
MATHEMATICS OF OPERATIONS RESEARCH

Vol. 37, No. 1, February 2012, pp. 66–94
ISSN 0364-765X (print) � ISSN 1526-5471 (online)

http://dx.doi.org/10.1287/moor.1110.0532
© 2012 INFORMS

Q-Learning and Enhanced Policy Iteration in
Discounted Dynamic Programming

Dimitri P. Bertsekas, Huizhen Yu
Laboratory for Information and Decision Systems, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

{dimitrib@mit.edu, janey_yu@mit.edu}

We consider the classical finite-state discounted Markovian decision problem, and we introduce a new policy iteration-like
algorithm for finding the optimal state costs or Q-factors. The main difference is in the policy evaluation phase: instead
of solving a linear system of equations, our algorithm requires solving an optimal stopping problem. The solution of this
problem may be inexact, with a finite number of value iterations, in the spirit of modified policy iteration. The stopping
problem structure is incorporated into the standard Q-learning algorithm to obtain a new method that is intermediate between
policy iteration and Q-learning/value iteration. Thanks to its special contraction properties, our method overcomes some of the
traditional convergence difficulties of modified policy iteration and admits asynchronous deterministic and stochastic iterative
implementations, with lower overhead and/or more reliable convergence over existing Q-learning schemes. Furthermore, for
large-scale problems, where linear basis function approximations and simulation-based temporal difference implementations
are used, our algorithm addresses effectively the inherent difficulties of approximate policy iteration due to inadequate
exploration of the state and control spaces.

Key words : Markov decision processes; Q-learning; policy iteration; value iteration; stochastic approximation; dynamic
programming; reinforcement learning

MSC2000 subject classification : Primary: 90C40, 93E20, 90C39; secondary: 68W15, 62L20
OR/MS subject classification : Primary: dynamic programming/optimal control, analysis of algorithms; secondary: Markov,

finite state
History : Received October 14, 2010; revised May 9, 2011. Published online in Articles in Advance January 13, 2012.

1. Introduction. We consider the discounted infinite horizon dynamic programming (DP) problem with n
states, denoted i = 11 : : : 1 n. State transitions 4i1 j5 under control u occur at discrete times according to transition
probabilities pij4u5 and generate a cost �kg4i1 u1 j5 at time k, where � ∈ 40115 is a discount factor. We consider
deterministic stationary policies � such that for each i, �4i5 is a control that belongs to a constraint set U4i5.
We denote by J�4i5 the total discounted expected cost of � over an infinite number of stages starting from state i,
and by J ∗4i5 the minimal value of J�4i5 over all �. We denote by Q∗4i1 u5 the optimal Q-factor corresponding
to a state-control pair 4i1 u5. It represents the optimal expected cost starting from state i, using control u at the
first stage, and subsequently using an optimal policy. Optimal Q-factors and costs are related by the equation

J ∗4i5= min
u∈U4i5

Q∗4i1 u51 ∀ i = 11 : : : 1 n0 (1.1)

Similarly, we denote by Q�4i1 u5 the Q-factors of a policy � corresponding to initial state-control pairs 4i1 u5,
(that is, the expected cost of starting with state i and control u and subsequently using policy �); they yield the
policy costs J�4i5 via

J�4i5=Q�4i1�4i551 ∀ i = 11 : : : 1 n0 (1.2)

We denote by J�, J ∗, Q�, and Q∗, the vectors with components J�4i5, J
∗4i5, i = 11 : : : 1 n, and Q�4i1 u5, Q

∗4i1 u5,
i = 11 : : : 1 n, u ∈U4i5, respectively. This is the standard discounted Markovian decision problem (MDP) context,
discussed in many sources (e.g., DP books such as those by Bertsekas [6] and Puterman [35], and approximate
DP books such as those by Bertsekas and Tsitsiklis [11], Sutton and Barto [39], Cao [22], and Powell [33]).

Value iteration (VI) and policy iteration (PI) are fundamental algorithms for solving the MDP, and can be
applied both in cost space to find J ∗ and in Q-factor space to find Q∗. Mathematically, the algorithms produce
identical results, whether executed in cost space or Q-factor space, but the use of Q-factors is well suited to the
“model-free” context where the transition probabilities pij4u5 and one-stage costs g4i1 u1 j5 may not be known
explicitly, but may be computable using a simulator. In the case of Q-factors, these algorithms compute Q�

and Q∗ as the unique fixed points of the mappings F� and F , respectively, defined by

4F�Q54i1 u5=

n
∑

j=1

pij4u54g4i1 u1 j5+�Q4j1�4j5551 ∀u ∈U4i51 i = 11 : : : 1 n1 (1.3)

4FQ54i1 u5=

n
∑

j=1

pij4u5
(

g4i1 u1 j5+� min
v∈U4j5

Q4j1 v5
)

1 ∀u ∈U4i51 i = 11 : : : 1 n1 (1.4)

66

mailto:dimitrib@mit.edu
mailto:janey_yu@mit.edu

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 67

which are known to be sup-norm contractions. The VI algorithm is just the iteration Qk+1 = FQk and converges
to Q∗ starting from any initial Q0. The Q-learning algorithm of Watkins [48] is a stochastic approximation
method based on this VI algorithm (see Bertsekas and Tsitsiklis [11] and Sutton and Barto [39] for descriptions
and discussion, and Tsitsiklis [42] for a convergence analysis). The Q-factors Q� of policies � may also be
obtained with the VI algorithm Qk+1 = F�Qk or a corresponding Q-learning/stochastic approximation method.

Let us describe the kth step of PI. It starts with the current policy �k and consists of two phases: the policy
evaluation phase, which finds the fixed point Q�k

of F�k
(possibly by VI), and the policy improvement phase,

which updates �k to a new policy �k+1 via �k+14i5 = arg minu∈U4i5Q�k
4i1 u5 for all i. Intermediate between PI

and VI is modified PI (also called optimistic PI), where policy evaluation of �k is performed inexactly, using
a finite number mk of VI that aim to compute Q�k

. It starts the kth step with a pair 4�k1Qk5, it evaluates �k

approximately, using
Qk+1 = F mk

�k
Qk1 (1.5)

and it obtains a new policy �k+1 via

�k+14i5= arg min
u∈U4i5

Qk+14i1 u51 ∀ i = 11 : : : 1 n0 (1.6)

The method is described in detail in many sources (e.g., the textbooks by Puterman [35], Bertsekas [6]), and with
judicious choice of the number mk of VI, it is generally believed to be more efficient than either (exact) PI or VI.
Its convergence for a broad class of discounted problems and a synchronous implementation has been established
by Rothblum [37]. (See also the more recent work by Canbolat and Rothblum [21], which extends some of the
results of Rothblum [37].) However, when modified PI is implemented asynchronously, it has some convergence
difficulties and generally requires an assumption like F�0

Q0 ≤Q0 to maintain monotonic convergence, as shown
through counterexamples by Williams and Baird [49]. Moreover, there are no known convergent stochastic
implementations of this method that parallel the Q-learning algorithm of Watkins [48]. These difficulties are due
to an inherent lack of consistency of the method: it successively applies mappings F� that aim at different fixed
points as � is changing irregularly, so it needs some additional convergence mechanism. This is provided by the
assumption F�0

Q0 ≤Q0, which guarantees monotonic convergence (Qk ↓Q∗), much like in standard convergence
proofs of PI.

The purpose of this paper is to propose a new approach to Q-learning and modified PI. On one hand, our
algorithms involve lower overhead per iteration than ordinary Q-learning, by obviating the need for minimization
over all controls at every iteration (this is the generic advantage that modified PI has over VI). On the other
hand, our algorithms are reliable, bypass the convergence difficulties of modified PI just mentioned, and admit
asynchronous and stochastic iterative implementations with guaranteed convergence.

The novelty of our approach lies in replacing the policy evaluation phase of the classical PI method with
(possibly inexact) solution of an optimal stopping problem. This problem is defined by a stopping cost and by
a randomized policy, which are suitably adjusted at the end of each iteration. The randomized policy encodes
aspects of (or as a special case, may be equal to) the “current policy” and gives our algorithm a modified PI
character. To our knowledge, there have been no formulations similar to ours in the context of both exact PI and
simulation-based PI, although ours is mostly motivated by the latter. Also there is very little literature on PI-like
algorithms for learning Q-factors. In this connection, we note that Bhatnagar and Babu [15] have proposed Q-
learning/PI-type algorithms with lookup table representation, based on two-time-scale stochastic approximation,
and established their convergence for synchronous/partially asynchronous implementations. Their algorithms
also have low computation overhead per iteration like our algorithms. However, viewed at the slow time scale,
their algorithms are close to the standard Q-learning method and have a different basis than our algorithms.

Mathematically, our approach rests on a new idea, which is to iterate within a larger space, with a mapping that
encodes the optimal stopping structure. Instead of iterating on just Q-factors Q, like the modified PI (1.5)–(1.6),
we iterate on pairs of Q-factor and stopping cost vectors, Q and J . Instead of the set of mappings F�, we use a
set of mappings that operate on pairs 4J 1Q5, we encode the optimal stopping formulation of policy evaluation
in the Q-component mappings, and we calculate new stopping cost vectors with the J -component mappings
in a way that resembles the policy improvement operation. These mappings, to be introduced and analyzed in
§§2–4, are sup-norm contractions that have 4J ∗1Q∗5 as a common fixed point. As a result, our modified PI
and Q-learning algorithms may change arbitrarily the policies involved, while consistently aiming at the desired
fixed point 4J ∗1Q∗5. This overcomes the convergence difficulties of the modified PI (1.5)–(1.6) in a totally
asynchronous, possibly stochastic, computation environment.

In this paper, we develop our approach primarily in the context of exact DP with lookup table cost function
representation. Aside from their conceptual/analytical value in small-scale problems, our methods can be applied

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
68 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

to large-scale problems through the use of aggregation (a low-dimensional aggregate representation of a large,
possibly infinite-dimensional problem; see Jaakkola et al. [28, 29], Gordon [25], Tsitsiklis and Van Roy [44],
Baras and Borkar [2], Bertsekas [5, 8]). They can also be easily combined with function approximation to obtain
approximate DP/compact representation methods for large-scale problems, although in that context, convergence
and approximation properties of the algorithms deserve further study. Despite our emphasis on exact DP, we
devote the last two sections of this paper to cost function approximation issues. We show that our approach
may be combined with the simulation-based temporal difference (TD) method of Tsitsiklis and Van Roy [45],
which solves optimal stopping problems with compact representation, and we also show that our approach can
be used to address the difficulties due to inadequate exploration that arise in the context of PI with cost function
approximation.

This paper is organized as follows. In §2, we introduce our approach to PI-like algorithms for the case
of exact/lookup table representation of Q-factors. We explain the nature of our novel policy evaluation pro-
cedure that is based on solving an optimal stopping problem, and we derive some basic properties of our
algorithm. In §3, we discuss the deterministic asynchronous implementations of our method and prove their con-
vergence. These algorithms have improved convergence properties over the standard asynchronous PI algorithm
for Q-factors. In §4, we develop stochastic iterative methods that are intermediate between Q-learning/value
iteration and policy iteration, and we establish their convergence in a totally asynchronous computation frame-
work. In §5, we provide some computational results and a comparison with Q-learning. In §6, we consider the
possibility of approximations in our algorithms, and we derive a corresponding error bound. In §7, we discuss
the exploration issue in simulation-based/model-free learning, and we also briefly describe implementations of
policy evaluation with linear feature-based approximations and simulation-based optimal stopping algorithms,
such as the one of Tsitsiklis and Van Roy [45]. These algorithms use calculations of low dimension (equal to
the number of features) and require low overhead per iteration.

2. New policy iteration algorithms. In this section we introduce our policy iteration-like Q-learning algo-
rithm in synchronous exact form. We provide insights and motivations, and we discuss the qualitative behavior
of the algorithm. We also derive some properties of the associated mappings, which, among others, will be
important in the convergence analysis. Both the algorithm, in its prototype form, and the analysis will serve as
a basis for asynchronous and stochastic iterative algorithms to be developed in the subsequent sections.

2.1. An optimal stopping formulation for policy evaluation. The standard PI algorithm involves the map-
ping F� of Equation (1.3) for policy evaluation. The key idea of our approach is to replace F� with another
mapping FJ 1 � , which depends on a vector J , with components denoted J 4i5, and on a randomized policy � that
for each state i defines a probability distribution

8�4u � i5 � u ∈U4i59

over the feasible controls at i. It maps Q, a vector of Q-factors, to FJ 1 �Q, the vector of Q-factors with components
given by

4FJ 1 �Q54i1 u5=

n
∑

j=1

pij4u5

(

g4i1 u1 j5+�
∑

v∈U4j5

�4v � j5min8J 4j51Q4j1 v59

)

1 ∀u ∈U4i51 i = 11 : : : 1 n0 (2.1)

Comparing FJ 1 � and the classical Q-learning mapping F of Equation (1.4) (or the mapping F� of Equation (1.3)),
we see that they take into account the Q-factors of the next state j differently: F (or F�) uses the minimal Q-factor
minv∈U4j5Q4j1 v5 (the Q-factor Q4j1�4j55, respectively), while FJ 1 � uses a randomized Q-factor (according to
�4v � j5), but only up to the threshold J 4j5. Note that FJ 1 � does not require the overhead for minimization over
all controls that the Q-learning mapping F does (see Equation (1.4)).

The mapping FJ 1 � can be interpreted in terms of an optimal stopping problem defined as follows:
(a) The state space is the set of state-control pairs 4i1 u5 of the original problem.
(b) When at state 4i1 u5, if we decide to stop, we incur a stopping cost J 4i5 (independent of u).
(c) When at state 4i1 u5, if we decide not to stop, we incur a one-stage cost

∑n
j=1 pij4u5g4i1 u1 j5 and transition

to state 4j1 v5 with probability pij4u5�4v � j50
The mapping FJ 1 � is a sup-norm contraction of modulus � for all � and J , i.e.,

�FJ 1 �Q− FJ 1 �Q̃�� ≤ ��Q− Q̃��1 ∀Q1Q̃1

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 69

where �·�� denotes the sup-norm (�Q�� = max4i1 u5 �Q4i1u5�). This follows from well-known general properties
of Q-learning for optimal stopping problems (see Bertsekas and Tsitsiklis [11], Tsitsiklis and Van Roy [45]).
Hence, FJ 1 � has a unique fixed point, which we denote by QJ 1 � . We may interpret QJ 1 �4i1 u5 as a Q-factor of the
optimal stopping problem corresponding to the nonstopping action, i.e., the optimal cost-to-go starting at 4i1 u5
and conditioned on the first decision being not to stop.

