cost function of an n-state MDP

J = TJ

where

(TJ)(i) def
= min

u∈U(i)

n∑
j=1

pij (u)
(
g(i, u, j) + αJ(j)

)
, i = 1, . . . , n

pij (u): transition probs, g(i, u, j): cost per stage for a control u
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Subspace Approximation J ≈ Φr (Using a Matrix of Basis Functions Φ)

Methods with subspace approximation

Projected equation (Galerkin) approach Φr = ΠTµ(Φr) (Π is projection
with respect to some weighted Euclidean norm)

Aggregation approach Φr = ΦDTµ(Φr) (Φ and D are matrices whose
rows are probability distributions)

Bellman error method (Φr = ΠT̂µ(Φr), for a modified mapping T̂µ that
has the same fixed points as Tµ)

First direction of research aims to connect all these

All of these can be written as Φr = ΠTµ(Φr), where Π is a seminorm
weighted Euclidean projection
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Another Direction of Research: Generalized Bellman Equations

Ordinary Bellman equation for a policy µ of an n-state MDP

J = TµJ

Generalized Bellman equation

J = T (w)
µ J

where w is a matrix of weights wi`:

(T (w)
µ J)(i) def

=
∞∑
`=1

wi`(T `µJ)(i), wi` ≥ 0,
∞∑
`=1

wi` = 1 (for each i = 1, . . . , n)

Both can be solved for Jµ, the cost vector of policy µ.

Two differences of generalized vs ordinary Bellman equations

Multistep mappings (an old idea, e.g., TD(λ))

State dependent weights (a new idea)
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Special Cases

Classical TD(λ) mapping, λ ∈ [0, 1)

T (λ)J = (1− λ)
∞∑
`=1

λ`−1T `J, wi` = (1− λ)λ`−1

A generalization: State-dependent λi ∈ [0, 1)

(T (w)J)(i) = (1− λi )
∞∑
`=1

λ`−1
i (T `J)(i), wi` = (1− λi )λ

`−1
i

Why state dependent weights?

They may allow exploitation of prior knowledge for better approximation
(emphasize important states)

They may facilitate simulation (for special cases such as aggregation)
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A Third Direction for Research: Flexible/Free-Form Simulation

Classical TD Sampling

T (λ)J = (1− λ)
∞∑
`=1

λ`−1T `J

Simulate one single infinitely long trajectory, and move the starting state
to generate multiple (infinitely long) trajectories

This is well-matched to the structure of TD

Does not work well in the aggregation context, where there are both
regular and aggregate transitions (powers T `J involve ` regular
transitions but no aggregate transitions)

TD sampling matches well with regular transitions but not with aggregate
transitions

Free-form sampling

Generates many short trajectories (length ` < − > term T `J)

Arbitrary restart distribution

Connects well with state-dependent weights (and allows restarting at an
aggregate state in the case of aggregation)
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Generalized Bellman Eqs with Seminorm Projection: Φr = ΠT (w)(Φr)

Φ is an n × s matrix of features, defining subspace S = {Φr | r ∈ <s},
r ∈ <s is a vector of weights.
Π is projection onto S with respect to a weighted Euclidean seminorm
‖J‖2

ξ =
∑n

i=1 ξi
(
J(i)

)2, where ξ = (ξ1, . . . , ξn), with ξi≥ 0.
Bias-variance tradeoff applies to both norm and seminorm cases.

Example: TD(λ) T (λ)J = (1− λ)
∞∑
`=1

λ`−1T `J, λ ∈ [0, 1)

Subspace S = {Φr | r ∈ "s}

Jµ

Simulation errorΠJµ

Bias

λ = 0

λ = 1

Solution of projected equation

Simulation error

Φr = ΠT (λ)(Φr)
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Aggregation Framework

pij(u)

dxi φjy

ji

x y

Original
System States

Aggregate States

Disaggregation
Probabilities

Aggregation
Probabilities

Matrix D Matrix Φ

Introduce s aggregate states, aggregation and disaggregation probs
A composite system with both regular and aggregate states
Two single step Bellman equations

r = DT (Φr), Φr = ΦDT (Φr)

r is the cost vector of the aggregate states, Φr the cost vector of the
regular states
Natural multistep versions for bias-variance tradeoff:

Φr = ΦDT (λ)(Φr) or Φr = ΦDT (w)(Φr)
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Two Common Types of Aggregation

Hard aggregation: The aggregate states are disjoint subsets Sx of states
with ∪x Sx = {1, . . . , n}, and dxi > 0 only if i ∈ Sx , φix = 1 if i ∈ Sx .

