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Abstract

The auction algorithm is a parallel relaxation nictliod for solving the classical
assignment problem. It resembles a competitive bidding process whereby unussigncd
persons bid simultaneously for objects, thereby raising their prices. Once all bids
arc in, objects arc awarded to the highest bidder. Tliis paper generalizes the auction
:ilgoritliin to solve linear transportation problems. The idea is to convert the trans-
portation problem into an assignment problem, and then to inodily the auction
algorithm to exploit the special structure of this problem. Computational results
sliow Ihat this modified version of the auction algorithm is very efficient for
certain types of transportation problems.

1. Introduction

In this paper, we propose a new relaxation algorithm for linear transportation
problems. The algorithm resembles classical coordinate descent, Gauss-Seidel, and
Jacobi methods for solving unconstrained nonlinear optimization problems or systems
of nonlinear equations. It modifies the dual variables (node prices), either one at a
time (Gauss—Seidel version) or all at once (Jacobi version) using only local node
information, while aiming to improve the dual cost. It is well suited for implementa-
tion on massively parallel machines.

The first relaxation algorithm for linear network flow problem was the auction
algorithm for the classical assignment problem, proposed by the first author in
1979 [3] and further discussed in [8,13]. The algorithm operates like an auction
whereby unassigned persons bid simultaneously for objects,, thereby raising their
prices. Once all bids are in, objects are awarded to the highest bidder. The algorithm
can also be interpreted as a Jacobi-like relaxation method for solving a dual problem.
The variables of the dual problem may be viewed as the prices of the objects and are
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adjusted upwards as the algorithm progresses. Just as in a real auction, a person's bid
is required to be higher than the current price of the object and this provides the
mechanism for increasing the object prices. The algorithm makes gradual progress
towards a full assignment of persons to objects as the prices of some of the assigned
objects becomes sufficiently high, so that unassigned objects become attractive and
receive bids.

Computational results [10] show that for large sparse problems, the auction
algorithm is superior to the best existing assignment methods even without the
benefit of parallelism. The reason for this can be traced to the complexity estimate
OiNAlogiNQ) for an efficient implementation of the auction algorithm derived
in [8,10]; here, N is the number of persons, A is the number of arcs, and C is the
maximum absolute value of arc cost coefficient. Competing methods, [1,2,4,14,15,
18-20 ,23 ,24] , including the Hungarian method, have complexity 0(;V''), so for
large sparse problems the complexity of the auction algorithm is superior.

This paper extends the auction algorithm to solve Unear transportation prob-
lems. The basic idea is to convert the transportation problem into an assignment
problem by creating multiple copies of persons (or objects) for each source (or sink,
respectively), and then to modify the auction algorithm to take advantage of the
presence of the multiple copies. Section 2 describes the basic form of the auction
algorithm. Section 3 considers a variation of the auction algorithm that takes into
account "similar" objects. (Roughly, two objects are called similar if every person
to whom they can be assigned considers them as equally valuable.) We also consider
a variation of the algorithm that takes into account "similar" persons. (Roughly, two
persons are called similar if each person assigns the same value to every object as the
other person.) The variation of the auction algorithm that takes into account similar
objects is useful, among other things, for handling asymmetric assignment problems,
where there are M persons and A' objects with M > A .̂ We can convert such problems
to assignment problems with an equal number of persons and objects by introducing
M - N additional similar objects, each offering equal value (e.g. zero) to all persons.
The auction algorithm that takes into account both similar persons and similar objects
can be restructured so that it solves efficiently transportation problems. This is
described in sections 4 and 5, and computational results showing the effectiveness
of the corresponding transportation algorithm are given in section 6.

2. The auction algorithm for the assignment problem

Consider JV persons who wish to divide among themselves Â  objects. We
number persons and objects as 1,2,...,A''. For each person / there is a nonempty
subset A{i) of objects that can be assigned to i. An assignment 5" is a (possibly empty)
set of person-object pairs (/, / ) such that:
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(a) / •G>l (OforaU( / . / ) e 5.

