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COMBINED PRIMAL-DUAL AND PENALTY
METHODS FOR CONSTRAINED MINIMIZATION*

DIMITRI P. BERTSEKASf

Abstract. In this paper we consider a class of combined primal-dual and penalty methods often
called methods of multipliers. The analysis focuses mainly on the rate of convergence of these methods.
It is shown that this rate is considerably more favorable than the corresponding rate for penalty
function methods. Some efficient versions of multiplier methods are also considered whereby the
intermediate unconstrained minimizations involved are approximate and only asymptotically exact.
It is shown that such approximation schemes may lead to a substantial deterioration of the convergence
rate, and a special approximation scheme is proposed which exhibits the same rate as the method with
exact minimization. Finally, we analyze the properties of the step size rule of the multiplier method in
relation to other possible step sizes, and we consider a modified step size rule for the case of the convex
programming problem.

1. Introduction. During recent years, penalty function methods (see, e.g., [7])
have gained recognition as one of the most effective class of methods .for solving
constrained minimization problems. Characteristic of such methods is that they
require the solution of a sequence of unconstrained minimizations of the objective
function of the problem to which an increasingly high penalty term is added. It is
well known that these unconstrained minimization problems have increasingly
unfavorable structure due to ill-conditioning [7], [17], a fact which ofte.n leads to
slow convergence despite the use of efficient unconstrained minimization algor-
ithms. Another important class of methods for constrained minimization is the
so-called class of primal-dual methods (see, e.g., [17]). Such methods are, in effect,
iterative ascent algorithms for solving the dual problem (defined under suitable
local convexity assumptions [17]). Similar to penalty methods, they involve the
solution of a sequence of unconstrained minimizations of a Lagrangian function,
each of which yields the value and the gradient of the dual functional at the current
value of the Lagrange multiplier. At the end of each minimization, the Lagrange
multiplier is updated by means of an ascent iteration. Primal-dual methods are
known to have serious disadvantages. First, the problem must have a locally
convex structure in order for the dual functional to be defined. Second, it is usually
necessary to solve a large number of unconstrained minimization problems since
the ascent iteration converges only moderately fast. Thus primal-dual methods
have found application only in the limited class of problems where the uncon-
strained minimizations can be carried out very efficiently due to special structure.

In the last few years, a number of researchers have proposed a new class of
methods, often called methods of multipliers, in which the penalty idea is merged
with the primal-dual philosophy. In these methods, the penalty term is added not
to the objective function but rather to the Lagrangian function which is ordinarily
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522 DIMITRI P. BERTSEKAS

minimized in primal-dual methods. Again, a sequence of unconstrained minimiza-
tion problems is solved; however, each minimization is followed by an ascent
iteration on the Lagrange multiplier which is aimed at solving the dual problem.
In contrast with penalty methods, the penalty term need not be increased to
infinity, thus avoiding the associated extreme ill-conditioning. In addition, the
ascent iteration converges fast, thus necessitating only a few unconstrained
minimization cycles. By moderating the disadvantages of both penalty and primal-
dual methods, multiplier methods have emerged as a very attractive class of
algorithms for constrained minimization, a fact substantiated by the limited
computational experience presently available. This paper provides an analysis
of some aspects of these methods mostly related to their convergence rate and their
efficient implementation.

The methods that we consider were initially proposed by Hestenes [12] and
Powell [32], and somewhat later by Haarhoff and Buys [11]. Hestenes gave no
interpretation or convergence proof of his method of multipliers, and Powell was
motivated by a penalty function viewpoint. The primal-dual interpretation was
given later by Luenberger [17], who in addition gave an argument indicating the
fast convergence of the method, and by Buys [6], who in his recent thesis provided
an extensive and well written analysis of multiplier methods. Buys [6] also proved
local convergence of the method of multipliers both for the case of exact and
approximate unconstrained minimization under the assumption that the penalty
parameter is constant but sufficiently large. A similar convergence result for exact
minimization was proved by Rupp [41], [42]. Global convergence results for
nonconvex problems were proved recently by the author in [3] and [5]. For
quadratic problems with linear constraints, global convergence was also proved
by Martensson [19] who in addition proposed some variations on the multiplier
method. The method of multipliers, has been applied to the solution of some
infinite-dimensional problems by Rupp [39], [40], [41]. Some variations of the
method of multipliers were proposed by Miele, et al. [20], [21], and Tripathi and
Narendra [44]. In these particular variations, the Lagrange multiplier is updated
at the end of every gradient step or every conjugate gradient cycle in the uncon-
strained minimization problem. The convergence properties and the precise
motivation for such methods is not as yet quite well understood. They seem to be
somewhat related to multiplier methods with asymptotically exact unconstrained
minimization, as will be explained later on in this paper. They are also related to
the Lagrangian algorithms of Arrow, Hurwicz and Uzawa [2] (particularly the
chapter by Arrow and Solow)as applied to the "penalized" problem (5)of the
next section. Finally we note that multiplier methods as proposed in the above
references are mainly applicable to problems with equality constraints. More
recently, considerable attention has been directed towards extension of the method
to treat inequality constraints. At the same time, the properties of the method when
applied to convex programming problems have been analyzed in detail. In this
connection, we mention the excellent papers by Rockafellar [34]-[37], the ground-
work for which was laid in his early paper [33], and the work of B. Kort and the
author [14]-[16], [4]. Generally speaking, methods of multipliers, as adapted to
treat inequality constraints, exhibit similar behavior as for the case of equality
constraints. However, for convex programming problems, the methods have some
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METHODS FOR CONSTRAINED MINIMIZATION 523

very attractive properties, namely that they converge globally for any positive
value of the penalty parameter [14], [35], [15], [4]. We mention also that there is a
very interesting duality theory associated with multiplier methods primarily
developed by Rockafellar [33], [34], [36] (see also [1], [3], [15], [18], [28]). Aside
from its intrinsic value, this theory can form the basis for the development of
efficient large-step Lagrangian methods. For one such algorithm based on
Newton’s method, see Mangasarian [18]. We note that Lagrangian methods
utilizing the penalty idea have been proposed by Fletcher [8], [10], Fletcher and
Lill [9], and by Miele and his associates [22], [23]. The precise connection of these
methods with methods of multipliers is as yet unclear. Finally we mention that
some work related to the method of multipliers has been reported recently in
[26] and [43].

