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Abstract. Given a single feasible solutionxF and a single infeasible solutionxI of a mathematical program,
we provide an upper bound to the optimal dual value. We assume thatxF satisfies a weakened form of the Slater
condition. We apply the bound to convex programs and we discuss its relation to Hoffman-like bounds. As a
special case, we recover a bound due to Mangasarian [11] on the distance of a point to a convex set specified by
inequalities.
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Dedication: It is very appropriate that this paper appears in a special issue honoring Olvi Mangasarian, because
its idea was actually born while listening to one of Olvi’s talks. This is only the latest in a string of several
occasions where Olvi’s research has substantially influenced mine. For many years, I have benefited a great deal
from reading his works, and from interacting with him at meetings, where his presence made serious and idle talk
both personally enjoyable and professionally rewarding.

1. Introduction

We consider the problem

minimize f (x)

subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,
(1)

whereX is a nonempty subset of<n, and f : <n 7→ <, gj : <n 7→ < are given functions.
We denote byg(x) the vector of constraint functions

g(x) = (g1(x), . . . , gr (x)),

and we write the constraintsgj (x) ≤ 0 compactly asg(x) ≤ 0. In our notation, all vectors
are column vectors and a prime denotes transposition.
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Let f ∗ andq∗ be the optimal primal and dual value, respectively:

f ∗ = inf
x∈X

gj (x)≤0, j=1,...,r

f (x), (2)

q∗ = sup
µ≥0

q(µ), (3)

whereq : <r 7→ [−∞,+∞) is the dual function given by

q(µ) = inf
x∈X
{ f (x)+ µ′g(x)}. (4)

Throughout the paper, we assume the following:

Assumption 1. We have two vectors xF and xI from X such that:
(a) xF is feasible, i.e.,g(xF ) ≤ 0.
(b) xI is infeasible, i.e., gj (xI ) > 0 for at least one j. Furthermore, its cost f(xI ) is

strictly smaller than the cost f(xF ) of xF .

We note that by weak duality, we haveq∗ ≤ f (xF ). We will show that the valuef (xI )

can be used to improve this upper bound. In particular, we prove the following result in
Section 3:

Proposition 1. Under Assumption1, there holds

q∗ − f (xI )

f (xF )− f (xI )
≤ 0

0 + 1
, (5)

where

0 = inf{γ ≥ 0 | g(xI ) ≤ −γg(xF )}. (6)

If 0 = ∞ because there is noγ ≥ 0 such thatg(xI ) ≤ −γg(xF ), the bound in Eq. (5)
reduces to the trivial boundq∗ ≤ f (xF ).

Note that we have0 <∞ if the Slater condition

gj (xF ) < 0, ∀ j = 1, . . . , r, (7)

holds. More generally, we have0 <∞ if and only if the following weakened form of the
Slater condition holds:

gj (xI ) ≤ 0 for all j with gj (xF ) = 0. (8)

If the above condition holds, we have

0 = max
{ j |gj (xF )<0}

gj (xI )

−gj (xF )
. (9)
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Figure 1 illustrates the idea underlying the bound (5), (6). In the case of a single constraint
(r = 1) the bound reduces to

q∗ − f (xI )

f (xF )− f (xI )
≤ f̂ − f (xI )

f (xF )− f (xI )
= g(xI )

g(xI )− g(xF )
, (10)

where f̂ is the point of intersection of the vertical axis of<2 with the line segment con-
necting the vectors(g(xF ), f (xF ))and(g(xI ), f (xI )). When there are multiple constraints,
this line segment can be projected on the two-dimensional subspace spanned by the vertical
axis (0, 1) of <r+1 and the vector(g(xI ), 0). The inequality (10) can then be applied on
this subspace in a suitably modified form (see the proof in Section 3).

Figure 1. Geometrical interpretation of the bound (8) in the case where there is only one constraint. We consider
the convex hull of the subsetA of <2 given by

A = {(z, w) | there existsx ∈ X such thatg(x) ≤ z, f (x) ≤ w}.