(b) For each person / there is at most one pair (/, /) £ S.

(c) For each object / there is at most one pair (/, y) G S.

A complete assignment is an assignment containing Â  pairs (i.e. every person is
assigned to a distinct object). In the context of a given assignment 5, we say that
person / is assigned if there exists an object / such that (/,/) e S\ otherwise we say
that / is unassigned. We use similar terminology for objects. There is a given integer
value a,y ^̂ hat a person / associates with an object/ G .4(0- We want to fmd a complete
assignment that maximizes

I ',
ii.nss

over all complete assignments S. We call this the primal assignment problem. The
auction algorithm solves the dual assignment problem ([13,21,25,26])

N N

minimise X ''i "*' X P/
i = i ) = i

subject to r, + pj > ajj, \/i, and / £ Aii). (1)

The dual variable /?y is called the price of /. We call the vector p with coordinates
Pj. i = 1 , . . . .A*", a price vector. For a given price vector f, the cost of this problem
is minimized when r,- equals the maximum value of a,y - pj over ; G A{i). We may
therefore view the prices p- as the only optimization variables of the dual problem.

For a given price vector, we defme the value of an object j G A{i) for a
person i by

u.y = a.^ - p^. (2)

The profit iti of person i is the maximum value of objects / G Aii), i.e.

TT,. = max u,,-. (3)

From linear programming theory, we know that a complete assignment S
= { ( ^ / ) l ' = 1, ..,A'} and a price vector p are simultaneously primal and dual optimal,
respectively, if and only if

•n- = max {a-. - pJ = ^,/ ~ Pi, for each (i, /) ^ S ,
k&Aii) ' '
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that is, if and only if each person realizes his profit by being assigned to an object
offering maximum value. This is known as the complementary slackness condition.

A relaxation of the complementary slackness condition is to allow persons to
be assigned to objects that come within e of attaining the maximum in the profit
definition (3). Formally, we say that an assignment S (not necessarily complete) and
a price vector p satisfy e-complementary slackness (e-CS) if

TT,. - 6 = max (a-fr - pfc} - e < iz • - p , for each (/,/) G 5, (4)
fcG-4(i) ' '

where e is a nonnegative constant. The main fact for our purposes is that a complete
assignment S that satisfies e-CS together with some price vector is optimal if e < MN.
This was shown in the original proposal of the auction algorithm [3], and is a special
case of proposition 4 to be proved later.

We now describe formally the auction algorithm. We fix e > 0, and we start
with some (possibly empty) assignment and price vector satisfying e-CS. The algo-
rithm proceeds iteratively and terminates when a complete assignment is obtained.
At the start of the generic iteration, we have an assignment S and a price vector p
satisfying e-CS. At the end of the iteration, S and some prices are updated while
maintaining the e-CS condition. There are two phases in each iteration, the bidding
phase and the assignment phase, described below;

BIDDING PHASE

For each person / that is unassigned under the assigment 5:

Compute the current value U;̂- = a^^ - pj of each object / G Aii), find a "best"
object /'* having maximum value

and find the best value offered by objects other than /

(If / * is the only object in Aii), we define w,- to be -«> or, for computational
purposes, a number that is much smaller than u,.*.)

Compute the "bid" 6,-̂ * of person i for object /* given by

b.-i. = p.^ + û .̂* - w,. + e = a..* - w. -̂  e . (7)

(We characterize this situation by saying that person / bid for object /*, and that
object / received a bid from person :. The algorithm works if the bid has any value
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between p * + e and p * + u,-:* - w^ + e, but tends to work fastest for the maximal
choice (7). The calculation of the bid of a person is illustrated in fig. 1.)