The present paper is organized as follows. In the next section we describe the
basic method of multipliers in a framework which is suitable for analysis of its
convergence rate. Subsequently in 3 we obtain a useful expression for the rate
ofconvergence ofthe method. It is shown in particular that as the penalty parameter
is increased, the rate of convergence of the dual iteration approaches a superlinear
rate. Furthermore, it is shown that we can expect multiplier methods to converge
considerably faster than penalty methods which are operated sequentially. In 4
we consider some efficient variants of the method of multipliers whereby the un-
constrained minimizations are only asymptotically exact. We show that such
approximate minimizations may lead, in general, to a substanial deterioration ofthe
convergence rate, and we propose a particular approximation scheme which
exhibits the same asymptotic convergence rate as the method with exact mini-
mization. In 5 we compare the step size of the multiplier method with other
possible step size rules. We show that for certain problems which are not locally
convex, the multiplier method step size is nearly optimal. For locally convex
problems, we explain that this is not necessarily true and we propose an alternative
step size rule which exhibits an improved convergence rate over the ordinary
method. Finally in {} 6 we present results of numerical experiments which generally
support the conclusions of the theoretical analysis.

2. The method of multipliers. Consider the following constrained minimiza-
tion problem:

(1) minimize f(x) subject to h(x) 0,

where f:R R is a given twice continuously differentiable function and
h R R", m <= n, is a given twice continuously differentiable mapping.

Let x* be an optimal solution of problem (1). We shall assume that x* satisfies
the second order sufficiency conditions for an isolated local minimum, i.e., the
matrix Vh(x*) has full rank and there exists a unique Lagrange multiplier (row)
vector 2* such that

(2)

and

V/(x*, 2*)= Vf(x*)+ 2*Vh(x*)= 0

(3) y’L(x*, 2*)y > 0D
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524 DIMITRI P. BERTSEKAS

for all y R" such that Vh(x*)y 0, y 4: 0. In the above relations, V/(x*, 2*) and
L(x*, 2*) denote the gradient relative to x and the Hessian matrix relative to x,
respectively, of the Lagrangian function

(4) l(x, 2) f(x) + 2h(x)
evaluated at (x*, 2*). The m x n matrix Vh(x) denotes the matrix having as rows
the gradients Vhi(x), 1,..., m, and a prime denotes transposition.

It is clear that problem (1) is equivalent to the following problem obtained
from problem (1) by adding a penalty term to the objective function:

(5) minimize f(x) + 1/2cllh(x)ll 2 subject to h(x) O,

where c is a positive scalar.
Consider now the Lagrangian function corresponding to problem (5)"

(6) l(x,2, c) f(x) + 2h(x) + 1/2cllh(x)l 2,

and its Hessian evaluated at (x*, 2*)"

(7) L(x*, 2", c) L(x*, 2*) + cVh(x*)’Vh(x*).

It follows from (3) that

(8) y’L(x*, 2*, c)y > O V y R", y v O

if c >__ c* > 0, where c* is sufficiently large to guarantee that the matrix L(x*, 2*, c*)
is positive definite. As a result, for every c with c >__ c*, problem (5) has locally
convex structure according to the definition of[17], and thus we can define for each
c > c* the dual functional

go(2) min l(x, 2, c).

In the above equation, the dual functional go(2) is defined in a neighborhood of 2"
and the minimization is understood to be local in a neighborhood of x*. The
implicit function theorem and our assumptions guarantee that such neighborhoods
exist for every c >__ c*. Since, however, in the algorithm which we shall describe, the
scalar c may vary from one iteration to the next, it is necessary to provide a uniform
definition of the dual functional over neighborhoods which do not depend on c.
We shall restrict, however, the scalar c to take values in an interval [e*, el, where
e is an arbitrarily large constant. For practical purposes, this restriction results in
no great loss of generality.

For any element z of a finite-dimensional space with the usual Euclidean
norm and for any scalar s > 0, we denote by B(z;s) the open ball centered at z and
having radius s. We denote by Biz;s) the corresponding closed ball. We now have
the following proposition.

PROPOSITION 1. There exist positive scalars e* and 6" such that for all
2 B(2*; 6*) and all c [c*, i], the problem

minimize l(x, 2, c) f(x) + 2h(x) + 1/2cllh(x)ll 2 subject to x e B(x*;e*)

has a unique solution x(2, c). Furthermore, for every e with 0 < e =< e*, there exists
a 6 with 0 < 6 < 6" such that

x(2, c) e B(x* e) V 2 e B(2* 6), c e [c*,
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METHODS FOR CONSTRAINED MINIMIZATION 525

Proof. The proof is based on a fixed-point argument similar to one used for
the proof of the implicit function theorem (see, e.g., [13], [25]).

For each 2 R and c e [c*, c], consider the mapping QZ’C’Rn R defined by

QX’C(x) x [L(x*, 2", c)]- 1Vl(x, 2, c),

where L, and V1 denote the Hessian and gradient of the augmented Lagrangian
given by (6) and (7). Taking the gradient of QX’ with respect to x, we have

and

VQZ’(x) [L(x*, 2", c)]- ilL(x*, 2", c) L(x, 2, c)]

IIV’(x)ll IIEL(x*, *, c)]-’11 IlL(x*, *, c) L(x, 2, c)ll.

Now given any at(0, 1), there exist an > 0 and 8 > 0 such that IIVQZ’(x)ll
_<_ a < 1 for x B(x* e), 2 e B(2*; 8), c e [c*, c].

On the other hand, we have

11(2a’(x*) x*}l =< IIEZ(x*, 2", c)]-xll IIV/(x*, 2, c)ll

[Z(x*, 2", c)]- Xll IIV/(x*, 2, c) Vl(x*, 2", c)ll,

and by letting i be sufficiently small, we can assert that

II0’(x*) x*ll _-< e(1 a) V c

Now we have

112’C(x)- x*ll _-< IIZ’(x*) -x*ll / 112z’(x)- 2’(x*)11

__< (1 a) / sup IIV2’[x* / t(x x*)]ll IIx x*ll =< (1 a) / a
O<t<l

for all x B(x*, ), B(x*; fi), c [c*, i].
Thus we have QZ’’(x* )--. B(x* e) and

IIV2’(x)ll __< o.< 1 for each

Hence QZ’ has a unique fixed point x(2, c), i.e.,

x(, c) QZ’C[x(2, c)] x(2, c) [L(x*, 2", c)]- Vl[x(2, c), 2, c],

from which

Vl[x(2, c), 2, c] O.

If we take, in addition, e and sufficiently small so that L(x, 2, c) is positive definite
for all (x, 2) B(x*;e) B(2* 6) and c [c*, i], we have that the corresponding
x(2, c) is a unique unconstrained minimum of l(x, 2, c) within B(x*;e*) for
sufficiently small, and the result of the proposition follows easily. Q.E.D.