There is a relation between QJ 1 � of the optimal stopping problem and the Q-factors of the original problem,
which gives insight and motivation of the mapping FJ 1 �: if J is the cost of some policy �, which can be
randomized and history dependent, then the components of QJ 1 � correspond to the Q-factors of a policy that
switches optimally from following the policy � to following the policy �. This relation is desirable in model-free
learning and motivates the use of FJ 1 � for policy evaluation in that setting, because by the nature of learning,
one has to try out policies that are not necessarily overall better than the extensively tested ones. If J represents
the present approximation of the optimal costs, then FJ 1 � has the built-in capability to take the “improving part”
of � into account in policy evaluation while avoiding the “nonimproving part” of �. A special, extreme case of
the relation is the following important property of FJ 1 � .

Lemma 2.1. For all �, we have
FJ ∗1 �Q

∗
=Q∗1 QJ ∗1 � =Q∗0

Proof. Since J ∗4i5 = minu∈U4i5Q
∗4i1 u5 (see Equation (1.1)), we have using Equations (1.4) and (2.1),

FJ ∗1 �Q
∗ = FQ∗ = Q∗ for all �, which is the first equality. The second equality then follows from the first and

the fact that FJ ∗1 � has a unique fixed point. �
The mapping FJ 1 � has another property, which will be essential in forming contraction mappings on the joint

space of 4J 1Q5 that underly our algorithms.

Proposition 2.1. For all �, J , J̃ , Q, and Q̃, we have

�FJ 1 �Q− FJ̃ 1 �Q̃�� ≤ �max8�J − J̃��1�Q− Q̃��90

In particular,
�FJ 1 �Q−Q∗

�� ≤ �max8�J − J ∗
��1 �Q−Q∗

��90 (2.2)

Proof. In the proof, let J ext denote the vector J extended to the space of state-control pairs by

J ext4i1 u5= J 4i51 ∀u ∈U4i51

and let minimization over two vectors be interpreted componentwise, i.e., let min8Q11Q29 denote the vector
with components min8Q14i1 u51Q24i1 u59.

We write
FJ 1 �Q = ḡ +�P � min8J ext1Q91 (2.3)

where ḡ is the vector with components

n
∑

j=1

pij4u5g4i1 u1 j51 ∀u ∈U4i51 i = 11 : : : 1 n1

and P � is the transition probability matrix with probabilities of transition 4i1 u5→ 4j1 v5 equal to

pij4u5�4v � j51 ∀ i ∈U4i51 v ∈U4j51 i1 j = 11 : : : 1 n0

From Equations (2.3), we obtain

�FJ 1 �Q− FĴ 1 �Q̃�� ≤ ��min8J ext1Q9− min8J̃ ext1 Q̃9��0

We also have1

�min8J ext1Q9− min8J̃ ext1 Q̃9�� ≤ max8�J − J̃��1 �Q− Q̃��90

The preceding two relations imply the first inequality in the proposition. By taking J̃ = J ∗1 Q̃ =Q∗ in the latter
inequality, and using also Lemma 2.1, we obtain the second inequality (2.2). �

1 Here we are using a nonexpansiveness property of the minimization map: for any Q1, Q2, Q̃1, Q̃2, we have �min8Q11Q29 −

min8Q̃11 Q̃29�� ≤ max8�Q1 − Q̃1��1�Q2 − Q̃2��90 To see this, write, for every 4i1 u5, Qm4i1 u5 ≤ max8�Q1 − Q̃1��1�Q2 − Q̃2��9 +

Q̃m4i1 u51m= 1121 take the minimum of both sides over m, exchange the roles of Qm and Q̃m, and take the maximum over 4i1 u5.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
70 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

Equation (2.2) shows a worst-case bound on the distance from FJ 1 �Q to Q∗, which depends on the distance
between 4J 1Q5 and 4J ∗1Q∗5 and involves a contraction factor �. As will be shown later, this property of FJ 1 �
will ensure the convergence of our algorithms regardless of the choices of policies �, and thereby allow a lot of
freedom in algorithm design. We may contrast Equation (2.2) with a similar bound corresponding to the pure
policy evaluation mapping F� of Equation (1.3),

�F�Q−Q��� ≤ ��Q−Q���1

which involves Q� rather than Q∗.

2.2. A prototype algorithm and its qualitative behavior. Here is a prototype algorithm that will serve
as the starting point for our versions of asynchronous modified PI and stochastic Q-learning algorithms in §§3
and 4. It generates a sequence of pairs 4Jk1Qk5, starting from an arbitrary pair 4J01Q05. Given 4Jk1Qk5, we select
an arbitrary randomized policy �k and an arbitrary positive integer mk, and we obtain the next pair 4Jk+11Qk+15
as follows.

Iteration k of Q-Learning/Enhanced PI Algorithm:
(1) Generate Qk+1 with mk iterations involving the mapping FJk1 �k , with �k and Jk held fixed:

Qk+1 = F
mk
Jk1 �k

Qk0 (2.4)

(2) Update Jk+1 by
Jk+14i5= min

u∈U4i5
Qk+14i1 u51 ∀ i = 11 : : : 1 n0 (2.5)

Depending on the choices of �k and mk, the algorithm’s behavior is intermediate between VI and PI. It will
be shown in the next subsection that regardless of these choices, the algorithm converges to 4J ∗1Q∗5. Thus,
there is a lot of freedom in choosing �k and mk to affect the qualitative behavior of the algorithm, which we
discuss now.

In one extreme case, the algorithm can behave as PI. If we let mk = �, then Qk+1 is the Q-factor QJk1 �k
of

the associated stopping problem (the unique fixed point of FJk1 �k , which can be obtained by solving the stopping
problem directly instead of solving it by using VI), and the algorithm takes the form

Jk+14i5= min
u∈U4i5

QJk1 �k
4i1 u51 ∀ i = 11 : : : 1 n0 (2.6)

If in addition �k is chosen to be a deterministic policy �k that attains the minimum in the equation

�k4i5= arg min
u∈U4i5

Qk4i1 u51 ∀ i = 11 : : : 1 n1 (2.7)

with �0 being some deterministic policy �0 satisfying J0 ≥ J�0
, then Q1 = QJ01�0

is also the (exact) Q-factor
vector of �0 (since J0 ≥ J�0

), so �1 as generated by Equation (2.7), is the policy generated from �0 by exact
policy improvement for the original MDP. Similarly, it can be shown by induction that for mk = � and �k =�k,
the algorithm generates the same sequence of policies as exact PI for the original MDP.

In the other extreme case, the algorithm can behave as VI. We describe two different types of choices of �k
and mk for which this can happen. In the first setting, mk = 1 for all k. Then,

Qk+14i1 u5 =

n
∑

j=1

pij4u5

(

g4i1 u1 j5+�
∑

v∈U4j5

�k4v � j5min
{

min
v′∈U4j5

Qk4j1 v
′51Qk4j1 v5

}

)

=

n
∑

j=1

pij4u5
(

g4i1 u1 j5+� min
v∈U4j5

Qk4j1 v5
)

1 ∀u ∈U4i51 i = 11 : : : 1 n1

so an iteration of the algorithm coincides with the VI algorithm in Q-factor space, Qk+1 = FQk.
The second setting is important and illuminates the qualitative dimension of the algorithm associated with

the randomized policies �k. Suppose �k is chosen to differ from the deterministic policy �k of Equation (2.7).
As mentioned in §2.1, in model-free learning, there is often a need to try policies significantly different from
the well-tested ones, for the sake of exploring the state-control space. We refer loosely to this difference, as
expressed for example by the probabilities

∑

v∈U4j51 v 6=�k4j5
�k4v � j5, as the degree of exploration embodied by �k;

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 71

the use of this term will be explained further in §7. As an illustration, let us suppose that mk = �, and �k is
chosen to assign positive probability to only nonoptimal controls, so that �k4�

∗4j5 � j5= 0 for all j and optimal
policies �∗. Then since Jk → J ∗ and QJk1 �k

= Qk+1 → Q∗ (as we will show shortly), we have, for all j and
sufficiently large k, Jk4j5 <QJk1 �k

4j1 v5 for all v with �k4v � j5 > 0, so that

Jk+14i5 = min
u∈U4i5

n
∑

j=1

pij4u5

(

g4i1 u1 j5+�
∑

v∈U4j5

�k4v � j5min8Jk4j51QJk1 �k
4j1 v59

)

= min
u∈U4i5

n
∑

j=1

pij4u54g4i1 u1 j5+�Jk4j551 ∀ i = 11 : : : 1 n0

Thus the algorithm, for sufficiently large k, reduces to synchronous Q-learning/VI for the original MDP, even
though mk = �, and produces the same results as with the choice mk = 1 (or any value of mk). The above
characteristic of the algorithm provides also an intuitive view of the guaranteed convergence of the algorithm,
to be proved shortly; that is, even with adversarial choices of the various quantities involved, the VI character
of the algorithm will ensure its convergence. This is also essentially the case with asynchronous distributed
and stochastic versions of the algorithm discussed in the subsequent sections, although the behavior of those
algorithms are more complex.

Generally between the above two extremes, the iteration (2.4)–(2.5) on one hand resembles in some ways the
classical modified PI, where policy evaluation is approximated with a finite number mk of value iterations, with
the case mk = 1 corresponding to value iteration/synchronous Q-learning, and the case mk = � corresponding
to (exact) policy iteration. On the other hand, the choice of �k also affects the qualitative character of our
algorithm, as the preceding arguments illustrate. With little exploration (approaching the extreme case where �k
is the deterministic policy (2.7)) our algorithm tends to act nearly like modified PI (or exact PI for mk = �).
With substantial exploration (approaching the extreme case where �k4�k4j5 � j5= 0 for any policy �k generated
according to Equation (2.7)) it tends to act nearly like Q-learning/VI, regardless of the value of mk. (This
reasoning also suggests that with substantial exploration it may be better to use small values of mk.)

2.3. Convergence based on contraction on joint cost and Q-factor space. The convergence analysis given
below is general and applies to any choice of the policies 8�k9 and the numbers 8mk9 of policy evaluation
iterations in the algorithm (2.4)–(2.5). It shows that the algorithm converges with a rate of convergence that is
at least geometric. First, from a repeated application of the contraction property of FJ 1 � given by Proposition 2.1,
we have the following lemma.

Lemma 2.2. For all �, J , J̃ , Q, Q̃, and m≥ 1, we have

�F m
J1�Q− F m

J̃ 1 �
Q̃�� ≤ �max8�J − J̃��1 �Q− Q̃��90

Let us now introduce a mapping corresponding to an iteration of the algorithm (2.4)–(2.5) and on the joint
space of 4J 1Q5:

G�1m4J 1Q5= 4MF m
J1�Q1 F m

J1�Q51 (2.8)

where MF m
J1�Q is the vector with components

4MF m
J1�Q54i5= min

u∈U4i5
4F m

J1�Q54i1 u51 i = 11 : : : 1 n0 (2.9)

Here and later, we denote by M the minimization operation over u ∈ U4i5, for each i, and we note that for all
Q1Q̃, we have2

�MQ−MQ̃�� ≤ �Q− Q̃��0 (2.10)

We now show the contraction property that underlies the convergence of our algorithm.

Lemma 2.3. For all � and m≥ 1, G�1m is a sup-norm contraction with modulus �, and 4J ∗1Q∗5 is its unique
fixed point.

2 For a proof, write Q4i1u5≤ �Q− Q̃�� + Q̃4i1 u51 ∀u ∈U4i51 i = 11 : : : 1 n1 take the minimum of both sides over u ∈U4i5, exchange the
roles of Q and Q̃, and take the maximum over i.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
72 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

Proof. Consider any � and m≥ 1. By Lemma 2.1 F m
J ∗1 �Q

∗ =Q∗, so G�1m4J
∗1Q∗5= 4M Q∗1Q∗5= 4J ∗1Q∗5,

where the last equality follows from the relation J ∗4i5 = minu∈U4i5Q
∗4i1 u5 for all states i (see Equation (1.1)),

which is J ∗ =MQ∗.
To show the contraction property, for any 4J11Q15 and 4J̃11 Q̃15, let 4J21Q25 = G�1m4J11Q15 and 4J̃21 Q̃25 =

G�1m4J̃11 Q̃15. By Lemma 2.2 and Equation (2.10),

�Q2 − Q̃2�� ≤ ��4J11Q15− 4J̃11 Q̃15�� and �J2 − J̃2�� = �MQ2 −MQ̃2�� ≤ �Q2 − Q̃2��0

Hence,
�4J21Q25− 4J̃21 Q̃25�� = max8�J2 − J̃2��1 �Q2 − Q̃2��9≤ ��4J11Q15− 4J21Q25��1

establishing the contraction property of G�1m. �
The following convergence result is a consequence of the preceding proposition.

Proposition 2.2. For any choice of 4J01Q05, 8�k9, and 8mk9, a sequence 84Jk1Qk59 generated by the algo-
rithm (2.4)–(2.5) converges to 4J ∗1Q∗5, and the rate of convergence is geometric. Furthermore, for all k after
some index k, the policies �k obtained from the minimization (2.5),

�k4i5 ∈ arg min
u∈U4i5

Qk4i1 u51 ∀ i = 11 : : : 1 n1

are optimal.

Proof. It follows from Lemma 2.3 that 84Jk1Qk59 converges to 4J ∗1Q∗5 geometrically. The optimality of
�k for sufficiently large k follows from the convergence Qk → Q∗, since a policy �∗ is optimal if and only if
�∗4i5 minimizes Q∗4i1 u5 over U4i5 for all i. �

3. Deterministic asynchronous versions of the algorithm. The modified PI-like algorithm (2.4)–(2.5) may
be viewed as synchronous in the sense that the Q-factors of all state-control pairs are simultaneously updated at
each iteration. The contraction properties of the underlying mappings can be used to establish the convergence
of the algorithm under far more irregular conditions. In particular, we consider in this section asynchronous
updating of Q-factors and state costs corresponding to blocks of components, and we discuss in §4 model-free
sampled versions, which do not require the explicit knowledge of pij4u5 and the calculation of expected values.

In standard asynchronous versions of PI for Q-factors (see Equations (1.5) and (1.6)), the updates of � and Q
are executed selectively, for only some of the states and state-control pairs. The algorithm generates a sequence
of pairs 4Qk1�k5, starting from an arbitrary pair 4Q01�05 as follows:

Qk+14i1 u5=







4F�k
Qk54i1 u5 if 4i1 u5 ∈Rk1

Qk4i1 u5 if 4i1 u5yRk1
(3.1)

�k+14j5=











arg min
v∈U4j5

Qk4j1 v5 if j ∈ Sk1

�k4j5 if j y Sk1

(3.2)

where Rk and Sk are subsets of state-control pairs and states, respectively, one of which may be empty. (For
an analysis and discussion, see, e.g., Bertsekas and Tsitsiklis [11, Section 2.2], Bertsekas [6, Section 1.3.3].)
Relative to ordinary VI for Q-factors, the advantage is that the minimization in Equation (3.2) is performed only
at times when Sk is nonempty, and only for the states in Sk (rather than at each iteration, and for all states).
This is the generic advantage that modified PI has over ordinary VI: the policy improvement iterations of the
form (3.2) can be performed much less frequently than the policy evaluation iterations of the form (3.1).