1 2 3

4 5 6

7 8 9

x1 x2

x3 x4

Φ =




1 0 0 0
1 0 0 0
0 1 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1




Aggregation with discretization grid of representative states: Each
aggregate state is a single original system state x ∈ {1, . . . , n}, and
dxx = 1.

x j1 j2 j3 y1 y2 y3

λ |β| (1 − λ)|β| l(1 − λ)β| λβ O A B C |1 − λβ|
Asynchronous Initial state x Initial state f(x, u,w) Time
Vk: k-stages optimal cost vector with terminal cost function J

TJ J0

Vk+1: (k + 1)-stages optimal cost vector with terminal cost function
J

Direct Method: Projection of cost vector Jµ ΠJµ n t pnn(u) pin(u)
pni(u) pjn(u) pnj(u)

Indirect Method: Solving a projected form of Bellman’s equation

Projection on S. Solution of projected equation Φr = ΠT
(λ)
µ (Φr)

Tµ(Φr) Φr = ΠT
(λ)
µ (Φr)

ΠJµ n t pnn(u) pin(u) pni(u) pjn(u) pnj(u)

J TJ ΠTJ J̄ T J̄ ΠT J̄

Value Iterate T (Φrk) = g + αPΦrk Projection on S Φrk Φrk+1

Solution of J̃µ = ΠTµ(J̃µ) λ = 0 λ = 1 0 < λ < 1

Route to Queue 2
hλ(n) λ∗ λµ λ hµ,λ(n) = (λµ − λ)Nµ(n)
n − 1 −(n − 1) Cost = 1 Cost = 2 u = 2 Cost = -10 µ∗(i + 1) µ µ p

1 0 νj(u), pjk(u) νk(u), pki(u) J∗(p) µ1 µ2

Simulation error Solution of J̃µ = WTµ(J̃µ) Bias ΠJµ Slope J̃µ =
Φrµ

Transition diagram and costs under policy {µ�, µ�, . . .} M q(µ)

c + E
z

�
J∗

�
pf0(z)

pf0(z) + (1 − p)f1(z)

��

Cost = 0 Cost = −1

νi(u)pij(u)
ν

νj(u)pjk(u)
ν

νk(u)pki(u)
ν

J(2) = g(2, u2) + αp21(u2)J(1) + αp22(u2)J(2)

J(2) = g(2, u1) + αp21(u1)J(1) + αp22(u1)J(2)
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A Generalization: Aggregation with Representative Features
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The aggregate states are disjoint subsets Sx of “similar" states

Common case: Sx is a group of states with “similar features"

Hard aggregation is a special case: ∪x Sx = {1, . . . , n}
Aggregation with representative states is a special case: Sx consists of
just one state
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Connection with Seminorm Projection

Consider the aggregation equations

r = DT (w)(Φr), (low-dimensional) Φr = ΦDT (w)(Φr), (high-dimensional)

Compare them with projected equation case Φr = ΠT (w)(Φr)

Assume that the approximation is piecewise constant with interpolation:
constant within the aggregate states, interpolated for the other states, i.e., the
disaggregation and aggregation probs satisfy

φix = 1 ∀ i ∈ Sx , dxi > 0 iff i ∈ Sx

Then ΦD is a seminorm projection with

ξi = dxi/s, ∀ i ∈ Sx

This is true for the preceding aggregation schemes. Moreover, the multistep
equation Φr = ΦDT (w)(Φr) is a sup-norm contraction if T is.
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Sampling for Aggregation

The classic form of TD sampling does not work for multistep aggregation.

Reason: In aggregation we need to simulate multistep cost samples
involving both regular and aggregate states. This cannot be easily done
with classical TD sampling.

So we introduce a more general (free-form) sampling.

Generate many short trajectories.

In aggregation, the start and end states of each trajectory must be an
aggregate state.

A side benefit: A lot of flexibility for “exploration".
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An Example: Projected Value Iteration for Equation Φr = ΠT (w)(Φr)

Exact form of projected value iteration

Φrk+1 = ΠT (w)(Φrk )

or

rk+1 = arg min
r

n∑
i=1

ξi

(
φ(i)′r −

∞∑
`=1

wi`
(
T `(Φrk )

)
(i)

)2

, (φ(i)′: i th row of Φ)

We view the expression minimized as an expected value that can be
simulated with Markov chain trajectories:

ξi will be the “frequency" of i as start state of the trajectories

wi` will be the “frequency" of trajectory length ` when i is the start state
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Simulation-Based Implementation of Projected Value Iteration
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Modern view: Post 1990s
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1

Approximation using trajectories t = 1, . . . ,m

rk+1 = arg min
r

m∑
t=1

(
φ(it )′r − Ct (rk )

)2 (it : start state, Ct (rk ): sample cost)

Since freq. of start state i → ξi , freq. of start-state/length (i, `)→ ξiwi`

Opt. condition for simulation-based least squares

converges to

Opt. condition for exact least squares
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Matrix Inversion Method (Extension of LSTD(λ))
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1

Find r̂ such that

r̂ = arg min
r

m∑
t=1

(
φ(it )′r − Ct (r̂)

)2

This is a linear system of equations (the equivalent optimality condition).
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Concluding Remarks

Extension of cost function approximation methodology in DP via three
interlocking ideas:

Seminorm projections.
Generalized weighted Bellman equations.
Free-form simulation.

The approximation framework is general enough to include both
multistep projected equations and aggregation (and other methods).
Some of the highlights:

Connection between projected equations and aggregation equations.
Multistep aggregation methods of the TD(λ) type.
Use of a variety of sampling methods.
Flexible treatment of the bias-variance tradeoff.

The methodology extends to the much broader field of Galerkin
approximation for solving general linear equations.
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