The following corollary is an easy consequence of Proposition 1.
COROLLARY 1.1. Let L be such that

IIh(x) h(y)ll =< LIIx Yll V x, y e B(x*; e*),
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526 DIMITRI P. BERTSEKAS

and e*, 6* be as in Proposition 1. Then for every e with 0 < e <__ *, there exists a
(5 with 0 < 6 <_ (5* such that

x(2, c) e B(x* ), 2 + ch[x(2, c)] e B(2*; (5 + cLe)

*for all 2 e B(2*" 6), c el.
Proof. If corresponds to e as in Proposition 1, then x(2, c) e B(x*; e) and

ll2 + ch(x(2,c)] 2"11 -<_ 112 2"11 + cllh[x(2, c)]ll

[12 2"1[ + rl]h[x(2,c)] h(x*)l[ < 6 + Le. Q.E.D.

Proposition 1 essentially says that by locally minimizing the augmented
Lagrangian, one obtains points which are arbitrarily and uniformly close to x*
provided 2 is sufficiently close to 2*. Furthermore, the proposition provides a
means for defining the dual functional over a domain which is common for all
c [c*, el. We define, for all 2 B(2*; 6*) and all c [c*, el, the dual functional as

(9) go(2) min {f(x)+ 2h(x) + 1/2cllh(x)[I2},
xeB(x,;e*)

where the minimum over the open ball B(x*; e*) is attained by Proposition 1. It
can be easily shown (see also [6], [17]) that the scalars e* and 6* in Proposition 1
and Corollary 1.1 can be chosen so that tte dual functional go(2) is twice contin-
uously differentiable and concave in B(2* 6") for all c e [c*, el. We shall assume
that e* and 6" have been so chosen. The gradient Vg and Hessian matrix G are
given by
(10) Vg(2) h[x(2, c)]’,

(11) G(2) -Vh[x(2, c)]{L[x(2, c), 2, c]}-’Vh[x(2, c)]’.

Furthermore, the dual functionals go(2), c e It*, e] have a common maximizing
point, the Lagrange multiplier 2", and a common optimal value f* which is equal
to the optimal value f(x*) of problem (1):

g(2*) max g(2) f* V c e [c*, el.
The method of multipliers is simply a gradient method for maximizing the

dual functional by means of the iteration

(12) 2k+ 2k + cVg(2k).
The gradient Vg(2k) is given by (10), where x(2k, c) is an unconstrained minimum
(within B(x*; e*)) of the augmented Lagrangian

(13) l(x, 2k, c) f(x) + 2kh(X + 1/2cllh(x)l[ 2.

The iteration (12) is a fixed step size gradient method for solving the dual
problem which can be shown [6], [41] to converge to 2* provided the constant c
is sufficiently large. This fact will also be proved in the next section in a more
general setting where c may vary from one iteration to the next. It should be noted
that in order for the method to converge, it is not necessary that the initial Lagrange
multiplier estimate 2o is in B(2*; 6"). Since the method can also be viewed as a
penalty function method, it can be shown [3] that if the initial penalty parameter c
is sufficiently large and the corresponding minimization problem yields a solution
close to x*, then the next point 21 will be arbitrarily close to 2*. Thus in the initialD
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METHODS FOR CONSTRAINED MINIMIZATION 527

iterations, the penalty nature of the method is dominant and provides points
sufficiently close to 2", and in subsequent iterations, the gradient nature of the
algorithm becomes more pronounced.

It is important to realize that it is not necessary to keep the penalty parameter
c fixed during the computation. Each constant c defines a dual functional go(2) via
(9). The collection of all these dual functionals has the same local maximum 2*.
Thus when a different c (say ck) is used at the kth unconstrained minimization,

(14) minimize f(x) + kh(X) + 1/2Ckllh(x)ll 2,

the iteration

(15) 2k + 2k + Ckh[X(2k, Ck)]’

can be viewed as a gradient step for maximizing the corresponding dual functional
gc(2), which attains its maximum at 2*. Furthermore, it is possible to let the
sequence c increase to infinity. While the intermediate unconstrained minimiza-
tion problems become increasingly ill-conditioned, the dual iteration (15) has
increasingly faster convergence rate, as will be shown in the next section, and on
balance, the method performs well. A reasonable method to update c suggested
by Powell [32] and Buys [6], is to multiply e by a constant greater than one (say
5-10) at the end of each unconstrained miminization for which the resulting
constraint violation as measured by IIh(x)II is not decreased by a certain factor.
An alternative method for updating c has been suggested by Miele, et al. [20] in a
somewhat different setting.

The method of multipliers can be easily extended to handle inequality con-
straints. As shown by Rockafellar [33]-[36], one may use slack variables to convert
inequality constraints into equality constraints. However, the minimization with
respect to the slack variables can be carried out explicitly, and as a result, the
dimension of the unconstrained minimization problem is not increased. We do
not further discuss inequality constraints in this paper, and we refer to [3], [15]
and [16] for a discussion of the related rate of convergence aspects. Among other
things, one may show that the approximate Lagrange multipliers corresponding
to inactive constraints converge to zero in a finite number of steps. As a result,
inactive constraints do not enter in any rate of convergence estimates, and the
results of this paper under a strict complementarity assumption carry over to the
inequality case in a straightforward manner.

We mention finally that the method of multipliers has an economic inter-
pretation similar to the one given by Arrow and Solow [2] for their combined
Lagrangian and penalty method. In this interpretation, the iterations of 2 are
viewed as market price adjustments to excess demand or supply, and the iterations
of x are viewed as production vector changes in response to extrapolated market
price changes.

3. Convergence rate of the method of multipliers. As mentioned in the previous
section, the method of multipliers can be viewed as a gradient method for solving
the dual problem. Thus one can obtain its convergence rate by using a correspond-
ing result on gradient methods (see, e.g., [29], [30]). This result, however, is rather
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528 DIMITRI P. BERTSEKAS

uninformative, since it involves the eigenvalues of the Hessian Go(2), which strongly
depend on c. The following proposition is obtained by a modification of this result
and provides an expression for the convergence rate which is more amenable to
proper interpretation.

Let us consider the matrix

(16) D(x, 2) Vh(x)[L(x, 2)]- Vh(x)’,

where L(x, 2) is the Hessian relative to x of the Lagrangian (4). Notice that D(x*, 2*)
would be the Hessian at 2" of the ordinary dual functional go if the problem had a
locally convex structure [17]. Assume that D(x, 2) is defined and is invertible in a
set B(x*;e)x B(2*; + eLe), where e and 6 are positive scalars such that
x(2, c) B(x*; e),2 + ch[x(2, c)] B(2*; + eLe) for all 2 B(2*; ) and all c [c*,e]
in accordance with Proposition 1 and Corollary 1.1. Assume also that the algorithm
of(14), (15) yields a sequence of vectors (xk, 2) converging to (x*, 2*) and that after
some index k, the vectors (xk, 2k) are contained in B(x*;e) x B(2*; 6). Then we
have the following proposition.