Unfortunately, the convergence of the asynchronous PI (3.1)–(3.2) to Q∗ is questionable in the absence of
additional restrictions; some assumption, such as F�0

Q0 ≤ Q0, is required for the initial policy �0 and vector
Q0 (see Williams and Baird [49] for a proof and counterexamples to convergence, or Bertsekas and Tsitsiklis
[11, Proposition 2.5], Bertsekas [6, Proposition 1.3.5]). The restriction F�0

Q0 ≤Q0 can be satisfied by adding to
Q0 a sufficiently large multiple of the unit vector (this is true only for the discounted DP model, and may not
be possible for other types of DP models). The need for it, however, indicates that the convergence properties of
the algorithm (3.1)–(3.2) are fragile and sensitive to the assumptions, which may cause convergence difficulties
in both its deterministic and its stochastic simulation-based variants. In particular, no related convergence results

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 73

or counterexamples are currently known for the case where the expected value of Equations (3.1) is replaced by
a single sample in a stochastic approximation-type update.

In a corresponding asynchronous version of our algorithm (2.4)–(2.5), again Q is updated selectively, for only
some of the state-control pairs, and J is also updated at some iterations and for some of the states. There may
also be a policy � that is maintained and updated selectively at some of the states. This policy may be used to
generate a randomized policy � that enters the algorithm in a material way. However, the algorithm is valid for
any choice of �, so its definition need not involve the policy � and the method in which it is used to update �
(we will later give an example of an updating scheme for � and �). Specifically, our asynchronous algorithm,
stated in general terms, generates a sequence of pairs 4Jk1Qk5, starting from an arbitrary pair 4J01Q05. Given
4Jk1Qk5, we obtain the next pair 4Jk+11Qk+15 as follows.

Asynchronous Policy Iteration:

Select a randomized policy �k, a subset Rk of state-control pairs, and a subset of states Sk such that Rk ∪Sk 6= �.
Generate Qk+1 according to

Qk+14i1 u5=

{

4FJk1 �k Qk54i1 u5 if 4i1 u5 ∈Rk1

Qk4i1 u5 if 4i1 u5yRk1
(3.3)

and generate Jk+1 according to

Jk+14i5=

{

minu∈U4i5Qk4i1 u5 if i ∈ Sk1

Jk4i5 if i y Sk0
(3.4)

Similar to modified PI and its asynchronous version, when the above method is applied, typically for many
iterations the sets Sk are empty and only the update (3.3) is performed on Q-factors. As mentioned in §2.2,
�k may be selected in special ways so that it gives the algorithm a PI character, which can then be compared
with (synchronous or asynchronous) modified PI for Q-factors, such as the one of Equations (3.1) and (3.2).
For an example of such an algorithm, assume that a policy �k is also maintained, which defines �k (so �k is the
deterministic policy �k). The algorithm updates Q according to

Qk+14i1 u5=







4FJk1�k
Qk54i1 u5 if 4i1 u5 ∈Rk1

Qk4i1 u5 if 4i1 u5yRk1
(3.5)

and it updates J and � according to

Jk+14j5=











min
v∈U4j5

Qk4j1 v5 if j ∈ Sk1

Jk4j5 if j y Sk1

�k+14j5=











arg min
v∈U4j5

Qk4j1 v5 if j ∈ Sk1

�k4j5 if j y Sk1

(3.6)

where Rk and Sk are subsets of state-control pairs and states, respectively, one of which may be empty.
We may view Equation (3.5) as a policy evaluation iteration for the state-control pairs in Rk, and Equation (3.6)

as a policy improvement iteration only for the states in Sk. In comparing the new algorithm (3.5)–(3.6) with
the known algorithm (3.1)–(3.2), we see that the essential difference is that Equation (3.5) involves the use
of Jk and the minimization on the right-hand side, whereas Equation (3.1) does not. As we will show in the
following proposition, this precludes the kind of anomalous behavior that is exhibited in the Williams and
Baird [49] counterexamples mentioned earlier. Mathematically, the reason for this may be traced to the presence
of the cost vector J in Equation (3.3) and its special case Equation (3.5), and the sup-norm contraction in the
space of 4J 1Q5, which underlies iterations (3.3)–(3.4) and (3.5)–(3.6) (see Proposition 2.1, Lemma 2.3, and also
Proposition 4.1).

Note that for computational efficiency, one may give preference for inclusion in the set Rk to the state-control
pairs 4j1�k4j55, j = 11 : : : 1 n, and one may choose the sets Rk and Sk in specific ways to avoid storing all
Q-factors.3 But these implementation details, which we will not go into here, are not requirements for the
convergence result of the subsequent proposition.

3 If one is interested in computing just the optimal costs J ∗4i5 and not the optimal Q-factors Q∗4i1 u5, one may only maintain the Q-factors
Q4j1�k4j55, because these are the only ones needed to perform the update (3.5). The other Q-factors can be calculated just before the
update (3.6) is performed for the states in Sk, and the results need not be stored except for Q4j1�k+14j551 j ∈ Sk.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
74 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

The convergence result below bears similarity to general convergence results for asynchronous distributed
DP and related algorithms involving sup-norm contractions (see Bertsekas [3, 4], Bertsekas and Tsitsiklis [12,
Section 6.2]).

Proposition 3.1. Assume that each pair 4i1 u5 is included in the set Rk infinitely often, and each state i
is included in the set Sk infinitely often. Then any sequence 84Jk1Qk59 generated by the algorithm (3.3)–(3.4)
converges to 4J ∗1Q∗5.

Proof. Let 8kj9 and 8k̂j9 be sequences of iteration indices such that k0 = 0, kj < k̂j < kj+1 for j = 0111 : : : 1

and for all j , each 4i1 u5 is included in
⋃k̂j−1

k=kj
Rk at least once, and each i is included in

⋃kj+1−1

k=k̂j
Sk at least once.

Thus, between iterations kj and k̂j , each component of Q is updated at least once, and between iterations k̂j and
kj+1, each component of J is updated at least once.

By using Proposition 2.1, we have, for all k,

�Qk+14i1 u5−Q∗4i1 u5� ≤ �max8�Jk − J ∗
��1�Qk −Q∗

��91 ∀ 4i1 u5 ∈Rk1 (3.7)

Qk+14i1 u5=Qk4i1 u51 ∀ 4i1 u5yRk0 (3.8)

Also, by using the nonexpansive property of the minimization operation (see Equation (2.10)), we have, for
all k,

�Jk+14i5− J ∗4i5� ≤ �Qk −Q∗
��1 ∀ i ∈ Sk1 (3.9)

Jk+14i5= Jk4i51 ∀ i y Sk0 (3.10)

From these relations, it follows that

max8�Jk+1 − J ∗
��1�Qk+1 −Q∗

��9≤ max8�Jk − J ∗
��1�Qk −Q∗

��91 ∀k = 0111 : : : 0 (3.11)

For each k ∈ 6k̂j1 kj+17, we have from Equations (3.7) and (3.8), for all u ∈U4i51 i = 11 : : : 1 n,

�Qk4i1 u5−Q∗4i1 u5� ≤ �max8�Jk̃4i1 u1 k5 − J ∗
��1�Qk̃4i1 u1 k5 −Q∗

��91 (3.12)

where k̃4i1 u1 k5 is the last iteration index between kj and k when the component Q4i1u5 is updated. Since each
component of Q is updated at least once between iterations kj and k ∈ 6k̂j1 kj+17, using also Equation (3.11), it
follows that

�Qk −Q∗
�� ≤ �max8�Jkj − J ∗

��1�Qkj
−Q∗

��91 ∀ j = 0111 : : : 1 k ∈ 6k̂j1 kj+170 (3.13)

Since each component of J is updated at least once between iterations k̂j and kj+1, we have from Equations (3.9)
and (3.10) that

�Jkj+1
4i5− J ∗4i5� ≤ �Qk̃4i5 −Q∗

��1 ∀ i = 11 : : : 1 n1

where k̃4i5 is the last iteration index between k̂j and kj+1 when the component J 4i5 is updated, so from
Equation (3.13), it follows that

�Jkj+1
− J ∗

�� ≤ �max8�Jkj − J ∗
��1�Qkj

−Q∗
��91 ∀ j = 0111 : : : 0 (3.14)

Combining Equations (3.13) and (3.14), we obtain

max8�Jkj+1
− J ∗

��1�Qkj+1
−Q∗

��9≤ �max8�Jkj − J ∗
��1�Qkj

−Q∗
��91 ∀ j = 0111 : : : 1

so max8�Jkj − J ∗��1�Qkj
− Q∗��9 → 0 as j → �, i.e., 4Jkj 1Qkj

5 → 4J ∗1Q∗5 as j → �. Using also Equa-
tion (3.11), this implies that the entire sequence 84Jk1Qk59 converges to 4J ∗1Q∗5. �

4. Stochastic iterative versions of the algorithm. In this section we consider stochastic iterative algorithms,
which are patterned after the classical Q-learning algorithm of Watkins [48] (see also Tsitsiklis [42]), as well as

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 75

optimistic and modified PI methods (Bertsekas and Tsitsiklis [11, Section 5.4]). We will compare our algorithm
with the classical Q-learning algorithm, whereby we generate a sequence of state-control pairs 84ik1 uk5 � k =

0111 : : : 9 by any probabilistic mechanism that guarantees that each pair 4i1 u5 appears infinitely often with
probability 1, and at each time k, we generate a successor state jk according to the distribution pikj

4uk5, j =

11 : : : 1 n, and we update only the Q-factor of 4ik1 uk5,

Qk+14ik1 uk5= 41 −�4ik1 uk51 k
5Qk4ik1 uk5+�4ik1 uk51 k

(

g4ik1 uk1 jk5+� min
v∈U4jk5

Qk4jk1 v5
)

1 (4.1)

while leaving all other components of Qk unchanged: Qk+14i1 u5 = Qk4i1 u5 for all 4i1 u5 6= 4ik1 uk5. The posi-
tive stepsizes �4ik1 uk51 k

may depend on the current pair 4ik1 uk5 and must satisfy assumptions that are standard
in stochastic approximation methods (i.e., must diminish to 0 at a suitable rate). There are also distributed
asynchronous versions of the algorithm (4.1), where Qk4jk1 v5 may be replaced by Q�k1 v

4jk1 v5, where k− �k1 v
may be viewed as a nonnegative integer “delay” that depends on k and v, as discussed by Tsitsiklis [42] and
other sources on asynchronous stochastic approximation methods such as Tsitsiklis et al. [46], Bertsekas and
Tsitsiklis [12], Borkar [16], Abounadi et al. [1], and Borkar [17].

In §4.1 we present three model-free optimistic PI algorithms, which update a cost vector J in addition to the
Q-factor vector Q, similar to the algorithms of §§2 and 3. We refer to these algorithms as Algorithms I–III, and
we briefly describe them below:

(I) This algorithm resembles the classical Q-learning algorithm (4.1), but requires less overhead per iteration
(the minimization over u ∈ U4j5 is replaced by a simpler operation). It also bears similarity with a natural
form of partially optimistic TD(0) algorithm, which is unreliable, as discussed by Bertsekas and Tsitsiklis [11,
Section 5.4]; in contrast to that algorithm, our Algorithm I has guaranteed convergence.

(II) This algorithm parallels the asynchronous PI method (3.3)–(3.4) of the preceding section, but is model
free and uses a single sample per state instead of computing an expected value.

(III) This algorithm generalizes the first two in several ways and allows, among others, “delayed” components
of state costs and Q-factors in its iteration. The extra generality is helpful in addressing implementations in an
asynchronous distributed computing system, and also sets the stage for an abstraction of the algorithms that
facilitates the convergence analysis, as we discuss in §4.2.

We find it useful to present Algorithms I and II first, because they are simpler and comparable in performance
to Algorithm III for many situations, and they help to motivate the more general Algorithm III. We estab-
lish the convergence of the latter algorithm using the asynchronous stochastic approximation-type convergence
framework of Tsitsiklis [42] in §4.3.

In what follows, all the variables involved in the algorithms (states, state-control pairs, costs of states,
Q-factors, policies, sets of indexes that determine which components are updated, etc.) are to be viewed as ran-
dom variables defined on a common probability space. Specific technical assumptions about their probabilistic
properties will be given at the appropriate points later.

The method for selecting components of Q to update is left largely unspecified in the formal description of
the algorithms because it does not affect our convergence result, as long as all the components are updated
infinitely often. However, for efficiency one may give preference to the state-control pairs 4j1 v5 with �k4v � j5 > 0
(see related discussion in §3). Similarly, we do not discuss in detail the choice of the randomized policies �k,
which is primarily dictated by exploration concerns that tend to be problem specific. The choice of �k also
affects the character of the algorithm (the extent to which it resembles the algorithm VI or modified PI, as
discussed in §2.2), and this should be balanced against the desire for exploration. Some natural choices of the
policies �k and subsets of components for update are illustrated for specific example problems in §5.

4.1. Some model-free optimistic policy iteration algorithms. Similar to classical Q-learning (4.1), our
first algorithm generates a sequence of state-control pairs 84ik1 uk5 � k = 0111 : : : 9 and updates only the Q-factor
of 4ik1 uk5 at iteration k, using a positive stepsize �4ik1 uk51 k

. At selected iterations k ∈KJ , it also updates a single
component of J , where KJ is an infinite subset of iteration indices (which need not be predetermined, but may
depend on algorithmic progress). The algorithm may choose �k arbitrarily for each k and with dependence on
4ik1 uk5, but one possibility is to maintain a policy �k that is updated at selected states simultaneously with J , and
then use �k =�k, similar to algorithm (3.5)–(3.6). Furthermore, the controls uk may be generated in accordance
with �k; this gives the algorithm a modified/optimistic PI character. The states ik+1 may be generated according
to pikj

4uk5, as in some optimistic PI methods, although this is not essential for the convergence of the algorithm.
Compared to the preceding Q-learning algorithm (4.1), the algorithm has an advantage similar to the one that

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
76 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

modified PI has over VI (less overhead because it does not require the minimization over all controls v ∈U4j5
at every iteration). In particular, given the pair 4Jk1Qk5, the algorithm obtains 4Jk+11Qk+15 as follows.