Let f̂ be the point of intersection of the vertical axis of<2 with the line segment connecting the vectors
(g(xF ), f (xF )) and (g(xI ), f (xI )). The vector(0, f̂ ) belongs to Conv(A). Also, by Euclidean geometry,
we have

f̂ − f (xI )

f (xF )− f (xI )
= g(xI )

g(xI )− g(xF )
,

and by the definition ofq∗ we have

q∗ ≤ f̃ ≤ f̂ ≤ f ∗,

where

f̃ = inf{w | (z, w) ∈ Conv(A)}.

Combining these two relations, the bound (5), (6) follows for the case of a single constraint.
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Figure 1 also suggests the following slightly stronger version of our bound:

f̃ − f (xI )

f (xF )− f (xI )
≤ 0

0 + 1
, (11)

where

f̃ = inf{w | (z, w) ∈ Conv(A)}, (12)

the subsetA of <2 is given by

A = {(z, w) | there existsx ∈ X such thatg(x) ≤ z, f (x) ≤ w},

and Conv(A) denotes its convex hull. Indeed, we prove this bound in Section 3, and we
also prove that

f̃ ≤ f ∗.

Furthermore, in the case whereX is convex, andf andgj are convex overX, we have
f̃ = f ∗. We state the corresponding bound as a proposition:

Proposition 2. In addition to Assumption1, assume that X is convex, and f and gj are
convex over X. Then, there holds

f ∗ − f (xI )

f (xF )− f (xI )
≤ 0

0 + 1
. (13)

2. Relations to existing bounds

There are several analytical and algorithmic contexts where both feasible and infeasible
solutions are known in optimization problems (e.g., in primal-dual algorithms), and in
which our bound may prove useful. As an illustration of one such context, let us derive
an error bound for the Euclidean distance of a point to a convex set specified by inequality
constraints. A similar error bound for this projection problem was derived by Mangasarian
[11] using different methods, and was the inspiration for the present paper. In particular,
let y ∈ <n be a given vector and consider the following projection problem

minimize ‖y− x‖
subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,

where‖·‖ denotes the standard Euclidean norm (‖x‖ =
√∑n

i=1 x2
i ). Let us assume thatX

is a convex set andgj are convex functions. Furthermore, let us assume the following two
conditions:
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(a) y ∈ X andgj (y) > 0 for at least onej .
(b) There exists a vectorxF ∈ X such that

gj (xF ) ≤ 0, ∀ j = 1, . . . , r,

gj (y) ≤ 0 for all j with gj (xF ) = 0.

Then we can apply the error bound (13) withf (x) = ‖y − x‖, f ∗ equal to the distance
d(y) of y from the convex setX ∩ {x | gj (x) ≤ 0, j = 1, . . . , r }, xI = y, and f (xI ) = 0,
f (xF ) = ‖y− xF‖. We have

d(y) ≤ 0

0 + 1
‖y− xF‖, (14)

where0 is given by Eq. (9). It is easily seen that0 ≤ 0̂, where

0̂ = max{ j |gj (xF )<0} gj (xI )

min{ j |gj (xF )<0} −gj (xF )
, (15)

and the inequality (14) yields

d(y) ≤ 0̂

0̂ + 1
‖y− xF‖, (16)

or equivalently

d(y) ≤ max{ j |gj (xF )<0} gj (xI )

max{ j |gj (xF )<0} gj (xI )+min{ j |gj (xF )<0} −gj (xF )
‖y− xF‖. (17)

This bound coincides with the relative error bound derived by Mangasarian ([11],
Theorem 2.2) under the assumption thatX = <n andgj (xF ) < 0 for all j . Note, however,
that using0 from Eq. (9) in place of̂0 as in Eq. (16) yields a stronger bound.

For a generalization of the bound (14), let us consider replacing the distance‖y − x‖
with a more general metric. In particular, consider the problem

minimize f (x, y)

subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,

whereX is a convex set,gj is a convex function, andf (·, y) is a convex function satisfying

f (y, y) = 0, f (xF , y) > 0.

Then, if f ∗(y) is the optimal cost of this problem, the preceding analysis can be used to
show that (cf. Eq. (14))

f ∗(y) ≤ 0

0 + 1
f (xF , y),
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where0 is given by

0 = max
{ j |gj (xF )<0}

gj (y)

−gj (xF )
.