PROPOSITION 2. Under the preceding assumptions, we have

2* 2*(17)

with

1
(18) rk max

(,,)(,,;) (.;+L) 1 ckei[D(x, 2)]
1,...,m

where ei[D(x, 2)] denotes the i-th eigenvalue of D(x, 2).

Proof Consider the Hessian matrix (11). We have

Gc(2) -Vh[x(2, c)]{L[x(2, c), f] + cVh[x(2, c)]’Vh[x(2, c)]}-aVh[x(2, c)]’,

where 2 + ch[x(2, c)]’. From a well-known matrix identity, we have

[I cD[x(2, c), i]]-1 I + cGc(2),
and hence for the corresponding eigenvalues of Go(2) and D[x(2, c), i], we have

1
(19)

1 cei[D[x(2, c),i]]
1 + cei[Gc(2)].

Now by using the iteration (15), we have

+ I1 * + ckh(xk)

where 2 2* + t(2k 2*). Hence

2k 2* + ck (2k 2*)Gck(2 dt

2" 2" fi [I + ckGck(2)] dt

max
tz[O,1l

1,..-,m

I1 + ce,[Gc(2)]l.
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METHODS FOR CONSTRAINED MINIMIZATION 529

By using (19) and Corollary 1.1, it follows that

2" 2" max
(x,2)eB(x;’t:) B0,*;6

i= 1,...,m
ce[D(x, 2)1

rkll2k- 2*l]. Q.E.D.

Some important observations can be made from the result of Proposition 2.
First of all, a trivial modification of its proof yields the following local convergence
result.

COROLLARY 2.1. Let and (3 be positive scalars such that x(2, c) B(x* e) and
2 + ch[x(2, c)]’ B(2* di + Le) for all 2 B(2*; ) and c [c*, i7] in accordance
with Proposition 1 and Corollary 1.1. Assume that e and 6 are sufficiently small and
ck is sufficiently large so thatfor some constant I,

(20) c _> > max 0,
e[D(x, 2)]

V k > 0

for all eigenvalues e[D(x,)] of D(x, 2) over B(x*;) x B(2";6 + eLe). Assume
also that 2o e B(2*;). Then the sequence {2} generated by the iteration (15)
remains in B(2*; ) and converges to 2*.

Proof. By exact repetition of the argument in the proof of Proposition 1, we
have 1121 2"11 < rol12o 2"1[, where ro is given by (18). By our assumption (20),

1
ro<max =p< 1.

1 lte[O(x, 2)]

Hence II&x 2"11 _-< Pll2o 2"11 and 21 e B(2*; 6). Proceeding similarly, we prove
for all k that 112k A*ll --< pkll20 2"11, and the result follows immediately. Q.E.D.

The most important observation from Proposition 2 is that the sequence
II&k- 2"11 converges linearly with stepwise convergence ratio rk. Furthermore,
rk decreases to zero as ck is increased. Thus a superlinear rate is approached as ck
tends to infinity. This is consistent with the argument of Luenberger [17], who
observed that as ck increases, the gradient iteration (15) approaches a Newton
step for solving the dual. If the sequence ck converges to a finite value c, then we
have

2+ 2" 1
(21) lim sup < max ?.

k- II;k Z*II 1 cei[D(x*, 2*)]

It can easily be shown that at least for quadratic problems with linear constraints
and a constant sequence ck, is a sharp bound in the sense that there exist starting
points 2o for which (21) holds with equality.

It is of interest to compare the convergence rate of the multiplier method with
the convergence rate of penalty function methods which are based on sequential
unconstrained minimization of the function

(22) f(x) + 1/2cllh(x)ll 2

for a sequence ck . If the sequence {xk} of minimizing points of (22) converges
to the point x*, then the sequence {2}, where 2 ch(xk)’, converges to 2*. It has
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530 DIMITRI P. BERTSEKAS

been shown [31], [24] that such penalty function methods generally exhibit a
convergence rate governed by the relation

(23) 112-2"11 =<q/Ck Vk>F,

where k is some index and q is a constant depending on the problem. By comparing
(17), (18) and (23), it can be seen that the sequence {2} can be expected to converge
considerably faster in the multiplier method than in the quadratic penalty function
method. This fact has been substantiated by numerical experiments. Given that
the two methods involve a comparable amount of computation at each uncon-
strained minimization and share the advantage of simplicity, it appears that
multiplier methods should be generally considered preferable to penalty function
methods. For further elaboration on the comparison between penalty methods and
multiplier methods we refer to [3] and [5].

4. Etticient implementations of the multiplier method. The multiplier method
described in the previous section has the drawback that the unconstrained mini-
mization of the augmented Lagrangian must be carried out exactly in order to
update the Lagrange multiplier via the gradient iteration (15). This requires an
unreasonably high amount of computation for the unconstrained minimizations.
It appears that a more efficient scheme results if only moderate accuracy is de-
manded in the initial minimizations, and the accuracy is increased at later itera-
tions. Such a procedure has been suggested by Buys [6] in a similar vein as in
corresponding penalty function methods [24], [27], [31]. In this procedure, the
minimization process in the problem

(24) minimize l(x, )k, Ck) f(x) + 2kh(X -+- 1/2Ck Ih(x)l 2

is terminated at a point Xk such that

(25) IlVl(xk, k, Ck)l <= k,

where {ek} is a preselected decreasing sequence tending to zero. The corresponding
dual iteration can take several alternate forms. One possibility is to use the iteration
of the previous section

(26) ’’k+ 2k -+" Ckh(Xk)’.
Other possible methods of updating include the iteration

h(Xk)’Vh(xk)Vl(xk, 2k, Ck)(2) C h(Xk) Vh(xk)Vh(xk) h(Xk)

proposed by Miele, et al. [18] in a somewhat different setting, and the iteration

(29) Rk + Vf(Xk)Vh(xk)’[Vh(xk)Vh(xk)’]-
suggested by Haarhoff and Buys [11], Buys [6], and Miele, et al. [22].

One way of justifying the iteration (27) is by observing that fig as given
by (28) minimizes the quantity IIVl(Xk, 2k, fl) over fl [22]. Hence, lacking further

(27) 2+ 2 + flkh(X,)’,

where
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METHODS FOR CONSTRAINED MINIMIZATION 531

information, the vector h(Xk)’ can be considered as a more accurate approximation
to the gradient Vgak(2k) of the dual functional gak(2) than to the gradient Vgc(2k).
A similar interpretation can be given for the iteration (29). It should be mentioned
that both iterations (27) and (29) reduce to the basic iteration (26) if the uncon-
strained minimization (24) is carried out exactly.