Model-Free Optimistic Policy Iteration I:

(1) Select a state-action pair 4ik1 uk5. If k ∈KJ , update Jk according to

Jk+14j5=







min
v∈U4j5

Qk4j1 v5 if j = ik1

Jk4j5 if j 6= ik3
(4.2)

otherwise, leave Jk unchanged (Jk+1 = Jk).
(2) Select a stepsize �4ik1 uk51 k

∈ 40117 and a policy �4ik1 uk51 k. Generate a successor state jk according to the
distribution pikj

4uk5, j = 11 : : : 1 n, and generate a control vk according to the distribution �4ik1 uk51 k4v � jk5, v ∈

U4jk5.
(3) Update the 4ik1 uk5th component of Q according to

Qk+14ik1 uk5= 41 −�4ik1 uk51 k
5Qk4ik1 uk5+�4ik1 uk51 k

4g4ik1 uk1 jk5+�min8Jk4jk51Qk4jk1 vk5951 (4.3)

and leave all other components of Qk unchanged: Qk+14i1 u5=Qk4i1 u5 for all 4i1 u5 6= 4ik1 uk5.

The preceding algorithm (Algorithm I) has similarities with the partially optimistic TD(0) algorithm, discussed
by Bertsekas and Tsitsiklis [11, Section 5.4]. The latter algorithm updates only J (rather than 4J 1Q5) using
TD(0), and also maintains a policy that is updated at selected iterations. However, its convergence properties
are dubious, as discussed by Bertsekas and Tsitsiklis [11, p. 231] (see also Tsitsiklis [43]). In contrast, we will
show that our algorithm above has satisfactory convergence properties.

We now give another stochastic iterative algorithm, which parallels the asynchronous PI method (3.3)–(3.4)
of §3. Given the pair 4Jk1Qk5, the algorithm obtains 4Jk+11Qk+15 as follows.

Model-Free Optimistic Policy Iteration II:

Select a subset Rk of state-control pairs and a subset of states Sk such that Rk ∪ Sk 6= �.

Update Jk according to

Jk+14i5=







min
u∈U4i5

Qk4i1 u5 if i ∈ Sk1

Jk4i5 if i y Sk0
(4.4)

For each `= 4i1 u5 ∈Rk, select a stepsize �`1 k ∈ 40117 and a policy �`1 k, and:
(1) Generate a successor state jk according to the distribution pij4u5, j = 11 : : : 1 n, and generate a control vk

according to the distribution �`1 k4v � jk5, v ∈U4jk5.
(2) Update the 4i1 u5th component of Qk according to

Qk+14i1 u5= 41 −�`1 k5Qk4i1 u5+�`1 k4g4i1 u1 jk5+�min8Jk4jk51Qk4jk1 vk5950 (4.5)

Leave all other components of Qk unchanged: Qk+14i1 u5=Qk4i1 u5 for all 4i1 u5yRk.

In the preceding algorithm (Algorithm II), the successor state-control pair 4jk1 vk5 corresponding to the differ-
ent pairs `= 4i1 u5 ∈Rk are different random variables. We have used the same notation for simplicity. Compared
with Algorithm I, the chief difference in Algorithm II is that it allows multiple components of J and Q to be
updated at each iteration. Compared with the deterministic asynchronous version (3.3)–(3.4), the chief difference
is that selected components of Q are updated using a single sample in place of the expected value that defines
FJk1 �`1 k (see Equations (3.3) and (3.5)). Such updates must satisfy certain properties, to be discussed in what
follows, so that the error due to simulation noise will vanish in the limit.

It is convenient to express the next algorithm (Algorithm III) explicitly as an algorithm that operates in the
joint space of the pair 4J 1Q5. We denote xk = 4Jk1Qk5 and introduce outdated information in updating xk. This
is natural for asynchronous distributed computation, in which case each component ` may be associated with
a processor, which keeps at time k a local, outdated version of xk, denoted by x

4`5
k . We introduce outdated

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 77

information not just for more generality, but also to facilitate the association with the algorithmic framework of
Tsitsiklis [42], which we will use in our convergence proof. In particular, x4`5

k has the form

x
4`5
k = 4x11 �`11 k

1 : : : 1 xm1�`m1k
51 (4.6)

where the nonnegative difference k− �`
j1 k indicates a “communication delay” relative to the “current” time k for

the jth component of x at the processor updating component ` (j1 ` = 11 : : : 1m, with m being the sum of the
number of states and the number of state-control pairs). We write x

4`5
k in terms of its components J and Q as

x
4`5
k = 4J

4`5
k 1Q

4`5
k 50 (4.7)

We will require later that limk→� �`
j1 k = � for all ` and j , but the exact values of �`

j1 k are immaterial and need
not even be known to the processor.

In the following Algorithm III, we can use outdated information to update J and Q, and the choice of the
policy � at time k may depend on the successor state jk in addition to the history of the algorithm up to time k.
To be more precise, let Ik be an information vector, a random variable that consists of the entire history of the
algorithm up to time k (this includes the stepsizes �`1 t , the index sets St and Rt selected for cost and Q-factor
updates, the results of the updates, and the delays t− �`

j1 t , at all times t ≤ k). We will assume that the selection
of the policy is based on 4Ik1 jk5, where jk is the successor state generated according to probabilities pij4u5,
similar to Algorithm II.

Model-Free Optimistic Policy Iteration III:
Select a subset Rk of state-control pairs, and a subset of states Sk such that Rk ∪ Sk 6= �. For each ` ∈ Rk ∪ Sk,
choose a stepsize �`1 k ∈ 40117 and times �`

j1 k ≤ k, j = 11 : : : 1m. Let 4J 4`5
k 1Q

4`5
k 5 be as defined in Equations (4.6)

and (4.7). Update Jk according to

Jk+14i5=







41 −�`1 k5Jk4i5+�`1 k min
u∈U4i5

Q
4`5
k 4i1 u51 with `= i1 if i ∈ Sk1

Jk4i5 if i y Sk0
(4.8)

For each `= 4i1 u5 ∈Rk:
(1) Generate a successor state j`1 k according to the distribution pij4u5, j = 11 : : : 1 n. Select a policy �`1 Ik1 j`1 k

based on the information 4Ik1 j`1 k5, and generate a control v`1 k according to the distribution �`1 Ik1 j`1 k4v � j`1 k5,
v ∈U4j`1 k5.

(2) Update the 4i1 u5th component of Qk according to

Qk+14i1 u5= 41 −�`1 k5Qk4i1 u5+�`1 k4g4i1 u1 j`1 k5+�min8J 4`5
k 4j`1 k51Q

4`5
k 4j`1 k1 v`1 k5950 (4.9)

Leave all other components of Qk unchanged: Qk+14i1 u5=Qk4i1 u5 for all 4i1 u5yRk.

In Algorithms II and III, we typically let Sk be empty for many iterations and choose Sk to be a small set when
it is nonempty, so that we update the components J less frequently than the components Q. (This is consistent
with our experiments in §5.) Like Algorithm I, when compared with their classical Q-learning counterparts
(see Tsitsiklis [42]), Algorithms II and III also have the advantage of lower overhead per iteration, because the
minimization of Q-factors over a full set of feasible controls is performed infrequently.

4.2. A general algorithmic model. As preparation for an analytically more convenient description of Algo-
rithm III, we introduce some notation. Let M denote the set of all stationary (deterministic or randomized)
policies. For each � ∈M, define an operator L� on the space of 4J 1Q5 by

4J̃ 1 Q̃5= L�4J 1Q51 (4.10)

where
J̃ 4i5= min

u∈U4i5
Q4i1u51 i = 11 : : : 1 n1 Q̃ = FJ 1 �Q0 (4.11)

Denote the `th component of the mapping L� by L�
` , where `= 11 : : : 1m. As can be seen from Equation (4.11),

if ` corresponds to the ith component of J , then L�
`4J 1Q5 = minu∈U4i5Q4i1u5, whereas if ` corresponds to the

4i1 u5th component of Q, then L�
`4J 1Q5= 4FJ 1 �Q54i1 u50

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
78 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

We note that for a given ` = 4i1 u5 ∈ Rk, the policy �`1 Ik1 j`1 k is a measurable M-valued random variable with
respect to the �-field �4Ik1 j`1 k5 generated by 4Ik1 j`1 k5 (because it is selected with knowledge of 4Ik1 j`1 k5). We
introduce the �4Ik5-measurable M-valued random variable �̄`1 Ik = 8�̄`1 Ik4v � j5 � v ∈ U4j51 j = 11 : : : 1 n9, which
is the conditional distribution of v corresponding to the joint distribution P4j`1 k = j1 v`1 k = v � Ik5, i.e.,

P4j`1 k = j1 v`1 k = v � Ik5= pij4u5�̄`1 Ik4v � j51 ∀v ∈U4j51 j = 11 : : : 1 n0 (4.12)

(If ` = 4i1 u5 and j is such that pij4u5 = 0, we have P4j`1 k = j1 v`1 k = v � Ik5 = 0 for all v ∈ U4j5, and we
may define �̄`1 Ik4v � j5 to be any distribution over U4j5, for example, the uniform distribution.) Note that if in
Algorithm III �`1 Ik1 j`1 k4· � j5 is chosen before j`1 k is generated, then �̄`1 Ik coincides with �`1 k; this is the case in
Algorithm II.

We can now express Algorithm III in a compact form using the mappings L� of Equations (4.10) and (4.11).
It can be equivalently written as

x`1 k+1 = 41 −�`1 k5x`1 k +�`1 k

(

L
�̄`1 Ik
` 4x

4`5
k 5+w`1 k

)

1 (4.13)

where
(a) if `= 4i1 u5 ∈Rk, we have �`1 k ∈ 40117, and w`1 k is a noise term given by

w`1 k = g4i1 u1 j`1 k5+�min
{

J
4`5
k 4j`1 k51Q

4`5
k 4j`1 k1 v`1 k5

}

−
(

F
J
4`5
k 1 �̄`1 Ik

Q
4`5
k

)

4i1 u5 (4.14)

(see Equations (4.9) and (4.11), and noticing that L
�̄`1 Ik
` 4x

4`5
k 5= 4F

J
4`5
k 1 �̄`1 Ik

Q
4`5
k 54i1 u5);

(b) if ` ∈ Sk, we have �`1 k ∈ 40117, w`1 k = 0, and �̄`1 Ik is immaterial (see Equations (4.8) and (4.11));
(c) if ` 6∈Rk ∪ Sk, we have �`1 k = 0 and w`1 k = 0.

With �`1 k defined for all ` and k, the sets Rk1 Sk may also be specified implicitly by those �`1 k that are positive.

4.3. Convergence analysis. In our convergence analysis of the general algorithm (4.8)–(4.9), equivalently
given in (4.13)–(4.14), we use extensions of two results from Tsitsiklis [42]. The latter work analyzed bounded-
ness and convergence of algorithms of the form (4.13) with the exception that there is only a single contraction
mapping L in place of L�̄`1 Ik . The results of Tsitsiklis [42], however, extend to the case with multiple mappings,
if these mappings are contraction mappings with respect to the same norm and have the same fixed point. (Such
an extension is given in Bertsekas and Tsitsiklis [11, Section 4.3] for the case without communication delays.)

Thus, the first step of our convergence proof is to establish a common contraction property of L� for all
stationary policies �. Define a weighted sup-norm �·�� on the space of 4J 1Q5 by

�4J 1Q5�� = max
{

�J��

�
1�Q��

}

1 (4.15)

where � is a positive scalar such that
� > 11 �� < 10 (4.16)

Proposition 4.1. Let �·�� and � be given by Equations (4.15) and (4.16), respectively, and let
�= max8��11/�9 < 10 For all stationary policies �, 4J ∗1Q∗5 is the unique fixed point of the mapping L� given
by Equations (4.10)–(4.11), and we have

�L�4J 1Q5−L�4J ′1Q′5�� ≤ ��4J 1Q5− 4J ′1Q′5�� (4.17)

for all pairs 4J 1Q5 and 4J ′1Q′5.

Proof. At the beginning of the proof of Proposition 2.2 we showed that 4J ∗1Q∗5 is a fixed point of L�

for all �. The uniqueness of the fixed point will be implied by Equation (4.17), which we now prove. Let
4J̃ 1 Q̃5= L�4J 1Q5 and 4J̃ ′1 Q̃′5= L�4J ′1Q′5. By Proposition 2.1, we have

�Q̃− Q̃′
�� ≤ �max8�J − J ′

��1�Q−Q′
��9

= �max
{

� ·
�J − J ′��

�
1�Q−Q′

��

}

≤ �max
{

� ·
�J − J ′��

�
1 � · �Q−Q′

��

}

= �� · �4J 1Q5− 4J ′1Q′5�� 1 (4.18)

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 79

where we used � > 1 to derive the second inequality. We also have

�J̃ − J̃ ′
�� ≤ �Q−Q′

��1

which implies that

�J̃ − J̃ ′��

�
≤

1
�

· �Q−Q′
��

≤
1
�

· max
{

�J − J ′��

�
1�Q−Q′

��

}

=
1
�

· �4J 1Q5− 4J ′1Q′5�� 0 (4.19)

Equations (4.18) and (4.19) imply the desired property (4.17):

�4J̃ 1 Q̃5− 4J̃ ′1 Q̃′5�� = max
{

�J̃ − J̃ ′��

�
1�Q̃− Q̃′

��

}

≤ max8��11/�9 · �4J 1Q5− 4J ′1Q′5��

= ��4J 1Q5− 4J ′1Q′5�� 0 �

We now specify conditions on the variables involved in the algorithm (4.13)–(4.14). Our conditions parallel
the assumptions given in Tsitsiklis [42, Assumptions 1–3], which are standard for asynchronous stochastic
approximation. We use the shorthand “w.p.1” for “with probability 1.” The first condition is a mild, natural
requirement for the delays.

Condition 4.1. For every ` and j , limk→� �`
j1 k = � w.p.1.

The next condition is mainly about the noise terms w`1 k. Let 4ì1F1 P5 be the common probability space
on which all the random variables involved in the algorithm are defined, and let 8Fk1 k ≥ 09 be an increasing
sequence of subfields of F.

Condition 4.2. (a) x0 is F0-measurable.
(b) For every ` corresponding to a component of Q and every k, w`1 k is Fk+1-measurable.
(c) For every j , `, and k, �`1 k, �

`
j1 k and �̄`1 Ik are Fk-measurable.

(d) For every ` corresponding to a component of Q and every k,

E6w`1 k �Fk7= 00

(e) There exist (deterministic) constants A and B such that for every ` corresponding to a component of Q
and every k,

E6w2
`1 k �Fk7≤A+Bmax

j
max
�≤k

�xj1 � �
20

The next condition deals with the stepsize variables.