In Mangasarian’s paper [11], the bound (17) was used to derive an extension to Hoffman’s
error bound for the approximate solution of convex systems of inequalities. Hoffman’s
bound [4] and its extensions have been the subject of intensive investigation recently (see
e.g., [2, 5–12], which give many additional references). It is thus interesting to inquire about
the relation of our bound of Section 1 with Hoffman-like bounds. It turns out that the bound
of Section 1 is fundamentally different. To see this, we note that Propositions 1 and 2 do
not explicitly require the existence of a Lagrange multiplier for problem (1). By contrast,
we will show shortly that Hoffman-like bounds essentially amount to assertions on the
uniform boundedness of the Lagrange multipliers of some parametric convex program as
the parameter vector ranges over some set. This connection, which is based on the theory of
exact penalty functions, has apparently not been made explicit earlier and leads to slightly
stronger versions of Hoffman’s bound for convex systems of inequalities than some of those
available in the literature (e.g., Mangasarian’s Hoffman-like bound of [11]).

Indeed letY be a subset of<n, let y be a parameter vector taking values inY, and consider
the parametric program

minimize f (x, y)

subject to x ∈ X, gj (x, y) ≤ 0, j = 1, . . . , r,
(18)

whereX is a convex subset of<n, and for eachy ∈ Y, f (·, y) andgj (·, y) are convex
functions. We assume that for eachy ∈ Y, this program has at least one feasible solution,
and that its optimal value, denotedf ∗(y), is finite. Furthermore, we assume that when the
constraintsgj (x, y) ≤ 0 are dualized, there is no duality gap; that is, the optimal value
q∗(y) of the dual problem

maximize q(µ, y)

subject to µ ≥ 0

is equal tof ∗(y), whereq(µ, y) is the dual function

q(µ, y) = inf
x∈X
{ f (x, y)+ µ′g(x, y)}.

Consider a penalty functionP :<r 7→ < that is convex and satisfies

P(u) = 0, ∀u ≤ 0,

P(u) > 0, if u j > 0 for somej = 1, . . . , r.

Let c > 0 denote a penalty parameter. It is shown in [1] [Proposition 5.4.1(a)]1 that we
have

f ∗(y) = inf
x∈X
{ f (x, y)+ cP(g(x, y))}, ∀y ∈ X, (19)



A NOTE ON ERROR BOUNDS 47

if and only if

u′µ∗(y) ≤ cP(u), ∀u ∈ <r , ∀y ∈ X,

for some dual optimal solutionµ∗(y) (an optimal solution of the dual problem (14), which
is also referred to as a Lagrange multiplier).

It is seen that Eq. (19) is equivalent to the bound

f ∗(y) ≤ f (x, y)+ c̄P(g(x, y)), ∀x ∈ X, y ∈ Y, (20)

so this bound holds if and only if there exists a uniform bounding constantc > 0 such that

u′µ∗(y) ≤ cP(u), ∀u ∈ <r , y ∈ Y. (21)

For the above relation to hold, it is essential that the penalty functionP be nondifferentiable,
such as for example the Euclidean norm of the vectoru+ that has components max{0, u j },
j = 1, . . . , r ,

P(u) = ‖u+‖,

or the correspondingl1 or l∞ norm

P(u) = ‖u+‖1, P(u) = ‖u+‖∞.

Given any of these choices, it is seen that Eq. (21), and the equivalent bound (20), hold
if and only if for everyy ∈ Y, it is possible to select a Lagrange multiplierµ∗(y) of the
parametric problem (18) such that the set{µ∗(y) | y ∈ Y} is bounded.