First let us consider the algorithm with the termination criterion (25) and the
updating rule (26) (call it Algorithm A1). Let us consider again the matrix

(30) D(x, 2) Vh(x)[L(x, 2)]- ’Vh(x)’
defined over B(x* e) x B(fl*; 6 + eLe), where e and 6 are as in Proposition 1, and
assume that the algorithm generates a sequence (xk, 2k) converging to (x*, fl*) and
that after some index k, the vectors (x,, fl,) are contained in B(x*; e) x B(fl*; 6).
By Proposition 1, the exact minimizing point x(fl, c) of l(x, ilk, c,) belongs to
B(x*; e).

Let L > 0 be as in Corollary 1.1, i.e.,

(31) IIh(x) h(y)ll 5 Zllx Yll V x, y e n(x*; *),

and let M denote the minimum of the eigenvalues of the Hessian L(x, 2, c) for
(x, 2) B(x* e) B(2*; 6), c [c*, el, i.e.,

(32) M min e[L(x, 2, c)].
(x,2)(x*;e)

c[c*, e]
1,...,n

We assume that e and 6 are sufficiently small to guarantee that M > 0. We have the
following proposition.

PROPOSITION 3. Under the.preceding assumptions, we have, for Algorithm A1,

(33)

where

12/x 2"11 =< rl12- *1 + ekCk(L/M) V k => k,

(34) rk max
(x,2)(x*;) B(2";6 1 c,e[D(x, 2)]

Proof We have, by using (26),

I1- * + Ckh[X(2k, C)]’ll + cllh(x)- h[X(2k,

Now, similarly as in Proposition 1, we have

]2k 2" + Ckh[X(2k, Ck)]’ll ____< rkllk 2"1.
On the other hand, we have

IIh(x)- h[x(2t,, cu)]ll LIIxu- x(2, cu)ll

L L L.kl Vl(xk, 2k, Ck) Vl[x(2k, Ck) 2k, Ck] - Vl(xk, 2, Ck)ll < M

and the result follows. Q.E.D.
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532 DIMITRI P. BERTSEKAS

The result of Proposition 3 indicates that the convergence rate of Algorithm
A1 may be different from the convergence rate of the multiplier method of the
previous section. Indeed, if the sequence ek does not converge as fast as
the convergence of the sequence IIk 2"11 may not even be linear. To illustrate
this fact consider the following example.

Example. Consider the problem

minimize 21--X2 subject to x O.

Take c 1, and let the accuracy of the unconstrained minimization be determined
by

k-1
IlVl(x,&k, 1)11 k k(k + 1)’

k >_ 2,

where the augmented Lagrangian l(x, 2, 1) is given by

l(x l) 1/2x2
nt- X -’t" 1/2X2

Then by direct computation, it can be seen that a possible sequence {’k} generated
by the algorithm is the sequence

2k l/k, k >= 2,

if the starting point is 22 1/2. Since 2* 0 for this problem, we have

I+x I/1 2"1 k/k + 1 k > 2

showing that the convergence of the sequence {2k} is not linear.
In order to preserve the convergence rate of the multiplier method, it is

necessary to use an approximation scheme which guarantees that the minimization
is sufficiently accurate at least when we are close to the solution. Such a scheme is
obtained by using, instead of the termination criterion (25), the following termina-
tion criterion"

(35) IIV/(Xk, 2k, C)II _--< lkllh(xk)ll,

where {r/k} is a decreasing sequence converging to zero. We shall call the algorithm
resulting from use of the criterion (35) and the dual iteration (26) Algorithm A2.
We can now prove the following proposition, under the assumptions of Proposi-
tion 3 and the additional assumption that M r/kL > 0 for all k >= k.

PROPOSITION 4. Under the preceding assumptions, we have, for Algorithm A2,

(36)
12k / 2* < (rk + M r/kL_ r/kLPk)[ i]’k I]’.1 I k >= k,-

where

(37) r max
(x,2) B(x*;e) B(2*; +g’La)

i= 1,...,m

(38) Pk max
(x,) (x*;e) B(,;t*;t$ +E’Le)

i= 1,...,m

1 ckei[D(x, 2)]

Ckei[D(x, 2)]
1 GeliD(x, 2)]D
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METHODS FOR CONSTRAINED MINIMIZATION 533

Proof. We have

112k/ 2"11 112k- 2* / Ckh(Xk)’ll
(39)

----< II’k ’* + ckh[X(2k, Ck)]’ll + Ckllh(Xk)- h[X(2k, Ck)]ll.

Similarly as in Propositions 2 and 3, we have

(40)

Also we have

IIh(Xk) h[x(2,, c)qll LIIx, X(&k, Ck)ll

L qkL<= -ll Vl(Xk, 2k, C)II _--< ---IIh(Xk)ll

from which

(41)

rlkL_-< --tllh(x,) h[x(2,, c,)]ll + Ilh[x(2,,

c,llh(x,) h[X(2k, Ck)]]] < rlkLCk IIhEx(, c)qll.
M r/kL

Since h[x(2k, Ck) is the gradient of the dual functional gck(2) at 2k and Vgck(2*) O,
we have

c,llh[x(A,, c)ll c max le[G()]1112
,e(;t*;)

1,...,m

and by using (19) and (38),

(42) Ckllh[X(2k, Ck)]]l Pkll&k &*l]"

By combining now (39), (40), (41) and (42), the result follows. Q.E.D.
It is to be noted that Pk is bounded and tends to unity as ck increases, so that

for large ck and small r/k, (36) becomes approximately

2" 2*ll2k/X < (rk / qkZ/M)llAk II-
A comparison of Propositions 2 and 4 reveals now that Algorithm A2 has

identical asymptotic convergence ratio with the method of multipliers.
It is easy to see that when the updating rule (27) is used instead of (26), the

estimate of Proposition 4 becomes

(43) [12k+

where

k max
(x,2) B(x*;e) B(2.;6

1,...,m

/k max
(x,,Z) (x*;) (2";6

1,...,m

1 fl,e[D(x, )]

flke,[D(x, 2)]
1 flkei[D(x, 2)]D
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534 DIMITRI P. BERTSEKAS

When the sequence ck converges to a finite value c, then in view of (28) and (35),
we have flk c, and the relation (42) yields

lim sup =< ?,; ,*

where

max
i= 1,...,m 1 cei[D(x*, 2*)]

In other words, Algorithm A2 with the iteration (27), (28) instead of (26) has the
same asymptotic convergence ratio as the multiplier method of the previous
section, which requires exact unconstrained minimization.