Condition 4.3. (a) For every `,
∑

k≥0

�`1 k = �1 w0p010

(b) For every ` corresponding to a component of Q,
∑

k≥0

�2
`1 k <�1 w0p010

Condition 4.3(a) implies that all components of J and Q are updated infinitely often, which is also part of
the assumptions of Proposition 3.1. A simple way to choose stepsize sequences 8�`1 k9 that satisfy Condition 4.3
is to define them using a positive scalar sequence 8�k9 which diminishes to 0 at a suitable rate (e.g., O41/k5):
For all ` ∈ Rk, let �`1 k have a common value �k, and select all state-control pairs 4i1 u5 “comparably often” in
the sense that the fraction of times 4i1 u5 is selected for iteration is nonzero in the limit (see Borkar [17]).

There are two insignificant differences between the preceding conditions and the assumptions in Tsitsiklis [42,
Assumptions 1–3]. First, Condition 4.2(c) is imposed on the random variables �̄`1 Ik , which do not appear in

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
80 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

Tsitsiklis [42]. Second, Conditions 4.2(d) and 4.2(e) are imposed on the noise terms w`1 k, which are involved
in the updates of components of Q only (for components of J , there is no noise (w`1 k = 0) in the updates
and these conditions are trivially satisfied). For the same reason, Condition 4.3(b), a standard condition for
bounding asymptotically the error due to noise, is also imposed on the components of Q only (in Tsitsiklis [42],
Condition 4.3(b) is imposed on all components of x).4

We now verify that by its definition, the algorithm (4.13)–(4.14) satisfies Condition 4.2. Let Fk = �4Ik5. Then
Conditions 4.2(a)–(c) are satisfied by the definition of the algorithm; in particular, note that �̄`1 Ik is, by definition,
Fk-measurable (see Equation (4.12)). We verify Conditions 4.2(d) and (e), similar to the standard Q-learning
case given in Tsitsiklis [42]. Let `= 4i1 u5 ∈Rk and 4j`1 k1 v`1 k5 be the corresponding successor state-control pair.
From the way j`1 k is generated, it is seen that

E6g4i1 u1 j`1 k5 �Fk7=
n
∑

j=1

pij4u5g4i1 u1 j50

From the way 4j`1 k1 v`1 k5 is generated and the definition of �̄`1 Ik (see Equation (4.12)), we have

E
[

min
{

J
4`5
k 4j`1 k51Q

4`5
k 4j`1 k1 v`1 k5

}

�Fk

]

=

n
∑

j=1

pij4u5
∑

v∈U4j5

�̄`1 Ik4v � j5min
{

J
4`5
k 4j51Q

4`5
k 4j1 v5

}

0

Taking conditional expectation in Equation (4.14) and using the preceding two equations, we obtain

E6w`1 k �Fk7 =

n
∑

j=1

pij4u5

(

g4i1 u1 j5+�
∑

v∈U4j5

�̄`1 Ik4v � j5min8J 4`5
k 4j51 Q

4`5
k 4j1 v59

)

−
(

F
J
4`5
k 1 �̄`1 Ik

Q
4`5
k

)

4i1 u5

= 01

so Condition 4.2(d) is satisfied. It can also be seen that we may write w`1 k =Z1 +Z2 with

Z1 = g4i1 u1 j`1 k5−E6g4i1 u1 j`1 k5 �Fk71

Z2 = �min
{

J
4`5
k 4j`1 k51Q

4`5
k 4j`1 k1 v`1 k5

}

−E
[

�min
{

J
4`5
k 4j`1 k51Q

4`5
k 4j`1 k1 v`1 k5

}

�Fk

]

1

where the first expectation is over j`1 k and the second is over 4j`1 k1 v`1 k5. Since the number of state-control
pairs is finite, the variance of g4i1 u1 j`1 k5 can be bounded by a constant C for all 4i1 u5: E6Z2

1 � Fk7 ≤ C05

The conditional variance of min8J 4`5
k 4j`1 k51Q

4`5
k 4j`1 k1 v`1 k59, conditioned on Fk, is bounded by the square of the

largest absolute value that this random variable can possibly take, so

E6Z2
2 �Fk7≤ �2 max

j
max
�≤k

�xj1 � �
20

Thus, using also the Cauchy-Schwarz inequality, we have

E6w2
`1 k �Fk7 ≤ C +�2 max

j
max
�≤k

�xj1 � �
2
+ 2

√

C ·�2 max
j

max
�≤k

�xj1 � �
2

≤ A+Bmax
j

max
�≤k

�xj1 � �
21 ∀k1 ` ∈Rk1

for some deterministic constants A and B, so Condition 4.2(e) is satisfied.

Proposition 4.2. Under Conditions 4.1 and 4.3, any sequence 8xk9 with xk = 4Jk1Qk5 generated by the
model-free optimistic PI algorithm (4.13)–(4.14) (or equivalently, (4.8)–(4.9)) converges to x∗ = 4J ∗1Q∗5 with
probability 1.

4 Assumption 3(b) in Tsitsiklis [42] is slightly different than Condition 4.3(b): it is
∑

k≥0 �
2
`1 k <C w.p.1, for some deterministic constant C,

instead of C being �. However, this change in the stepsize condition only affects one technical lemma (Lemma 1) in Tsitsiklis [42], and
by strengthening that lemma so that its conclusions hold under the weaker condition 4.3(b), the rest of the analysis given in Tsitsiklis [42]
remains essentially intact under the latter condition. The additional analysis just mentioned can be found in Bertsekas and Tsitsiklis [11]
(Proposition 4.1 and Example 4.3, pp. 141–143; see also Section 4.3.6 therein). In this paper, to keep the references brief, we will not
repeat the above in our citations, and we will only refer to Tsitsiklis [42] for various conclusions that originally appeared there and now
hold under the weaker stepsize Condition 4.3(b).
5 If instead of a scalar, g4i1 u1 j5 is also treated as random, then one may impose a finite variance condition on it.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 81

Proof. We have shown that Condition 4.2 is satisfied by the algorithm (4.13)–(4.14), so under the assumption
of the proposition, we have that all Conditions 4.1–4.3 hold. We apply the analysis of Tsitsiklis [42], and in
particular, the proofs of Theorems 1 and 3 of that reference. The two theorems imply the boundedness of 8xk9
and the convergence of 8xk9 to x∗ with probability 1, respectively, for iterates of the form

x`1 k+1 = 41 −�`1 k5x`1 k +�`1 k

(

L`

(

x
4`5
k

)

+w`1 k

)

1

where L is a contraction mapping with fixed point x∗, under assumptions that parallel Conditions 4.1–4.3 with
minor differences, which we address below (in our algorithm, there are multiple contraction mappings L� that
share the same fixed point, and the Condition 4.3(b) is satisfied only for ` corresponding to components of Q).

First, for a contraction mapping L with modulus � and with respect to a weighted sup-norm �·�� , L enters
in the proofs of Theorems 1 and 3 of Tsitsiklis [42], only via the two inequalities

�L4x5�� ≤ ��x�� +D1 ∀ x1 (4.20)

where D is some constant, and
�L4x5− x∗

�� ≤ ��x− x∗
�� 1 ∀ x0 (4.21)

Implications of these inequalities are used to bound L`4x
4`5
k 5 in the iterates x`1 k+1 for each sample path from a

set of probability one.
Second, in the proofs of Theorems 1 and 3 of Tsitsiklis [42], the effect of the noise 8w`1 k9 on 8x`1 k9 for

each component ` is analyzed in two lemmas, Lemmas 1 and 2, under Conditions 4.2(b)–(e) and 4.3 for that
particular component. It is only in those two places that Condition 4.3(b) for a component is used. The rest of
the analysis for Theorems 1 and 3 relies only indirectly on Condition 4.3(b) through the two lemmas.

In our case, the inequalities (4.20) and (4.21) are satisfied by all L�̄`1 Ik for the same �·�� 1�1D1 and x∗ =

4J ∗1Q∗5, as established in Proposition 4.1. Moreover, when ` corresponds to a component of J , although the
stepsizes �`1 k are not restricted by Condition 4.3(b), because the noise terms w`1 k1 k ≥ 0 are always zero,
Lemmas 1 and 2 of Tsitsiklis [42] trivially hold without Condition 4.3(b) for such `. It then follows that
Lemmas 1 and 2 hold for all components ` of x in our case. We can thus apply the proofs of the two theorems
of Tsitsiklis [42] with L`4x

4`5
k 5 replaced by L

�̄`1 Ik
` 4x

4`5
k 5 to establish the convergence to x∗ with probability 1 for

the sequence 8xk9 generated by the algorithm (4.13)–(4.14). �

5. Computational experiments. In this section we illustrate the behavior of our algorithms of §§3 and 4
with three numerical examples. In summary, our experiments confirm the results of the theoretical analysis.
In particular:

(1) Our asynchronous PI algorithms of §3 converge under conditions where the classical algorithm fails.
(2) Our Q-learning algorithms of §4 exhibit comparable convergence (in terms of number of iterations)

to the standard Q-learning algorithm, with substantially less overhead each time Qk is updated (because the
minimization involved is simpler).

5.1. Williams and Baird [49] counterexample. Williams and Baird [49] provided several examples in
which the initial conditions and the order of updating the components (i.e., the sets Rk and Sk) are chosen so
that the sequence of Q-factors generated by the asynchronous modified PI algorithm (3.1)–(3.2) oscillates and
fails to converge. In Figure 1 we compare the behavior of three asynchronous algorithms for one such example.
This is Example 2 of Williams and Baird [49], which involves six states and two controls, with the discount
factor equal to 009; for a description of this example that is adapted to the Q-learning format of the present
paper, see Bertsekas [7]. The three algorithms are the algorithm (3.1)–(3.2), the algorithm (3.3)–(3.4), and the
nonstochastic version of the Q-learning algorithm (1.4). All of them follow the same order of updates and use
the same subsets Rk and Sk as described by the example, except that the nonstochastic Q-learning algorithm
does not use Sk because it operates on Q-factors only. Our experiments with algorithm (3.3)–(3.4) involved two
special choices of the policies �k, yielding two variant algorithms. The first variant is the one of Equations (3.5)
and (3.6), and its updates are shown in the second column. The second variant involves a deterministic policy
�k selected randomly according to the uniform distribution, and its updates are shown in the third column.

Figure 1 shows the values of Qk for a fixed state-control pair, which is indicated at the beginning of each row.
It can be seen that our algorithm converges as predicted by the theoretical analysis, and so does Q-learning.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
82 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35

–5

–10

–15

–20

–25

–30

–35
0 200 400 0 200 400 0 200 400 0 200 400

0 200 400 0 200 400

0 200 400 0 200 400

0 200 400 0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

0 200 400

Q
k
(2

,2
)

Q
k
(2

,1
)

Q
k
(1

,1
)

Q
k
(5

,1
)

(3.1)–(3.2) (3.5)–(3.6) (3.3)–(3.4) (1.4)

(3.1)–(3.2) (3.5)–(3.6) (3.3)–(3.4) (1.4)

Figure 1. Illustration of performance on Example 2 of Williams and Baird [49] for the algorithm (3.1)–(3.2), the algorithm (3.5)–(3.6),
the algorithm (3.3)–(3.4) with random selection of �k, and the nonstochastic version of the Q-learning algorithm (1.4).
Note. The plots give the values of four Q-factors as functions of iteration number, with the desired limit values indicated by horizontal
lines.

5.2. Dynamic location example. We next compare the stochastic optimistic PI algorithms of §4 on a
dynamic location problem adapted from the book by Puterman [35, Problem 3.17, pp. 70–71, attributed to
Rosenthal et al. [36]]. A repairman moves between 10 sites according to certain stationary transition proba-
bilities, and a trailer carrying supplies to the repairman may be relocated to any of the sites. The problem is
to dynamically relocate the trailer, with knowledge of the locations of the repairman and the trailer, so as to
minimize the expected discounted total cost. We chose the discount factor to be 0098. We define the one-stage
costs as follows: at each stage, if the repairman and the trailer are at sites dr and de, respectively, and the trailer
is moved to site d̃e, then the cost is �dr − de� + �de − d̃e�/2. Regarding the repairman’s transition probabilities,
if the repairman is at site dr , he next moves to any site dr ≤ d ≤ 10 with equal probability unless dr = 10, in
which case he moves to site 1 with probability 3/4 and stays at site 10 with probability 1/4.

In this problem there are 102 states 4dr 1 de5, dr 1 de = 11 : : : 110, corresponding to the locations of the repair-
man and the trailer, and 10 controls d̃e = 11 : : : 10, corresponding to the next location of the trailer. So there
are 103 Q-factors, which we denote by Q44dr 1 de51 d̃e5. Because the movement of the repairman is uncon-
trolled, if he moves from site dr to d̃r , this transition can be used to update simultaneously the Q-factors
Q44dr 1 de51 d̃e5 for all possible locations and moves of the trailer, de1 d̃e = 11 : : : 110. The simulation results we
present below are obtained in this way. In particular, we simulate a single trajectory of sites s01 s11 : : : visited
by the repairman. Simultaneously, as the trajectory is being generated, we apply the optimistic PI algorithm II

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 83

0 1 2 3 4 5

×106 ×106 ×106

136

Q*((10,10),6)

Q*((10,10),1)
140

142

144

146

148

150

152

154
O.P.I. II vs. Q-learning

0 1 2 3 4 5
142

Q*((10,1),1)
145

Q*((10,1),6)
148

151

154

157

160

162
O.P.I. II vs. Q-learning

0 1 2 3 4 5
120

125

130

135

140

Q*((10,1),1)
145

Q*((10,1),6)

150
O.P.I. II vs. Q-learning

Q-learning

O.P.I. IIQ-learning

O.P.I. II O.P.I. II

Q-learning

0 1 2 3 4 5

×106

136

Q*((10,10),6)

Q*((10,10),1)
140

142

144

146

148

150

152

154

O.P.I. II vs. Q-learning

0 1 2 3 4 5

×106

142

Q*((10,1),1)
145

Q*((10,1),6)
148

151

154

157

160

162

O.P.I. II vs. Q-learning

0 1 2 3 4 5

×106

120

125

130

135

140

Q*((10,1),1)
145

Q*((10,1),6)

150

O.P.I. II vs. Q-learning

Q-learning

O.P.I. II

Q-learning

O.P.I. IIO.P.I. II

Q-learning

Figure 2. Comparison of the optimistic PI algorithm II and Q-learning for the dynamic location problem.
Note. The two rows correspond to two variants of the algorithm resulting from different choices of the policies �`1 k, with the second choice
involving more exploration than the first one.

(Equations (4.4) and (4.5)), in which, for updating Q-factors at iterations k = 0111 : : : , we let the set Rk of
state-control pairs be 84sk1 de1 d̃e5 � de1 d̃e = 11 : : : 1109, whereas we update Jk once every 50 iterations, with the
corresponding set Rk of states being 84sk1 de5 � de = 11 : : : 1109. We use the stepsize �`1 k = 410 + k5−0055.