Values V; of objects j
tor person i

V... : The value of j ' , the best object for person i
[equal to ihe profit n j of i)

w : The value of the second best object (or person i

Price increment b jj* - p i- implicit in the bid of
, person i for Us best object j * . it is equal to the
difference between the old price of j * and its
new price if the bid b jj< is accepted

rig. 1. Illustration of the bid of person i. The objects /* and /, that offer the
best value v-j* und second best value w,-, respectively, are determined. The
bidding increnieni 6̂- * - py* is then set to the difference u,-* - Wj- plus e.6̂

ASSIGNMENT PHASE

For each object/:

Let P ( / ) be the set of persons from which / received a bid in the bidding phase
of the iteration. If/*(/) is nonempty, increase pj to the highest bid

p . := max (8)

remove from the assignment S any pair ( i , / ) (if one exists), and add to S the pair
(i*,/), where /* is some person in Pij) attaining the maximum above. If P{/) is
empty, Py is left unchanged.

An important fact is that the algorithm preserves e-CS throughout its execution,
i.e. if the assignment and price vector available at the start of an iteration satisfy e-CS,
the same is true for the assignment and price vector obtained at the end of the iteration.
A proof may be found in [3,8,13], where it is also shown that the algorithm
terminates in a fmite number of iterations (assuming the problem is feasible, i.e. there
exists a complete assignment). As a result, if e < 1/Â , then the assignment obtained
upon termination is optimal.
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3 . Variations of the auction algorithm

It is possible to apply the auction algorithm of the previous section to a trans-
portation problem after it has been converted to an assignment problem by replacing
each source (sink) with multiple copies of persons (objects). Unfortunately, the
performance of the method can be quite poor, as shown in the example of fig. 2. Much

PERSONS OBJECTS

InHial price > 0

Initial price i- 0

Here a^ == C > 0 for all {\\)
except lor aj^ which is 0

Fig. 2. Example where the number of bidding phases is brgc and is propor-
tional to C/e. Here, at each bidding phase the persons 1, 2. and 3 bid the
prices of objects 1 and 2 up by an increment e until the time that these
prices reach the level C. This problem corresponds to a transportation
problem, where persons 1 and 2 corresponU'to a supply node with supply
equal to 2 and objects 1 and 2 correspond to a demand node with demand
equal to 2.

better performance is obtained with a variation of the auction algorithm which
recognizes the special structure derived from the transportation problem. This structure
manifests itself in the presence of several "similar" persons and objects, and is formalized
below.

Given the assignment problem of the previous section, we say that two objects
i and / ' are similar, and write / ~ /', if

.- = a--. for all i with / € Aii).

We say that two persons i and V are similar, and write / "- /', if

A{i) = AiV)

a.j = a.,. for all / € A{i) .

(9)

(10)

(11)

(12)
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For each person (object) /, the set of all persons (objects, respectively) similar to /
is called the similarity class of i. and is denoted ^ ( 0 -

For a given price vector p, we define the price of the similarity class M(;) of
an object j as

PI - min p^., j - I,. . . ,N. (13)

Note that the profit of a person i given by (3) can also be written as

TTj = max (i2,y ~ P/} ~ rnax {a,.y ~ Pj) • (14)

It can be seen that:

(a) All persons in the same similarity class have the same profit.

(b) The person profits TT,- are determined by the prices p- oftheobjectsimilarity
classes.

It follows that if a complete assignment S and a similarity class price vector p
satisfy e-CS, and e < 1/A'̂ , then S is optimal, even though 5 and the price vector p
may not satisfy e-CS. This is important because in the following algorithms, e-CS of
the pair (5, p) is maintained but e-CS of the paii {S,p) may be violated. An additional
benefit of working with the similarity class price vector is that the threshold value
for e that guarantees optimality can be increased, as indicated in the following
proposition, which wOl be proved in the next section after we introduce the equivalence
between assignment and transportation problems (cf. proposition 4).

PROPOSITION 1

Let

s = number of similarity classes of persons,

s^ = number of similarity classes of objects.

If a complete assignment S and a similarity class price vector p satisfy e-CS and

{}
then S is optimal.