It should be noted that all the results of this and the previous section can be
generalized for the more general algorithm which involves the (exact or approxi-
mate) unconstrained minimization of

l(x, 2,, M,) f(x) + 2h(x) + 1/2h(x)’M,h(x),
where Mk are positive definite symmetric matrices. The dual iteration becomes, in
this case, 2/ 2 + h(x,)’M,. When Mk q,I, we obtain the method of multi-
pliers discussed earlier. The use of the matrices M has the effect of scaling the
constraint equation. If M M, the convergence rate (21) becomes

IIM; 1/z(2+ 2")’11 1
lim sup < max
-.o IIM x/2(2 2")’11 1 ei[MX/2D(x*,/],*)M 1/2]

and similar results as those of Propositions 2, 3 and 4 can be obtained. The up-
dating rule (29) can be justified in the context of this more general algorithm in
that 2k / as given by (29) can be written as 2k / 2k + h(Xk)’Mk for some diagonal
matrix Mk, and furthermore, Mk minimizes IIVl(xk,2k,M)l over all diagonal
matrices M [22].

We finally mention that it is easy to establish local convergence results,
similar to Corollary 2.1, for Algorithms A1 and A2 by making use of the arguments
in the proofs of Propositions 3 and 4. The additional assumption required is that
the sequences {ek} and {r/k} are bounded above by sufficiently small positive
numbers. This assumption is necessary in order to guarantee that the generated
sequence {’k} satisfies 112k 2"11 =< 1120 2"11 < 6 and hence the sequence
remains in the neighborhood B(2";6). Stronger global convergence results for
algorithms similar to A1 and A2 have been obtained recently in [3] and [5].

5. Alternative step size choices for the method of multipliers. As mentioned
in 2, the method of multipliers can be interpreted as a fixed step size gradient
method of maximizing the "penalized" dual functional go(2). It is well known [29]
that in such gradient methods, the choice of step size parameter is crucial both in
terms of the convergence and in terms of the rate of convergence of the method.
It is a rather remarkable fact that the particular step size parameter c which is used
in the multiplier method works so well from the point of view of both convergence
and rate of convergence. Nonetheless, it is of interest to try to compare the step
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METHODS FOR CONSTRAINED MINIMIZATION 535

size c with other possible step sizes and in particular with the optimal step size.
This is what we attempt to do in this section. As it turns out for certain problems
which are not locally convex, the step size c is close to the optimal and can hardly
be improved upon. However, for the locally convex case (e.g., a convex program-
ming problem), the analysis indicates the possibility of a significant improvement
by modification of the step size. In what follows, we suggest a modified step size
rule which has worked well in numerical experiments.

In order to simplify the analysis, we initially restrict attention to the case in
which the objective function f is quadratic (with not necessarily positive definite
or even semidefinite Hessian matrix) and the constraint functions hi are linear.
Since we shall be using results which have been proved in generality [29], it is a
routine matter to extend our analysis to the general case.

Consider a multiplier method where c is held fixed for the purpose of uncon-
strained minimization. The step size now, however, is taken to be rather than c,
i.e., the iteration

(44) 2k+ 2k -I- oVgc(,k) Vk

is used. Then by [29, Thm. 6], the iteration above converges for

(45) 0 < < 2/Ec,

where Ec is the largest eigenvalue of the negative Hessian -G(2*), provided that
G(2*) is a negative definite matrix. Furthermore, the rate of convergence is linear
and governed by

(46) 112k+ <__ r() Y k,
*

where

(47) r(00 max {11 0El, I1 el},
with Ec and e denoting the largest and smallest eigenvalues of -Gc(2*). The
optimal convergence ratio is attained for the step size * minimizing r(00 over

(48) 0* 2/(E + e)

and is given by

(49) r(0*)
E + ec"

In general, it is quite difficult to find the optimal step size, since this requires
knowledge of the eigenvalues E and e.

Now by equation (19), we have

1
ei[-Gc(2*)]

1
+c

eli- O(x*, 2*)]

for all eigenvalues of the matrices Gc(2*) and -D(x*, 2*). Let Eo and eo denote
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536 DIMITRI P. BERTSEKAS

the eigenvalues of -D(x*, 2*) corresponding to Ec and ec in accordance with the
above relation"

(50) E e
(1/Eo) + c’ (1/eo) + c"

If -D(x*, 2*) is positive definite, then Eo and eo are its largest and smallest eigen-
values. If, however, -D(x*, 2*) is neither positive nor negative definite, then Eo
is its largest negative eigenvalue, eo is its smallest positive eigenvalue, and

Eo < 0 < eo. In view of (45) and (50), we have that convergence occurs for all
step sizes e satisfying

(51) 0 < < (2/Eo) + 2c.

It follows that for c much larger than 1/Eo, the step size e c of the method of
multipliers is approximately in the middle of the interval of convergence, a fact
which explains, to some extent, the excellent numerical stability of the method. It
may also be observed that as c - , we have E 1/c, e 1/c, G(x*) - -(lie)I,
and the multiplier method iteration approaches a Newton step as noted by
Luenberger [17].

The convergence ratio corresponding to the step size c is given by (cf. (47),
(50))

(52) r(c)=max
1 +cEo’ 1 +ceo

By (48), (49) and (50), the convergence ratio corresponding to the optimal step size

(53) , 2(1 + cEo)(1 + ceo)
Eo + eo + 2cEoeo

is given by

(54) r(*) Eo eo
Eo / eo / 2cEoeo

We now distinguish two cases of interest.
Case (a) (Eo < 0 < eo). Here we assume that the matrix D(x*, 2*) is neither

positive semidefinite nor negative semidefinite. In this case, by (51) we must have
(-1/Eo) <: c in order to guarantee local convexity (0 < e), in which case there
exist some step sizes which achieve convergence (r() < 1). However, the partic-
ular step size c guarantees convergence only if (-2/Eo) < c, in which case
r(c) < 1 (cf. Corollary 2.1). For values ofc close to -2lEo, equation (52)shows that
the convergence ratio r(c) is poor (close to one). However, as c increases, not only
does the convergence ratio r(c) improve, but also the ratio r(c)/(r(*)) decreases,
and in fact from (52) and (54),

r(c) { 2eo 2Eo }lim r(*)- max
c- eo-Eo Eo-eoD
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METHODS FOR CONSTRAINED MINIMIZATION 537

Furthermore, it may be shown by direct calculation from (52) and (54) that if
c > (eo 3Eo)/2E, then r(c)/(r(o*)) < 2.