Figure 2 compares the algorithm (4.4)–(4.5) with ordinary Q-learning. Both algorithms use the same stepsize
sequence, the same trajectory of the repairman’s move, and the same set Rk for the block of Q-factors to be
updated at each iteration. Each subfigure corresponds to a simulation run and shows the values of Qk at two
state-control pairs generated by the two algorithms. The two pairs consist of the same state with two different
controls, one being optimal and the other nonoptimal for that state. Together with the true values, they are
indicated on the vertical axis of each subfigure. The optimistic PI algorithm II is designated by “O.P.I. II.”
In Figure 2 we present results with two variants of the algorithm, which differ in the choice of the policy �`1 k.
In the first variant (shown in the top row of Figure 2), �`1 k = �k, a deterministic policy, initially chosen randomly
and maintained throughout iterations. Its components �k4i51 i ∈ Sk are updated to be the controls that attain the
minima in Equation (4.4), whenever we update Jk. In the second variant (shown in the bottom row of Figure 2),
we let �`1 k be a deterministic policy chosen randomly according to the uniform distribution.

As the figures show, our optimistic PI algorithm behaves similar to Q-learning for both choices of �`1 k, even
though it has about 90% percent less computation overhead in the minimization operations than Q-learning. We
also run the algorithms with initial values Q0 and J0 well below the optimal. The results are shown in the third
column of Figure 2, from which it can be seen that the updates of our algorithm tend to produce smaller values
and increase more slowly than Q-learning. This can be attributed to the minimization operation in Equation (4.5).
It is a phenomenon that may arise frequently and may be addressed by a form of interpolation between Q4j1 v5
and min8J 4j51Q4j1 v59 that preserves the convergence of the algorithm. We refer to Bertsekas and Yu [14] for
a proposal of such a device within a related context.

5.3. Automobile replacement example. We now compare the stochastic algorithms of §4 with Q-learning
on the classical automobile replacement problem from Howard [27]. The problem is to decide when to replace

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
84 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

0 0.5 1.0 1.5 2.0
1,500

1,520

1,540

1,560

1,580

1,600

1,620

1,640
O.P.I. vs. Q-learning

1.5 1.6 1.7 1.8 1.9 2.0

×108×108

1,500

1,501

1,502

1,503

1,504

Q*(10,1)

1,506
Q*(10,14)

1,507

1,508

1,509

1,510

Q-learning

O.P.I. II

Q-learning

O.P.I. II

Figure 3. Comparison of the optimistic PI algorithm II and Q-learning for the automobile replacement problem.

a car as it ages, given that the cost and value of a car decrease with its age, whereas the operating expense
and the probability of breaking down increase with its age. Decisions of whether to keep the car or to trade it
for another car are made at three-month intervals. We have 41 states corresponding to the age of a car: a new
car is at state/age 1, a three-month-old car at state/age 2, and so on; but if a car breaks down or if it is more
than 10 year old, then it is at state/age 41. We have 41 controls: control 1 represents keeping the car, whereas
controls u = 21 : : : 141 represent trading the car for a car at state/age u− 1, i.e., a 4u− 25× three-month-old
car. For our experiments, we set the discount factor � = 00999 and scaled down the prices/costs so that 1 unit
represents $100. We found that the optimal policy in this case is to keep the car if it is at any of the states 4–26,
and to trade it for a 3 1

4 -year-old car (state 14) otherwise.
We run the optimistic PI algorithms II and III, and the ordinary Q-learning algorithm under comparable

conditions. In particular, all the algorithms have access to the prices and operating costs of cars at all ages, and
they all simulate a trajectory of state-control pairs 4i01 u051 4i11 u151 : : : , where ik+1 is generated according to
the transition model pij4u5 with i = ik1 u= uk, and uk is generated by some randomized policy to be described

0 0.5 1.0 1.5 2.0
1,500

1,520

1,540

1,560

1,580

1,600

1,620

1,640
O.P.I. vs. Q-learning

0 0.5 1.0 1.5 2.0
1,500

ave. j*

1,550

1,600

1,650

1,700

1,750

1,800
Costs of policies: Q-learning

0 0.5 1.0 1.5 2.0

×106×106×106

1,500
ave. j*

1,550

1,600

1,650

1,700

1,750

1,800
Costs of policies: O.P.I.

Q-learning

O.P.I. II

Figure 4. Comparison of the optimistic PI algorithm II and Q-learning at the early phase for the automobile replacement problem.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 85

0 0.5 1.0 1.5 2.0

×108 ×108

1,320

1,340

1,360

1,380

1,400

1,420

1,440

1,460

1,480

1,500

1,520

O.P.I. vs. Q-learning

1.5 1.6 1.7 1.8 1.9 2.0
1,500

1,501

1,502

1,503

1,504

Q*(10,1)

1,506
Q*(10,14)

1,507

1,508

1,509

1,510

Q-learning

Q-learning

O.P.I. II

O.P.I. II

Figure 5. Comparison of the optimistic PI algorithm II and Q-learning for the automobile replacement problem.

shortly. To make computation more efficient, at iteration k, based on the value of 4ik1 uk5, we update multiple
Q-factors using the subsequent transition to ik+1. More specifically, given that the control uk instantly makes the
age of the car at hand ī, we let the set Rk of state-control pairs, at which the algorithms update the Q-factors,
to include (i) the state ī with the control to keep the car, and (ii) all states i with the control to trade the car at
hand for a car of age ī. In the Q-factor updates, we use the stepsize �`1 k = 4100 + k/1045−008.

The controls uk, k ≥ 01 are generated as follows. All of the algorithms maintain a deterministic policy �k.
At iteration k, uk =�k4ik5 with probability 007, whereas with probability 003, uk is chosen randomly uniformly
from a set of reasonable controls (which excludes those obviously inferior decisions to trade for an older car
that does not result in any instant benefit). Once every 50 iterations, the algorithms update the policy �k at
10 randomly chosen states and set the controls at those states to be the ones minimizing the respective Q4i1u5
over u. The optimistic PI algorithms also update the costs Jk at these chosen states, which form the set Sk.

In the experiments shown below, all the algorithms start with i0 = 41 and the initial policy �0, which is to
always keep the car if it is not at state/age 41, and to buy a new car only then. The initial J0 and Q0 are
calculated using this policy and the prices/costs given by the model, assuming that a car never breaks.

0 0.5 1.0 1.5 2.0
1,320

1,340

1,360

1,380

1,400

1,420

1,440

1,460

1,480

1,500

1,520
O.P.I. vs. Q-learning

0 0.5 1.0 1.5 2.0
ave. j*

1,600

1,700

1,800

1,900

2,000

2,100

2,200

2,300

2,400

2,500
Costs of policies: Q-learning

0 0.5 1.0 1.5 2.0
×106×106×106

ave. j*

1,600

1,700

1,800

1,900

2,000

2,100

2,200

2,300

2,400

2,500
Costs of policies: O.P.I.

Q-learning

O.P.I. II

Figure 6. Comparison of the optimistic PI algorithm II and Q-learning at the early phase for the automobile replacement problem.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
86 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

0 0.5 1.0 1.5 2.0

×108 ×108

1,500

1,520

1,540

1,560

1,580

1,600

1,620

1,640
O.P.I. vs. Q-learning

1.5 1.6 1.7 1.8 1.9 2.0
1,500

1,501

1,502

1,503

1,504

Q*(10,1)

1,506
Q*(10,14)

1,507

1,508

1,509

1,510

Q-learning

Q-learning

O.P.I. III

O.P.I. III

Figure 7. Comparison of the optimistic PI algorithm III and Q-learning for the automobile replacement problem.

Figures 3 and 4 compare Q-learning and the optimistic PI algorithm II (Equations (4.4) and (4.5), designated
by “O.P.I. II” in the figures). In the latter algorithm, the policies �`1 k used for the Q-factor updates (4.5) are �k.
Figure 3 shows the iterates Qk410115 and Qk4101145 generated by the two algorithms. (In the experiments, only
Qk4ik1 uk5 are recorded, and interpolation is used to generate the curves shown in this and the following figures.)
It can be seen that the optimistic PI algorithm behaves similar to Q-learning, even though in each Q-factor update,
it only compares two values instead of 41 values in the minimization operation. The right subfigure shows that
near convergence, the optimistic PI algorithm tends to approach the true values from below and converges more
slowly than Q-learning. Again this can be attributed to the minimization operation in Equation (4.5) (see our
earlier discussion on interpolation at the end of §5.2).

Figure 4 shows that during the early phase when the Q-factors are still far from the true values (shown in the
left subfigure), the policies �k generated by both algorithms improve rapidly. In the middle and right subfigures,
we plot the averaged cost 1

41

∑

i J�k
4i5 of the policies �k for the two algorithms; the averaged optimal value,

1
41

∑

i J
∗4i5, is indicated on the vertical axis. The averaged cost of the initial policy �0 is approximately 1,731.

We observe that this rapid policy improvement at the early phase depends on how the initial Q0 and J0

are chosen. For comparison, Figures 5 and 6 illustrate the behavior of both algorithms when Q0 and J0 are

0 0.5 1.0 1.5 2.0
×106 ×106 ×106

1,500

1,520

1,540

1,560

1,580

1,600

1,620

1,640
O.P.I. vs. Q-learning

0 0.5 1.0 1.5 2.0
1,500

ave. j*

1,550

1,600

1,650

1,700

1,750

1,800
Costs of policies: Q-learning

0 0.5 1.0 1.5 2.0
1,500

ave. j*

1,550

1,600

1,650

1,700

1,750

1,800
Costs of policies: O.P.I.

Q-learning

O.P.I. III

Figure 8. Comparison of the optimistic PI algorithm III and Q-learning at the early phase for the automobile replacement problem.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 87

0 0.5 1.0 1.5 2.0
×108 ×108

1,500

1,520

1,540

1,560

1,580

1,600

1,620

1,640

O.P.I. vs. Q-learning

1.5 1.6 1.7 1.8 1.9 2.0
1,500

1,501

1,502

1,503

1,504

Q*(10,1)

1,506
Q*(10,14)

1,507

1,508

1,509

1,510

Q-learning

O.P.I. III

Q-learning

O.P.I. III

Figure 9. Comparison of the optimistic PI algorithm III and Q-learning for the automobile replacement problem.

shifted by a negative constant to make them well below the optimal values. Figure 6 shows wild oscillation in
the performance of the policies �k generated by both algorithms during the early phase. The tendency of the
optimistic PI algorithm to generate smaller values can also be observed in Figure 5.

We also run the same experiments to compare standard Q-learning and the optimistic PI algorithm III (Equa-
tions (4.8) and (4.9), designated by “O.P.I. III” in the figures). In the latter algorithm, we use a constant stepsize
�`1 k = 005 to update Jk via Equation (4.8), and we test two variants with different choices of the policies �`1 Ik1 j`1 k
in the Q-factor updates (4.9). In the first variant, we set �`1 Ik1 j`1 k to be the policy �k̃, k̃ < k, prior to the most
recent policy update that gives the present �k. The results are shown in Figures 7 and 8. In the second variant,
�`1 Ik1 j`1 k depends also on j`1 k = ik+1, the subsequent state of the car. If the latter is no less than 30, �`1 Ik1 j`1 k =�k;
otherwise, �`1 Ik1 j`1 k is the randomized policy, which, with equal probability, follows �k or applies a control ran-
domly selected from the set of reasonable controls. The results are shown in Figures 9 and 10. It can be seen
that the behavior of the algorithm in both cases is similar to the one described above for Algorithm II.

0 0.5 1.0 1.5 2.0

×106 ×106 ×106

1,500

1,520

1,540

1,560

1,580

1,600

1,620

1,640

O.P.I. vs. Q-learning

0 0.5 1.0 1.5 2.0
1,500

ave. j *

1,550

1,600

1,650

1,700

1,750

1,800

Costs of policies: Q-learning

0 0.5 1.0 1.5 2.0
1,500

ave. j *

1,550

1,600

1,650

1,700

1,750

1,800

Costs of policies: O.P.I.

Q-learning

O.P.I. III

Figure 10. Comparison of the optimistic PI algorithm III and Q-learning at the early phase for the automobile replacement problem.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
88 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

6. Error bounds for approximate implementations. In this section, we discuss the effect of approxi-
mations on the algorithm of §2, and we derive a bound on the suboptimality of certain policies in terms of
approximation error. In particular, we consider performing the iteration Qk+1 = F

mk
Jk1 �k

Qk (see Equation (2.4))
approximately and generate a sequence 8Qk9 such that

�Qk+1 − F
mk
Jk1 �k

Qk�� ≤ �1 (6.1)

for some �> 0 and a sequence of positive integers 8mk9. We update Jk according to

Jk+14i5= min
u∈U4i5

Qk+14i1 u51 ∀ i = 11 : : : 1 n1 (6.2)

or more generally, we find Jk+1 such that
∣

∣

∣

Jk+14i5− min
u∈U4i5

Qk+14i1 u5
∣

∣

∣

≤ �1 ∀ i = 11 : : : 1 n1 (6.3)

for some � > 0. As before, we let the randomized policy �k+1 be chosen in any desirable way. We analyze the
performance of the deterministic policies 8�k+19, where �k+14i5 is assumed to attain the minimum within � in
Equation (6.2) for all states i, i.e.,

Qk+14i1�k+14i55≤ min
u∈U4i5

Qk+14i1 u5+ �1 ∀ i = 11 : : : 1 n0 (6.4)

These would be the deterministic policies of interest when the algorithm is terminated at iteration k+ 1.
Several sources can contribute to the error terms � and �, which are generally unknown. Collectively, Equa-

tions (6.1), (6.3), and (6.4) cover a variety of approximation scenarios, to which the error bound we derive in
this section is applicable. Here are some examples:

(a) When F
mk
Jk1 �k

Qk is calculated using simulation in model-free learning by algorithms of §4 or calculated
by the parallel asynchronous algorithms of §3, � incorporates the error due to simulation noise and lack of
synchronization. (The interval 6k1 k+ 17 here corresponds to the time interval between two consecutive updates
of the stopping cost vector J and the policy � in those algorithms.)

(b) When the control space is large, imprecise minimization of Qk+14i1 u5 in Equation (6.3) may be desirable,
and the discrepancy can be absorbed into the error term �.

(c) With compact representation, the sequences 8Qk9 and/or 8Jk9 may be restricted to be within some
parametrized families of functions, and � and � reflect the size of the approximation error.