In what follows in this section, we describe two variations of the auction
algorithm. The first variation is actually a special case of the second, but it is easier
to understand and illustrates the main ideas more clearly.
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THE AUCTION ALGORITHM FOR SIMILAR OBJECTS

Consider a variation of the auction algorithm which is the same as the one of
the previous section except that the bidding increments are determined by the values
of the similarity classes of the objects rather than the values of the objects themselves.
Specifically, in the bidding phase, each person / determines the object /* that offers
maximum value

u--» = max V--

(cf, (5)), but the "second best level" w,- is defined now as

w. = max Vj, (16)

instead of

vv̂ . = max Vj..

Roughly, Wj is the "value of the second best similarity class" rather than the value of
the second best object. We refer to this algorithm as AUCTION-SO (for Similar Objects)
to distinguish it from the auction algorithm of the previous section, which will be
referred to as AUCTION. Because we have

max u,y < max v,, ,

it follows that the bid (cf. (7)) , ^

bij* = pj* + u,.̂ .* - w. + e , (17)

with w- given as in AUCTION-SO (cf. (16)), will be at least as large as the correspond-
ing bid for AUCTION, where w^ is given by (6). As a result, the price changes of the
objects in AUCTION-SO are potentially larger than in AUCTION (see fig. 3). The
termination of AUCTION-SO is also potentially faster because, with larger price
increases, the gap between values of unassigned and assigned objects will be diminish-
ing faster. As an example, the problem of fig. 2 will be solved much faster with
AUCTION-SO than with AUCTION (see fig. 4).

The key factor regarding AUCTION-SO is that, assuming the initial assignment
S satisfies e-CS together with the initial similarity class price vector p, that is,

TT,-- e = max {^ik~ Pk^ ~ ^ ^'^ij~ Pj ^ for each ( i , / ) e 5 , (18)
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Values vj of objects j
for person i

Stmilartty dass o( f
(best lor person I)

Similarity class ol ^
(second best for
person i)

Price increment b,j> - Pj< impiicit in the bid of
person I for its best object j * in the case of
AUCTION

V : The value of j * . the best object
for person i {- n i )

The value of the second best
object for person i

: The value of the second best
similarity dass for person i

Price incremenl b -̂ - pj- implicit in the bid of
person i for its best object j * In the case of
AUCTION-SO

l ' ig .3 . Illustration of thu bid of person / in AUCTION-SO. The object / *
offers the best value u--* for person i. When all tlie second best objccls
belong to tho similaiity cbss of / * (as in the figure), tlie bid 6,-* will bo
higher in AUCTION-SO than in AUCTION.

PERSONS OBJECTS

Initial price = 0

Initial price - 0

Objects 1 and 2 farm a
similarity class

Here aj =« C >0 for all (i.j)
except lor a^^ which is 0

F-ig.4. Application of AUCTION-SO to the problem of fig. 2. Here, the
objects 1 and 2 form a similarity class. At the first bidding phase, this
similarity class is best for all persons. Person 3 submits a bid C + e for
cither object I or 2. while persons 1 and 2 submit a "very high" bid for
either object 1 or 2 because there is only one similarity class of objects to
which they can be assigned. If persons 1 and 2 bid for different objects,
then after the first iteration the prices of objects 1 and 2 will be very high
and only person 3 will be unassigned. As a result it is seen that AUCTION-
SO will terminate at the next iteration when person 3 will bid for object 3.
If persons 1 and 2 bid for the same object at the first iteration, it can be
seen that AUCTION-SO will terminate after three iterations.
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the same is true of the assignment and the vector p obtained at the end of each assign-
ment phase. To show this, we assume that (18) is true at the beginning of all iterations
up to a given iteration, and we show that it is true at the end of that iteration. Indeed,
suppose that object /* received a bid from person ( and was assigned to i during the
iteration. Then, if pj and p ' are the object prices before and after the iteration and p-
is the price of the similarity class of/ after the iteration, that is,

p]= m in p' j=l,...,N, (19)
k G Af(/)

we have (cf. (7), (8))

p'f* = b^i* = a^j* - w,. + e . (20)