Thus for the case Eo < 0 < eo, not only is the convergence ratio r(c) small for
large c, but also r(c) is close to being optimal and can be improved only by a factor
of at most 2 by optimal step size choice. Given that r(c) is already low for large c,
it appears that for Eo < 0 < eo, there is rather little room for improvement of the
performance of the multiplier method by alternative step size choice. This is
particularly so since there are no simple ways for finding or approximating the
optimal step size without explicit knowledge of the eigenvalues Ec, ec of -G.

Case (b) (0 < eo -<_ Eo). This is the locally convex case, which includes convex
programming problems. For this case, the ordinary dual functional

g0(2) min {f(x)+ 2h(x)}
is well-defined as a concave quadratic function. For any given c > 0, any step size
cx with 0 < < 2c satisfies r() < 1 by (47) and (51), and hence achieves conver-
gence. However, by direct calculation from (52) and (53), we have (assuming
eo 4: Eo)

and

r(c) + (eo/Eo) + 2ceo
r(o*) + ceo eo/Eo

r(c) 2
lim
oo r(,*) 1 eo/Eo

The relations above show that, contrary to the previous case, there may be a
substantial improvement of the convergence ratio if the optimal step size a* can
be found or approximated. The potential gain is increased as eo is close to Eo, i.e.,
the ordinary dual problem is well-conditioned.

While the exact optimal step size a* cannot be found except by a complete
eigenvalue analysis of the matrix D(x, 2), one may devise simple means for im-
proving the convergence ratio by alternative step size choice. For example, if an
upper bound E is known for Eo, then the step size c + lIE can readily be
shown to yield a better convergence ratio.

In what follows, we describe a step size rule which is based on approximation
of the minimum of the ordinary dual functional go[2k + Vgc(2k) over by means
of a quadratic or cubic fit. The approximation is used every second iteration. We
present the algorithm for a variable value of penalty parameter ck.

Given ’2k, and Czk, k 0, 1, ..., we obtain Xzk and h(Xzk by unconstrained
minimization of the augmented Lagrangian, and we set

(55) /2k+ 22k + Czkh(Xzk)"
Similarly we obtain x2+, h(x,+ ) by means of unconstrained minimization of
the augmented Lagrangian. However, now we set

(56)

where
22k+ 2 22k+ -- (2k+ lh(X2k+ 1)’,

(57)
h(x2k + 1)’h(x2/)

02k+l C2k+l h(x2k+ 1)’h(x2k) [[h(x2 + 1)1[ 2.D
ow

nl
oa

de
d 

01
/2

7/
17

 to
 1

8.
9.

61
.1

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



538 DIMITRI P. BERTSEKAS

This step size rule is obtained by observing that h(X2k is equal to the gradient
ggo(zk+l and h(xzk+l is equal to the gradient Vgo[Zk+l q-C2k+lh(XZk+l)].
Thus a quadratic approximation of go[22k+l q-- h(Xzk + 1)] can be made based on
the two gradients and the difference e2k + h(x2k+ l) between the two points. The
step size 2k+ of (57) maximizes the quadratic approximation over .

Another possibility is to determine the step size 2k+ by means of a cubic
fit based on the gradients Vgo(22k + 1), Vgo[22k + d- C2k + lh(Xzk + 1)] and the values
of the dual functional go:

(58) g0(2k + 1) f(X.k) + 2Zk + h(Xzk),

(59) go[2zk+ -- C2k+ lh(X2k, 1)] f(X:zk+ l) + 22k+ lh(x2k+ l) / C2k+ IIh(x2+ a)ll 2.

The corresponding formulas for 2k+ are somewhat more complicated (see [17]),
but the cubic fit is more accurate than the quadratic and can be expected to yield
better results for nonquadratic problems. Also, alternate quadratic fits are possible
by using the values (58), (59) and one of the two gradients.

It may be shown that the sequence {’2k} generated by the modified multiplier
method described above satisfies, for the case of a quadratic problem,

2"l[t2k+ 2 1 eo/Eo<
1122k 2"1 (1 + Czkeo)(1 + Czk+ieo)

The bound above, though not sharp, compares favorably with the corresponding
result

1122k+2 2"1 <
1122 ,*11 (1 + c2keo)(1 + c2k+leo)

associated with the ordinary method.
Consider now a general locally convex problem with nonquadratic objective

function or nonlinear constraints. In this case it is necessary to restrict the step
size (X2k + of(56) to the interval EC2k+ 1, 22k+ 1] in order to prove local convergence.
This choice of interval is guided by (51) and by the fact that (47) and (50) yield
r() >= r(c) for all 0 < < c when Eo >_- e0 > 0. Thus (56) is modified to take the
form

(60)

where

(61)

"2k + 2 ’2k + + 2k+ h(X2k + 1)’,

22k+ if 2C2k+ < (X2k+ 1,

2k+ 2k+ if Czk + <- 2k+ <- 2C2k+ 1,

C2k + if 2k + C2k + 1,

where t2k+l is given by (57) or is obtained by means of the cubic fit mentioned
earlier. We shall prove local convergence of the dual iteration (55), (60), (61) by
viewing it as a special case of a more general algorithm which will be shown to be
locally convergent both for the case of exact and approximate mimization of the
augmented Lagrangian.
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METHODS FOR CONSTRAINED MINIMIZATION 539

Referring to the problem of 2, we consider the special case in which the eigen-
values of the matrix O(x, 2) of (16) satisfy

(62) ei[D(x, 2)] < 0, 1, m,

for all (x, 2) in a set B(x*, e) x B(2*; 6 + eLe). The positive scalars e and 6 are as in
Proposition 1 and Corollary 1.1. Let the sequence {ck} satisfy 0 < c* _<_ ct _<_ (e/2)
(it is assumed that 2c* __< e) and consider the iteration

(63) 2k+ 2k + Skh[X(2k, Ck)]’,

where st satisfies, for all k,

(64) Ck <- Sk <--_ 2Ck.

Then we have the following local convergence result, which parallels Proposition 2
and Corollary 2.1.

PROPOSITION 5. Assume that the initial point 2o belongs to B(2* 6). Then the
sequence {2k} generated by any iteration oftheform (63), (64) remains in B(2*; 6) and
converges to 2*. Furthermore, we have

2" 2"(65) II&/x < ll& vk,

where

(66) ?t max
(x,2) B(x*;O B(2*;

1,...,m

1 + (st ct)ei[D(x, 2)]
1 ckei[D(x, 2)]

Proof First, by using the facts ck < sk <= 2ck and ei[D(x, 2)] < 0, we have for
every k,

max
(x,2) (x*;e) (*; +’Le)

0 c* =< ck =<’/2
ck =<sk -< 2ck

1,...,m

1 + (st ct)ei[D(x, 2)]
ctei[D(x, 2)]

=p<l.