Let us now specialize the preceding discussion to the parametric program

minimize f (x, y) = ‖y− x‖
subject to x ∈ X, gj (x) ≤ 0, j = 1, . . . , r,

(22)

where‖ · ‖ is the Euclidean norm,X is a convex subset of<n, andgj are convex functions.
This is the projection problem considered in the beginning of this section. Let us take
Y = X. If c satisfies Eq. (21), the bound (20) becomes

d(y) ≤ ‖y− x‖ + cP(g(x)), ∀x ∈ X, y ∈ X,

and (by takingx = y) implies the bound

d(y) ≤ cP(g(y)), ∀y ∈ X. (23)

Thus, the Hoffman-like bound (23) holds if a Lagrange multiplierµ∗(y) of the projection
problem (22) can be found such that Eq. (21) holds. In the case whereP is given by

P(u) = ‖u+‖,
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(or P is given by any one of a variety of other nondifferentiable functions ofu) boundedness
of the set{µ∗(y) | y ∈ X} is equivalent to the condition (21), and implies the Hoffman-like
bound (23). It turns out that the reverse assertion also holds, as shown in the following
proposition:

Proposition 3. Let d(y) be the optimal value of the projection problem

minimize ‖y− x‖
subject to x∈ X, gj (x) ≤ 0, j = 1, . . . , r,

(24)

X is a convex subset of<n, and the functions gj are convex. The Hoffman-like bound

d(y) ≤ c‖(g(y))+‖, ∀y ∈ X, (25)

holds for some constant c if and only if the projection problem(24)has a Lagrange multiplier
µ∗(y) such that the set{µ∗(y) | y ∈ X} is bounded.

Proof: The preceding discussion showed that the boundedness condition on the Lagrange
multipliers implies the Hoffman-like bound (25), so there remains to prove the reverse
assertion. Indeed, assume that Eq. (25) holds for somec, and to arrive at a contradiction,
assume that there existx ∈ X andy ∈ Y such that

d(y) > ‖y− x‖ + c‖(g(x))+‖.

Then, using Eq. (25), we obtain

d(y) > ‖y− x‖ + d(x).

From this relation and the triangle inequality, it follows that

inf
z∈X, g(z)≤0

‖y− z‖ > ‖y− x‖ + inf
z∈X, g(z)≤0

‖x − z‖

= inf
z∈X, g(z)≤0

{‖y− x‖ + ‖x − z‖}

≥ inf
z∈X, g(z)≤0

‖y− z‖,

which is a contradiction. Thus, Eq. (25) implies that we have

d(y) ≤ ‖y− x‖ + c‖(g(x))+‖, x ∈ X, y ∈ X.

Using Proposition 5.4.1(a) of [1], this implies that there exists a Lagrange multiplierµ∗(y)
such that

u′µ∗(y) ≤ c‖u+‖, ∀u ∈ <r , y ∈ X.
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This in turn implies the boundedness of the set{µ∗(y) | y ∈ X}. 2

Let us give two conditions under which the boundedness condition of Proposition 3 is
satisfied and a Hoffman-like bound of the form (25) holds:

(a) X = <n and gj are linear(this is the original Hoffman’s bound [4]). For a simple way
to prove this, letgj (x) = a′j x− bj , whereaj is a vector in<n andbj is a scalar. Then,
because of the linearity of the constraints, the projection problem (24) has at least one
Lagrange multiplierµ∗(y) (see e.g., [1], p. 437). This Lagrange multiplier satisfies

y− ŷ

‖y− ŷ‖ =
∑

j∈J(y)

µ∗j (y)aj ,

whereŷ is the unique projection ofy, andJ(y) is a subset of indices such that the set
of vectors{aj | j ∈ J(y)} is linearly independent. (We assume here thaty 6= ŷ, which
is the case of interest.) Since the vector

∑
j∈J(y) µ

∗
j (y)aj has norm 1, it follows that

µ∗(y) can be selected so that the set{µ∗(y) | y ∈ <n} is bounded.
(b) For each y∈ X, a Slater condition holds; that is there exists a vector̄x(y) ∈ X such

that gj (x̄(y)) < 0 for all j = 1, . . . , r . Furthermore, there is a constantγ such that

‖y− x̄(y)‖ − d(y)

min j=1,...,r {−gj (x̄(y))} ≤ γ, ∀y ∈ X. (26)

Mangasarian [11] used these two conditions (together with the additional condition
X = <n) to obtain a Hoffman-like bound of the form (25). For an alternative proof of
this result, note that the Slater condition implies (see e.g., [1], p. 450 or [3], p. 313) that
for eachy ∈ X there exists a Lagrange multiplierµ∗(y) with

r∑
j=1

µ∗j (y) ≤
‖y− x̄(y)‖ − d(y)

min j=1,...,r {−gj (x̄(y))} .