Using (16) and (17) and the easily verifiable fact py > pj for all/, it follows that

<^ii* ~ p'l* - On* - b;;* = W; - e = max [a^- - pj] - e

max {a.. - p'.} - e = max {a.. - p]) - e . (21)

We also have p'-* < p-», so we obtain

a..* - p;* > max {fl.. - p'.\ - e . (22)

Since we have a,y* - pj* = a-y - p'j for all / e Mij*), we see that (22) implies that the
e-CS condition (18) holds after the assignment phase of an iteration, for any pair
(/,/*) that entered the assignment during the iteration. Consider also a pair (/./*)
that belonged to the assignment just before an iteration and also belongs to the assign-
ment after the iteration. Let p" be the price vector just after the iteration in which
(j, /*) entered the assignment. Then, as in (21), we obtain

V - Pj* > max {a.. -p''}-e, (23)

where

= min

We have p'^ > pJ since the prices are monotonically non decreasing, and pJ* = p'.*
since /* must not have received a bid since it was last assigned to /. Therefore, from
(23) we obtain •
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a..* - pj* > max {a,.- - p

In view of the fact pj* < p '* , we obtain the e-CS condition (18) for the pair (/, / * ) .
The conclusion is that if AUCTION-SO terminates, the assignment obtained

at termination is complete and satisfies e-CS together with the corresponding price
vector p. Thus, if

1
e <

number of object similarity classes

(cf. proposition 1), the assignment obtained is optimal. There remains to show that
AUCTION-SO terminates. We will show this in the context of the following more
general algorithm, that takes into account both similar persons and similar objects.

THE AUCTION ALGORITHM FOR SIMILAR PERSONS AND OBJECTS

We consider a variation of the auction algorithm that takes into account
similar persons. The idea is to submit a common bid for all persons in a similarity
class if at least one person in the class is unassigned. As a result, persons in the same
similarity class do not "compete" against each other for the same object, and the
bids submitted are higher than they would otherwise be. This idea is combined with
the variation discussed earlier that takes into account similar objects to accelerate
termination even further.

The algorithm will now be described formally. We fix e > 0, and we start
with some assignment S (possibly the empty assignment) and a price vector p satisfy-
ing the following condition:

e-COMPLEMENTARY SLACKNESS STRENGTHENED (e-CSS): If (i, / ) G 5, then

fl.. - Pj > max \°ik~ Pk^ ~ ^ •

that is, the value of/ for i can be worse by at most e over the highest value offered
by similarity classes other than the one of/.

We note that the e-CSS condition is stronger than (i.e. implies) e-CS of S and
the similarity class price vector p (the reverse is not true). Indeed, from (24) and
the definition(13)of p, wehave for all ( i , / ) € 5,

max

Since we also have
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the e-CS condition

a^j-Pf > max (ff* - p ^ l - e = max {a,.^-^;^} - e, V ( / . / ) e 5

follows.
The algorithm proceeds iteratlvely, and terminates when a complete assignment

is obtained. At the start of the generic iteration, we have a pair {S.p) satisfying
e-CSS. At the end of the iteration, we obtain another pair (5'. p') that will be shown
to satisfy e-CSS, As earlier, there are two phases in each iteration, the biddingphase
and the assignment phase, described below:

BIDDINGPHASE

For each similarity class of persons M{i) containing a person / that isunassigned
under the assignment 5 :

Compute the current value Vij = a-.-p. of each object j e A{i). Let

' p h'-- ''m ^^ ^^^ persons in M(i) that are assigned under 5 , a n d l e t / , , y ^ , . . . , / ^

be the corresponding objects to which they are assigned. Let / , n^ , . i,,,^^ 'n ^^

the persons in M{i) that are unassigned under S. Denote also by y ^ ^ j . y'^^, , / ,
the objects that belong to ^ ( 0 and are not assigned to any person in M{i) under j " ,
and assume that these objects are ranked in order of decreasing value, i.e.