Now by substituting the step size So in place of c in the proofs of Propositions and
2, and by using (19) and (63), we have

showing that 21 e B(2*; 6). Proceeding similarly, we have for all k, 2k eB(2*; 6)
and ]12t 2"11 =< ptl]2o 2"11. Hence 2t --+ 2*. Q.E.D.

One may also prove propositions similar to Propositions 3 and 4 for the
algorithm (63), (64) for the case of inexact minimization with either one of the
termination criteria (25) or (35). For the criterion (25), we have the estimate
(cf. (33))

II&+l 2"11 =< ll&- 2" + etstL/M,
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540 DIMITRI P. BERTSEKAS

and for the criterion (35) the estimate (cf. (36))

2* rlkLI’k/l <= k /
M -nkLPk] II’k

where
Skei[D(x, 2)]

Pk max
x,a)(x*;,) (a*;+cL) 1 ckei[D(x

i= 1,...,m

and k is given by (66). Local convergence results similar to Proposition 5 may also
be proved assuming the sequences {ek} and {r/k} are bounded above by sufficiently
small positive numbers.

Now the local convergence results obtained clearly apply (cf. (55), (61), (64))
to the iteration given by (55), (60), (61). As shown in the next section, this iteration
worked very well in numerical experiments. The iteration (63), (64) (and hence
also the iterations (55), (60), (61)) can be easily extended to the case of inequality
constraints by using slack variables and therefore is fully applicable to the solu-
tion of convex programming problems. In fact, for such problems, the iteration
can be shown to converge globally, i.e., for an arbitrary starting point 20 [4].

6. Computational experience. A limited number of numerical experiments
were performed to test the analysis of this paper. As a general rule, the method of
multipliers performed considerably better than the corresponding quadratic
penalty function method (2k 0 for all k). This was true for both exact and
approximate unconstrained minimization. The schemes based on approximate
minimization performed considerably better than the schemes based on exact
minimization both for the penalty method and the multiplier method. The modified
step size rule of the previous section performed better than the regular step size
rule of the multiplier method in all runs except one. It was generally found that it
is better to increase the penalty parameter c at each iteration rather than to keep
it at a fixed value. It is interesting to note that for the approximate minimization
schemes, the unconstrained minimizations typically required one cycle of the
variable metric method after the first dual iteration. Thus the approximate
minimization schemes were, in effect, similar to the conjugate gradient scheme
proposed by Miele, et al. [203. We present below some detailed results for the
Rosen-Suzuki problem [38]:

Minimize f(x)= x + x + 2x + x 5xl 5x2 21x3 + 7x4
subject to

h(x)= 2x + x + x + 2x x2-x4- 5<=0,

he(x) x + x + x + x] / X X2 + X3 X4. 8 O,

h3(x --x -+- 2x + x + 2x]- x --X4 10 _<_ 0.

The optimal solution is x* (0, 1, 2,- 1)’, and the Lagrange multiplier is 2*
(2, 1, 0). The optimal value of the objective is f* -44.0. The eigenvalues of the
negative Hessian of the ordinary dual at 2* are eo "---- .29 and Eo 6.95. Here only
the active constraints h(x) <__ O, hz(x 0 are considered.

D
ow

nl
oa

de
d 

01
/2

7/
17

 to
 1

8.
9.

61
.1

11
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



METHODS FOR CONSTRAINED MINIMIZATION 541

The inequality constraints were converted to equality constraints by using a
vector of slack variables z (z z2, z3)"

ii(x,z) hi(x + z O, i= 1,2, 3.

The resulting augmented Lagrangian is given by

l(x, z, 2, c)= f(x) + 2’[hi(x + z] + c [hi(x) + z]2.
i=1 i=1

However, rather than minimizing l(x, z, 2, c)jointly with respect to x and z, the
minimization was first done explicitly with respect to z to yield

1 L(67) i(x, 2, c) mzin l(x, z, 2, c) f(x) + {max [0, 2’ + ch(x)]} (2).
i=1

Subsequently, i(x, 2, c) was minimized with respect to x by using the Fletcher-
Powell method (available on the IBM-360 as the FMFP Scientific Subroutine).
The iteration for 2k in t’he method of multipliers takes the form

./ max [0, + ch,(Xk)], 1,2, 3,

where Xk is the minimizing point. This updating formula is obtained from the
ordinary iteration of the method of multipliers

2i +1 2 + clii(xk, Zk), 1,2, 3,

after substitution of the minimizing value zk obtained from (67). Table 1 shows the
number of function evaluations required by the multiplier method with and with-
out quadratic fit, and by the pure penalty method. Each function evaluation cor-
responds to a calculation of the values of the objective and constraint functions
and their gradients.

In runs 1-5 in Table 1, accuracy to 7 significant digits of the optimal value of
the objective function was attained. In runs 6-8, the accuracy was to 4 significant
digits. For the runs with approximate minimization, the termination criterion
(25) was used.

TABLE

no,

10
2 5
3 4
4 2
5 8
6
7
8

t;k

x 10 -k (1,1,1)
x 5 -k (0,0,0)

.1 x 4 -k (1, 1, 1)
10-5 (0, 0, 0)

.25 x 8 -k (0,0,0)

.1 x 10 -k (1, 1,1)

.1 x 10 -k (0, 0, 0)
10 .5 (1, 1, 1)

number of function evaluations

multiplier

110
96
112
174
93

201
216
279

multiplier with

quadratic fit

107
92
119
126
92
118
119
186

penalty

221
260
282
555
192
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542 DIMITRI P. BERTSEKAS

7. Conclusions. This paper provided an analysis of the convergence rate of
multiplier methods with exact and approximate unconstrained minimization. The
results show that such methods can be expected to converge considerably faster
than conventional penalty function methods. Furthermore, it appears that the
approximate minimization schemes result in more efficient computation than
schemes with exact minimization. The modified step size rule considered in 5
appears to be promising for convex programming problems. While both theoretical
and experimental evidence strongly indicate the faster convergence property of
multiplier methods over penalty methods, it does not seem appropriate to predict
that penalty methods will be totally replaced in the future by multiplier methods.
In many problems where solution accuracy is not of paramount importance,
penalty methods are not operated sequentially, but rather a single unconstrained
minimization problem is solved with what is considered to be a sufficiently high
value of penalty parameter. The solution of this problem is then taken as the final
answer. When such a philosophy is adopted, multiplier methods can offer no
advantage over penalty methods.
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