(d) The policy sequence 8�k9 may be restricted in a certain subset of structured policies that have a compact
representation in the policy space, whereas policies �k may be chosen based on the corresponding �k and also
the space limits in the computation. Positivity of the scalar � in Equation (6.4) then reflects the fact that, because
of the compact representation of �k+1, we do not have Qk+14i1�k+14i55 = Jk+14i5, even when Equation (6.2)
holds and the algorithm implementation is synchronous.
In §7 we will discuss a specific simulation-based method of computing F

mk
Jk1 �k

Qk with compact representation.
Our bound on the performance of �k, given in the following proposition, is similar to what is generally viewed

as the standard bound for the performance of approximate PI (Bertsekas and Tsitsiklis [11, Proposition 6.2]).
Our analysis also holds when mk may be equal to �, in which case Equation (6.1) is replaced by

�Qk+1 −QJk1 �k
�� ≤ �0

Proposition 6.1. Assume that for some �1 � ≥ 0 and each k ≥ 0, Equation (6.1) holds for some positive
integer mk, and Equations (6.3) and (6.4) also hold. Then, for any stationary policy � that is a limit point of
8�k9, we have

�J� − J ∗
�� ≤

24�+ �5

41 −�52
0

We prove Proposition 6.1 through two lemmas.

Lemma 6.1. Given 4J 1 �5 and �1 � ≥ 0, let Q, Q̂, and m≥ 1 be such that

�Q̂− F m
J1�Q�� ≤ �1

and let Ĵ satisfy
∣

∣

∣

Ĵ 4i5− min
u∈U4i5

Q̂4i1 u5
∣

∣

∣

≤ �1 ∀ i = 11 : : : 1 n0

Then,
�Ĵ − J ∗

�� − � ≤ �Q̂−Q∗
�� ≤ �max8�Q−Q∗

��1 �J − J ∗
��9+ �0

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 89

Proof. Using the triangle inequality, the fact Q∗ = F m
J ∗1 �Q

∗, and Lemma 2.2, we have

�Q̂−Q∗
�� − �Q̂− F m

J1�Q�� ≤ �F m
J1�Q−Q∗

�� ≤ �max8�Q−Q∗
��1 �J − J ∗

��91

which, together with the assumption �Q̂ − F m
J1�Q�� ≤ �, implies the right-hand side of the desired inequality.

The left-hand side follows from the generic inequality (2.10) and the triangle inequality. �
For any policy �, we denote by T� the mapping defined by

4T�J 54i5=

n
∑

j=1

pij4�4i554g4i1�4i51 j5+�J 4j551 ∀ i = 11 : : : 1 n0

Lemma 6.2. Given Q, let � be a policy such that �4i5 attains within � the minimum of Q4i1u5 over u ∈U4i5
for all states i. Then,

�J� − J ∗
�� ≤

24�Q−Q∗�� + �5

1 −�
0

Proof. Under the assumption, there exists Q̂ with �Q̂ − Q�� ≤ � such that �4i5 attains the minimum of
Q̂4i1 u5 over u ∈U4i5 for all states i. By the triangle inequality, �Q̂−Q∗�� ≤ �Q−Q∗�� + �. Hence, to prove
the proposition, it is sufficient to consider � and Q such that � attains the minimum of Q4i1u5 for all states i,
and to prove the inequality

�J� − J ∗
�� ≤

2�Q−Q∗��

1 −�
0

Let �= �Q−Q∗��1 and let �∗ be an optimal policy. We have, for all states i,

�Q4i1�4i55−Q∗4i1�4i55� ≤ �1 �Q4i1�∗4i55−Q∗4i1�∗4i55� ≤ �0

Note that
Q∗4i1�4i55= 4T�J

∗54i51 Q∗4i1�∗4i55= 4T�∗J ∗54i5= J ∗4i51

and by the definition of �,
Q4i1�4i55≤Q4i1�∗4i550

Combining these relations, we have, for all states i,

4T�J
∗54i5− J ∗4i5≤ 4T�J

∗54i5−Q4i1�4i55+Q4i1�∗4i55− J ∗4i5≤ �+�= 2�0

Using the standard bound �J� − J ∗�� ≤ �T�J
∗ − J ∗��/41 −�5, the desired inequality follows. �

Proof of Proposition 6.1. Let

�k = max8�Qk −Q∗
��1�Jk − J ∗

��90

By applying Lemma 6.1 with J = Jk, Ĵ = Jk+1, Q =Qk, Q̂ =Qk+1, we have

�Jk+1 − J ∗
�� − � ≤ �Qk+1 −Q∗

�� ≤ �max8�Qk −Q∗
��1�Jk − J ∗

��9+ �= ��k + �0 (6.5)

From Equation (6.5) and Lemma 6.2,

�J�k+1
− J ∗

�� ≤
24��k + �+ �5

1 −�
0 (6.6)

Also, by the definition of �k+1, Equation (6.5) implies that �k+1 ≤ ��k + �+ �, and by iteration

�k+1 ≤ �k+1�0 + 4�k
+�k−1

+ · · · + 154�+ �51

so that lim supk→� �k ≤ 4� + �5/41 − �50 Using this relation in Equation (6.6), and taking the limit along a
subsequence of �k that converges to a stationary policy �, we obtain

�J� − J ∗
�� ≤

24�+ �5

41 −�52
0 �

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
90 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

7. Basis function approximation and exploration. In §§3–5, we discussed Q-learning algorithms
with lookup table representation, and we showed how our asynchronous deterministic and stochastic
Q-learning/modified PI algorithms have improved convergence properties, while maintaining the reduced over-
head advantage of modified PI. We now consider large problems and simulation-based approximate PI algo-
rithms, where it is common to represent Q-factors and state costs compactly through a relatively small set of
basis functions (or features); see, e.g., Bertsekas and Tsitsiklis [11], Sutton and Barto [39]. We will discuss two
subjects: (i) a specific implementation of our Q-learning algorithm with function approximation, which uses as a
subroutine the Q-learning algorithm of Tsitsiklis and Van Roy [45] for approximately solving optimal stopping
problems, and (ii) the issue of exploration and how our approach can address it more naturally compared to
standard PI approaches.

7.1. Function approximation. It is straightforward to combine function approximation with a version of
our algorithm, which at each iteration carries out the steps described by Equations (6.1)–(6.4), by invoking the
algorithm of Tsitsiklis and Van Roy [45] to approximately solve an optimal stopping problem. Let us provide
some details of the latter algorithm within our context.

As in §2, we view QJk1 �k
4i1 u5 as the Q-factor of an optimal stopping problem that corresponds to the action

of not stopping at pair 4i1 u5. We approximate QJk1 �k
4i1 u5 using a linear approximation architecture of the form

Q̃4i1 u5=�4i1u5′r1 ∀u ∈U4i51 i = 11 : : : 1 n0 (7.1)

Here, �4i1u5′ is a row vector of s features whose inner product Q̃4i1 u5 with a column vector of weights r ∈ <s

provides an approximation for the Q-factor of 4i1 u5.6 In the typical policy evaluation phase, we start with an
initial weight vector r̄0 (for example, one obtained from the preceding policy evaluation phase). We generate a
single simulated trajectory 84i01 u051 4i11 u151 : : : 9 corresponding to an unstopped system, i.e., using transition
probabilities from 4it1 ut5 to 4it+11 ut+15 given by

pit it+1
4ut5�k4ut+1 � it+150

Following the transition 44it1 ut51 4it+11 ut+155, we update r̄t by

r̄t+1 = r̄t −�t�4it1 ut5qt1 (7.2)

where qt is the temporal difference

qt =�4it1 ut5
′ r̄t − g4it1 ut1 it+15−�min8Jk4it+151�4it+11 ut+15

′ r̄t91 (7.3)

and �t is a positive stepsize that diminishes to 0 (e.g., �t = O41/t5). While generating the sequence 8r̄t9, Jk
and �k are held fixed. Moreover, �k can be selected arbitrarily, and may be flexibly used to encode exploration,
i.e., induce a trajectory 84i01 u051 4i11 u151 : : : 9 with balanced representation of all state-control pairs; see the
discussion in the subsequent §7.2.

Upon convergence, the preceding algorithm yields a weight vector rk+1 (the limit of 8r̄t9) and an approximation
Qk+1 to QJk1 �k

of the form Qk+14i1 u5=�4i1u5′rk+1. Combined with the update rule of Equation (6.2),

Jk+14i5= min
u∈U4i5

Qk+14i1 u51 ∀ i = 11 : : : 1 n1

or the �-approximation version of Equation (6.3),
∣

∣

∣

Jk+14i5− min
u∈U4i5

Qk+14i1 u5
∣

∣

∣

≤ �1 ∀ i = 11 : : : 1 n1

it yields an approximate PI method. We may also terminate the iterations (7.2) well before convergence of 8r̄t9,
giving the algorithm an optimistic character.

We note that instead of the algorithm (7.2), one may use related alternative algorithms to approximate QJ 1 � .
One scaled version of (7.2) is proposed by Choi and Van Roy [24]:

r̄t+1 = r̄t −�tD
−1
t �4it1 ut5qt1 (7.4)

6 We do not discuss the important issue of selection of �4i1u5, but we note the possibility of its optimal choice within some restricted class
by using gradient and random search algorithms (see Menache et al. [31] and Yu and Bertsekas [54] for recent work on this subject).

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 91

where Dt is a positive definite scaling matrix. For our purposes, to keep overhead per iteration low, it is
important that Dt is chosen to be diagonal, and Choi and Van Roy [24] suggests suitable simulation-based
choices. Alternative iterative optimal stopping algorithms are given by Yu and Bertsekas [52, 53], which have
faster convergence properties, but require more overhead per iteration because they require a sum of a number
of past temporal differences in the right-hand side of Equation (7.4).

When the number of states is large, Jk and �k cannot be stored explicitly, so they must either be generated
when needed, or like QJk1 �k

, they must be represented compactly through an approximation architecture. Without
going into details, let us discuss briefly some of these possibilities and their impact on the computational
overhead of the algorithm. We may choose Jk from a linear or nonlinear parametric family of functions. We may
also choose �k from a parametric family of policies. A particular case of interest is where �k is chosen based
on the policy �k obtained by minimization (see Equation (6.2)):

�k4i5 ∈ arg min
u∈U4i5

Qk4i1 u5= arg min
u∈U4i5

�4i1u5′rk1 ∀ i = 11 : : : 1 n1

giving the method a PI flavor. In particular, �k may be a convex combination of �k and a simple randomized
policy, with the weight on �k reflecting special considerations (e.g., exploration as discussed in §7.2). Since
�k can be viewed as a policy parametrized by rk and the controls �k4i5 can be generated online for states
encountered in the simulation, the policy �k can also be generated online and need not be stored. With this
scheme, �k is also represented compactly; however, a drawback is that the reduced overhead advantage of
modified PI is lost, because of the minimization operation involved in generating �k. Alternatively, before
iteration k+ 1 starts, we may choose �k among certain structured policies that have a compact representation in
the policy space, while taking into account �k. In this case, the reduced overhead advantage of modified PI is
maintained.

Finally, we note that the convergence properties of the function approximation algorithm we described above
may be quite complicated, not only because Qk+1 is just an approximation to QJk1 �k

, but also because when
Q-factor approximations of the form (7.1) are used, policy oscillations may occur, a phenomenon described by
Bertsekas and Tsitsiklis [11, Section 6.4] (see also Bertsekas [8, 9, Section 6.3]). However, the error bound of
§6 holds for this algorithm, although the associated approximation parameters � and � are generally unknown.
(For characterizations of the approximation error of the method (7.2)–(7.3), see Tsitsiklis and Van Roy [45] and
Van Roy [47].)

7.2. Exploration. Approximate PI methods constitute one of the major methodologies for approximate DP
(see, e.g., the books by Bertsekas and Tsitsiklis [11], Sutton and Barto [39], Gosavi [26], Cao [22], Chang
et al. [23], Meyn [32], Powell [33], Buşoniu et al. [20]; the textbook by Bertsekas [6] and its online chapter
(Bertsekas [8]) provide a recent treatment and up-to-date references). These methods build on the standard PI
framework and incorporate within it function approximation and stochastic approximation techniques, which are
necessary for large problems and model-free learning of optimal control. For the approximate policy evaluation
step, popular choices are the so-called TD methods, such as TD(�) (Sutton [38]), least squares policy evalua-
tion (LSPE(�)) methods (Bertsekas and Ioffe [10]), and least squares temporal difference (LSTD(�)) methods
(Bradtke and Barto [19], Boyan [18]). Aggregation methods (Jaakkola et al. [28, 29], Gordon [25], Tsitsiklis and
Van Roy [44], Baras and Borkar [2], Bertsekas [5, 8]) have also been used for policy evaluation. The goal of
these algorithms is to approximate the costs J�4i5 or Q-factors Q�4i1 u5 of a deterministic policy � with linear
cost function approximations of the form �4i5′r or �4i1u5′r , respectively (see Equation (7.1)).

A critical issue in model-free learning is exploration. It is relatively simple to estimate the costs of a given
policy �, using state trajectories of the Markov chain induced by �. The policy improvement step, however,
could easily break down due to cost function approximation error at states that are rarely visited or unreachable
under � and the initial conditions of the Markov chain. Thus, it is desirable to adequately explore the state-
control space beyond the part easily accessible with the policy that we want to evaluate. The exploration issue
is more acute in real-time learning: if the learning agent can only visit a small subset of states frequently when
starting from the initial state and following �, the agent can be totally unaware of the larger outside world
or poorly estimate the policy costs there. Such pathologies can be avoided in simulation-based PI where an
adequate number of transitions can be simulated for any states, but even there, exploration mechanisms affect
algorithm efficiency and are an issue of concern.

For approximate PI methods, a common approach to deal with exploration is an off-policy strategy (using the
terminology of Sutton and Barto [39]; see also Precup et al. [34]), whereby we occasionally generate transitions
involving randomly selected controls rather than the ones dictated by �, and we then adjust the policy evaluation

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
92 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

Policy
evaluation

Policy
evaluation

Policy
improvement

Exploration
enhancement

�k Qk+1 �k+1 �k+1

Jk Jk+1Jk+1

Figure 11. Illustration of exploration-enhanced PI algorithm.
Notes. The kth policy evaluation consists of approximate solution of the optimal stopping problem involving the randomized policy �k and
the threshold/stopping cost Jk. It is followed by policy improvement that produces a new deterministic policy �k+1, which forms the basis
for constructing the new randomized policy �k+1 using some exploration mechanism.

procedures, especially those based on multistage costs, to take this into account. For example, some LSTD(�)-
type policy evaluation algorithms use the richer set of data thus obtained together with importance sampling
to guarantee convergence (Bertsekas and Yu [13], Yu [50, 51]). But they can encounter problems due to high
simulation noise variance, and they also require the solution of a linear projected equation of dimension equal
to the number of features, so they may be unsuitable for problems where many features are required for good
performance. Some other policy evaluation algorithms, such as LSPE(�) and TD(�), may encounter convergence
difficulties because a contraction mapping property on which they rely, and which holds for trajectories generated
by �, now need not hold (see, e.g., Bertsekas [11, Example 6.7], which provides an instance of divergence of
TD(0)). Aggregation methods do not rely on a contraction property, but they are restricted in the types of basis
functions that they can use (see, e.g., the discussion in Bertsekas [8, 9]). Thus, it is an interesting question
to derive TD(�)-like exploration-enhanced approximate policy evaluation methods that have sound convergence
properties and are suitable for architectures with a large number of features. As an example of recent efforts
in this direction, stochastic gradient-based optimization has also been suggested in combination with the TD(0)
approximation framework to tackle the convergence issue (Sutton et al. [40, 41], Maei et. al. [30]). Although
future research may add some more remediation techniques to approximate PI with exploration enhancements,
it is reasonable to question whether the standard PI framework itself is sufficiently flexible to handle exploration
in all cases of concern.