Thus, Eq. (26) implies the boundedness condition of Proposition 3.

3. Proof of Propositions 1 and 2

We consider the subset of<r+1

A = {(z, w) | there existsx ∈ X such thatg(x) ≤ z, f (x) ≤ w},

and its convex hull Conv(A). The vectors(g(xF ), f (xF )) and(g(xI ), f (xI )) belong toA.
In addition, the vector(0, f̃ ), where

f̃ = inf{w | (z, w) ∈ Conv(A)},
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is in the closure of Conv(A). Let us now show thatq∗ ≤ f̃ , as indicated by figure 1.
Indeed, for each(z, w) ∈ Conv(A), there existξ1 ≥ 0 andξ2 ≥ 0 with ξ1+ ξ2 = 1, and

x1 ∈ X, x2 ∈ X such that

ξ1g(x1)+ ξ2g(x2) ≤ z,

ξ1 f (x1)+ ξ2 f (x2) ≤ w.
Furthermore, by the definition of the dual functionq, we have for allµ ∈ <r ,

q(µ) ≤ f (x1)+ µ′g(x1),

q(µ) ≤ f (x2)+ µ′g(x2).

Combining the preceding four inequalities, we obtain

q(µ) ≤ w + µ′z, ∀ (z, w) ∈ Conv(A), µ ≥ 0.

The above inequality holds also for all(z, w) that are in the closure of Conv(A), and in
particular, for(z, w) = (0, f̃ ). It follows that

q(µ) ≤ f̃ , ∀µ≥ 0,

from which, by taking the maximum overµ ≥ 0, we obtainq∗ ≤ f̃ .
Let γ be any nonnegative scalar such thatg(xI ) ≤ −γg(xF ), and consider the vector

1 = −γg(xF )− g(xI ).

Since1 ≥ 0, it follows that the vector

(−γg(xF ), f (xI )) = (g(xI )+1, f (xI ))

also belongs to the setA. Thus the three vectors

(g(xF ), f (xF )), (0, f̃ ), (−γg(xF ), f (xI ))

belong to the closure of Conv(A), and form a triangle in the plane spanned by the “vertical”
vector(0, 1) and the “horizontal” vector(g(xF ), 0).

Let (0, f̂ ) be the intersection of the vertical axis with the line segment connecting the
vectors(g(xF ), f (xF )) and (−γg(xF ), f (xI )) (there is a point of intersection because
γ ≥ 0). We have by Euclidean triangle geometry (cf. figure 1)

f̂ − f (xI )

f (xF )− f (xI )
= γ

γ + 1
. (27)

Since the vectors(g(xF ), f (xF )) and(−γg(xF ), f (xI )) both belong to Conv(A), we also
have(0, f̂ ) ∈ Conv(A). Therefore, there exist vectorsx1, . . . , xm ∈ X and nonnegative
scalarsξ1, . . . , ξm with

∑m
i=1 ξi = 1, satisfying

m∑
i=1

ξi g(xi ) ≤ 0,
m∑

i=1

ξi f (xi ) ≤ f̂ .
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Thus, if f̂ < f̃ , we must have
∑m

i=1 ξi f (xi ) < f̃ , contradicting the definition of̃f . It
follows that f̃ ≤ f̂ and sinceq∗ ≤ f̃ , as shown earlier, from Eq. (27) we obtain

q∗ − f (xI )

f (xF )− f (xI )
≤ f̃ − f (xI )

f (xF )− f (xI )
≤ γ

γ + 1
. (28)

Taking the infimum overγ ≥ 0, the error bound (5), (6) follows.
Assume now thatX is convex, andf andgj are convex overX. Then the setA is known

to be convex under these assumptions (see e.g., [1], Proposition 5.3.1, p. 446), and we have
f̃ = f ∗. Proposition 2 then follows from Eq. (28).

Note

1. Note that Proposition 5.4.1(a) of [1] includes a compactness assumption on the setX, but this assumption is
unnecessary as long as finiteness of the optimal valuef ∗(y) is assumed; see the discussion of p. 473 of [1].
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