Our methodology of this paper provides an alternative framework for the incorporation of exploration mech-
anisms in PI-like algorithms. By blending value and policy iteration (through the optimal stopping formulation
of policy evaluation), and by separating cost approximation Jk from Q-factor approximation Qk, our approach
supports exploration naturally and removes at the technical level the conflict between exploration and policy
evaluation that is present in approximate PI methods. As illustrated in Figure 11, to incorporate exploration, we
may exploit the freedom to choose arbitrarily the distributions/policies �k that define the optimal stopping prob-
lems for the approximation algorithm described in §7.1. In particular, we may use �k that is a random mixture
of a certain policy �k of interest and another policy that induces exploration and enables visits to state-control
pairs that are impossible/unlikely to generate under �k. This is similar to the off-policy approach, except that
at each policy evaluation phase, regardless of how much exploration is carried out, there is no convergence
difficulty in solving the optimal stopping problem, despite the fact that the algorithm is TD(05-like. Compared
to the LSTD-based off-policy approach mentioned earlier, our method is better suited for an approximation
architecture with a large number of features.

The structure of our algorithm can also be exploited in a somewhat different way to provide improved
estimation of the costs of various states, thereby providing exploration enhancement of a kind that is different
from the one described above. In particular, suppose that in some problems, upper bounds Ĵ 4i5 to the true optimal
costs J ∗4i5 are known or can be calculated for some states i, for example, by using some extra simulation with
either the current policy, some exploration policy, or some other heuristic policy. Then the stopping costs Jk4i5
in our algorithms may be replaced by min8Jk4i51 Ĵ 4i59 for those states i, with potentially substantial performance
improvement. Thus, the flexibility of our approach can be valuable when problem-specific knowledge or extra
simulation/exploration can be used to calculate suitable upper bounds to state costs.

8. Conclusions. We have developed a new Q-learning algorithm for discounted MDP. In its lookup table
form, the algorithm admits interesting deterministic and stochastic asynchronous implementations, akin to modi-
fied PI, with sound convergence properties and less overhead per iteration over the classical Q-learning algorithm.
In its compact representation/approximate form, the algorithm addresses in a new way the critical issue of
exploration in the context of simulation-based approximations.

The main idea of this paper is to replace the standard linear system of equations used for policy evaluation
with an optimal stopping problem that may be solved inexactly, with a finite number of Q-learning/VI iterations.
This idea finds application in other settings, beyond the discounted MDP framework of this paper, such as semi-
Markov and minimax discounted problems, as well as some undiscounted problems of the stochastic shortest

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS 93

path type. Our paper Bertsekas and Yu [14] deals with related deterministic algorithms and addresses such
problems within a more general and unifying formulation. Our paper Yu and Bertsekas [55] considers stochastic
shortest path problems and develops results that parallel those in the present paper.

The optimal stopping framework for policy evaluation may also be combined with other exact and approximate
policy iteration ideas, involving, for example, aggregation, interpolation, and distributed multiagent implemen-
tations. Some of these ideas have been explored in Bertsekas and Yu [14] within a related context.

Acknowledgments. The research of Dimitri Bertsekas was supported by the National Science Foundation [Grant
ECCS-0801549] and by the Air Force [Grant FA9550-10-1-0412]. This work was done in part when Huizhen Yu was with
the Department of Computer Science and the Helsinki Institute for Information Technology, University of Helsinki. Her
research was supported in part by the Academy of Finland [Grant 118653 (ALGODAN)] and by the Air Force [Grant
FA9550-10-1-0412].

References

[1] Abounadi, J., D. P. Bertsekas, V. Borkar. 2002. Stochastic approximation for nonexpansive maps: Application to Q-learning algorithms.
SIAM J. Control Optim. 41 1–22.

[2] Baras, J. S., V. S. Borkar. 2000. A learning algorithm for Markov decision processes with adaptive state aggregation. Proc. IEEE CDC
4 3351–3356.

[3] Bertsekas, D. P. 1982. Distributed dynamic programming. IEEE Trans. Automatic Control AC-27 610–616.
[4] Bertsekas, D. P. 1983. Asynchronous distributed computation of fixed points. Math. Programming 27 107–120.
[5] Bertsekas, D. P. 2005. Dynamic Programming and Optimal Control, 3rd ed, Vol. 1. Athena Scientific, Belmont, MA.
[6] Bertsekas, D. P. 2007. Dynamic Programming and Optimal Control, 3rd ed, Vol. 2. Athena Scientific, Belmont, MA.
[7] Bertsekas, D. P. 2010. Williams-Baird counterexample for Q-factor asynchronous policy iteration. http://web.mit.edu/dimitrib/www/

Williams-Baird_Counterexample.pdf.
[8] Bertsekas, D. P. 2011. Approximate dynamic programming. http://web.mit.edu/dimitrib/www/dpchapter.html.
[9] Bertsekas, D. P. 2011. Approximate policy iteration: A survey and some new methods. J. Control Theory Appl. 9 310–335.

[10] Bertsekas, D. P., S. Ioffe. 1996. Temporal differences-based policy iteration and applications in neuro-dynamic programming. Labora-
tory for Information and Decision Systems, Report LIDS-P-2349, MIT, Cambridge, MA.

[11] Bertsekas, D. P., J. N. Tsitsiklis. 1996. Neuro-Dynamic Programming. Athena Scientific, Belmont, MA.
[12] Bertsekas, D. P., J. N. Tsitsiklis. 1997. Parallel and Distributed Computation: Numerical Methods. Athena Scientific, Belmont, MA.
[13] Bertsekas, D. P., H. Yu. 2009. Projected equation methods for approximate solution of large linear systems. J. Comput. Appl. Math.

227 27–50.
[14] Bertsekas, D. P., H. Yu. 2010. Asynchronous distributed policy iteration in dynamic programming. Allerton Conf. on Communication,

Control, and Computing, Allerton, IL, 1368–1375.
[15] Bhatnagar, S., K. M. Babu. 2008. New algorithms of the Q-learning type. Automatica 44 1111–1119.
[16] Borkar, V. S. 1998. Asynchronous stochastic approximations. SIAM J. Control Optim. 36 840–851; correction note in ibid. 38 662–663.
[17] Borkar, V. S. 2008. Stochastic Approximation: A Dynamical Systems Viewpoint. Cambridge University Press, New York.
[18] Boyan, J. A. 2002. Technical update: Least-squares temporal difference learning. Machine Learn. 49 1–15.
[19] Bradtke, S. J., A. G. Barto. 1996. Linear least-squares algorithms for temporal difference learning. Machine Learn. 22 33–57.
[20] Buşoniu, L., R. Babuška, B. De Schutter, D. Ernst. 2010. Reinforcement Learning and Dynamic Programming Using Function

Approximators. CRC Press, New York.
[21] Canbolat, P. G., U. G. Rothblum. 2012. (Approximate) iterated successive approximations algorithm for sequential decision processes.

Annals Oper. Res. Forthcoming.
[22] Cao, X. R. 2007. Stochastic Learning and Optimization: A Sensitivity-Based Approach. Springer, New York.
[23] Chang, H. S., M. C. Fu, J. Hu, S. I. Marcus. 2007. Simulation-Based Algorithms for Markov Decision Processes. Springer, New York.
[24] Choi, D. S., B. Van Roy. 2006. A generalized Kalman filter for fixed point approximation and efficient temporal-difference learning.

Discrete Event Dynam. Systems: Theory Appl. 16 207–239.
[25] Gordon, G. J. 1995. Stable function approximation in dynamic programming. Proc. 12th Internat. Conf. Machine Learning, Morgan

Kaufmann, San Francisco, 261–268.
[26] Gosavi, A. 2003. Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning. Springer-Verlag,

New York.
[27] Howard. 1960. Dynamic Programming and Markov Processes. MIT Press, Cambridge, MA.
[28] Jaakkola, T., M. I. Jordan, S. P. Singh. 1994. On the convergence of stochastic iterative dynamic programming algorithms. Neural

Comput. 6 1185–1201.
[29] Jaakkola, T., S. P. Singh, M. I. Jordan. 1995. Reinforcement learning algorithm for partially observable Markov decision problems.

Adv. Neural Inform. Processing Systems 7 345–352.
[30] Maei, H. R., C. Szepesvari, S. Bhatnagar, D. Silver, D. Precup, R. S. Sutton. 2009. Convergent temporal-difference learning with

arbitrary smooth function approximation. The 23rd Annual Conf. Neural Information Processing Systems, Vancouver, BC, 1204–1212.
[31] Menache, I., S. Mannor, N. Shimkin. 2005. Basis function adaptation in temporal difference reinforcement learning. Ann. Oper. Res.

134 215–238.
[32] Meyn, S. 2007. Control Techniques for Complex Networks. Cambridge University Press, New York.
[33] Powell, W. B. 2007. Approximate Dynamic Programming: Solving the Curses of Dimensionality. Wiley, New York.
[34] Precup, D., R. S. Sutton, S. Dasgupta. 2001. Off-policy temporal-difference learning with function approximation. Proc. 18th Internat.

Conf. Machine Learn., Morgan Kaufmann, San Francisco, 417–424.

Bertsekas and Yu: Q-Learning and Enhanced Policy Iteration
94 Mathematics of Operations Research 37(1), pp. 66–94, © 2012 INFORMS

[35] Puterman, M. L. 1994. Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York.
[36] Rosenthal, R. E., J. A. White, D. Young. 1978. Stochastic dynamic location analysis. Management Sci. 24 645–653.
[37] Rothblum, U. G. 1979. Iterated successive approximation for sequential decision processes. J. W. B. van Overhagen, H. C. Tijms, eds.

Stochastic Control and Optimization. Vrije Universiteit, Amsterdam.
[38] Sutton, R. S. 1998. Learning to predict by the methods of temporal differences. Machine Learn. 3 9–44.
[39] Sutton, R. S., A. G. Barto. 1998. Reinforcement Learning. MIT Press, Cambridge, MA.
[40] Sutton, R. S., C. Szepesvari, H. R. Maei. 2008. A convergent O4n5 algorithm for off-policy temporal-difference learning with linear

function approximation. The 22nd Annual Conf. Neural Inform. Processing Systems, Vancouver, BC, 1609–1616.
[41] Sutton, R. S., H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvari, E. Wiewiora. 2009. Fast gradient-descent methods for

temporal-difference learning with linear function approximation. Proc. 26th Internat. Conf. Machine Learn., Omnipress, Madison, WI,
993–1000.

[42] Tsitsiklis, J. N. 1994. Asynchronous stochastic approximation and Q-learning. Machine Learn. 16 185–202.
[43] Tsitsiklis, J. N. 2002. On the convergence of optimistic policy iteration. J. Machine Learn. Res. 3 59–72.
[44] Tsitsiklis, J. N., B. Van Roy. 1996. Feature-based methods for large-scale dynamic programming. Machine Learn. 22 59–94.
[45] Tsitsiklis, J. N., B. Van Roy. 1999. Optimal stopping of Markov processes: Hilbert space theory, approximation algorithms, and an

application to pricing financial derivatives. IEEE Trans. Automatic Control 44 1840–1851.
[46] Tsitsiklis, J. N., D. P. Bertsekas, M. Athans. 1986. Distributed asynchronous deterministic and stochastic gradient optimization algo-

rithms. IEEE Trans. Aut. Control AC-31 803–812.
[47] Van Roy, B. 2010. On regression-based stopping times. Discrete Event Dynam. Systems: Theory Appl. 20 307–324.
[48] Watkins, C. J. C. H. 1989. Learning from delayed rewards. Ph.D. thesis, Cambridge University, Cambridge, UK.
[49] Williams, R. J., L. C. Baird. 1993. Analysis of some incremental variants of policy iteration: First steps toward understanding actor-

critic learning systems. Report NU-CCS-93-11, College of Computer Science, Northeastern University, Boston.
[50] Yu, H. 2010. Convergence of least squares temporal difference methods under general conditions. Proc. 27th Internat. Conf. Machine

Learn., Omnipress, Madison, WI, 1207–1214.
[51] Yu, H. 2010. Least squares temporal difference methods: An analysis under general conditions. Technical Report C-2010-39, Depart-

ment Computer Science, University of Helsinki, Helsinki, Finland.
[52] Yu, H., D. P. Bertsekas. 2007. A least squares Q-learning algorithm for optimal stopping problems. Report 2731, Laboratory for

Information and Decision Systems, MIT, Cambridge, MA.
[53] Yu, H., D. P. Bertsekas. 2007. Q-learning algorithms for optimal stopping based on least squares. Proc. European Control Conf. (ECC),

Kos, Greece, 2368–2375. 3
[54] Yu, H., D. P. Bertsekas. 2009. Basis function adaptation methods for cost approximation in MDP. Proc. IEEE Symp. Approximate

Dynamic Programming and Reinforcement Learn., Nashville, TN.
[55] Yu, H., D. P. Bertsekas. 2011. Q-learning and policy iteration algorithms for stochastic shortest path problems. Report 2871, Laboratory

for Information and Decision Systems, MIT, Cambridge, MA.

	Introduction.
	New policy iteration algorithms.
	An optimal stopping formulation for policy evaluation.
	A prototype algorithm and its qualitative behavior.
	Convergence based on contraction on joint cost and Q-factor space.

	Deterministic asynchronous versions of the algorithm.
	Stochastic iterative versions of the algorithm.
	Some model-free optimistic policy iteration algorithms.
	A general algorithmic model.
	Convergence analysis.

	Computational experiments.
	Williams and Baird WiB93 counterexample.
	Dynamic location example.
	Automobile replacement example.

	Error bounds for approximate implementations.
	Basis function approximation and exploration.
	Function approximation.
	Exploration.

	Conclusions.