> V.. > .> u-. , . • (25)

Compute the scalar w,. (which is analogous to the scalar iv,. of (6) and (16)) as follows:

Case (a)

If rt < rt' a n d / p / j , . . . ,y^ do not belong to the same similarity class, let

Case (b)

If n < n' and j^Jj'-' in belong to the same similarity class, let w^ be the
value u,-y of the first object j ^{j^^^ , . - . , ; „ ' ) that does not belong to the common
similarity class

Case (c)

If /? = rt', which is the exceptional case where all the objects in A{i) must be
assigned to the persons in the similarity class of person /, we define w. to be -«> or,
for computational purposes, a number that is much smaller thanmin,-
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Compute the "bid" of each person
respectively, as

for the object >/„

. , = a,. - - w- + e (27)

(As before, we characterize this situation by saying that person i^ bid for object y'̂ ,
and that object j,^ received a bid from person i^. Note here that the objects i\ , i^,
which are assigned under S will bid for their assigned objects /'i. /2, • • •, /^ • Cases (a)
and (b) and the corresponding bids are illustrated in fig. 5.)

Values v| of objects j
tor person i ^

1 st Similarity Clau

2nd Sindanly Class

Vabe ot best objects
lor simflanty class ol i

Common valiM ot already
assignsd obfecis to oersor
in the simiiantY class ol i

Value V Case a)•In

Value v;i

Object values after the bid
Is accepted

Value V..
'n'

Values v̂  of objects]
for person i

istSimilarty Class

2ndSimiUf«yClau

Value ot best oBjeas
tor SMnflarity class of i

Common vahie ol alrea<}y
assigned objects lo persons
in the simdanty class ot I

Case b)

rvalue of first object j J] ^f...
- ^ that does not belong to the

||_ Object values after the bid
Is accepted

Fig. 5. Illustration of the bid of a similaiity class of an unassigned person /. There
are n persons in this class. The objects that the similarity cbss bids for are / , , . . . , ; ; , .
The common value of those of the objects for which the bid is accepted is shown
for case (a) (objects / i , - . . . /n belong to the different similarity classes) and for
case (b) (objects / j , . . . ./n belong to the same similarity class).
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ASSIGNMENT PHASE

For each object / :

Let P{f) be the set of persons from which / received a bid in the bidding
phase of the iteration. U P{j) is nonempty, set pj to the highest bid, i.e.

p}= max 6,.., (28)

remove fromHhe assignment S any pair (/,/) (if one exists), and add to S the pair
{i*. I), where /* is some person in P{J) attaining the maximum above. If P(j) is
empty, Pj is left unchanged, i.e. pj = p^.

The problem can be easily transformed so that the exceptional case (c) of the
bidding phase does not arise. To simplify the subsequent analysis, we will henceforth
assume that, if necessary, this transformation is done so that case (c) never arises.
Our results, however, hold even when case (c) can arise, provided we allow the object
prices to take the value -«» and we interpret appropriately the arithmetic of extended
real numbers.

The preceding algorithm will be referred to as AUCTION-SOP (for Similar
Objects and Persons). Note that the case where all similarity classes of persons consist
of a single person corresponds to m = 0 and « = 1 in the bidding phase. Then case (a)
of the bidding phase never arises and AUCTION-SOP coincides with AUCTION-SO.
Note also that the structure of the algorithm is such that if at the end of an iteration
we have (/, /) e S and (/', / ' ) e S, and i -^ i\ then

that is, objects assigned to persons from the same similarity class have the same value
for these persons. If in addition / '- /', it follows that /?- = p -.

We now show the validity of AUCTION-SOP.

PROPOSITION 2

At each iteration prior to termination of AUCTION-SOP, all the object prices
do not decrease, and at least one object price increases by at least e. Furthermore,
e-CSS holds at the end of each iteration.

Proof

Suppose e-CSS holds before a given iteration, and let p- and p'- be the prices
of the objects / before and after the iteration, respectively. Let also TT,- be the person
profits and 5 be the assignment before the iteration. Suppose that person iĵ  G M{i)
bids for object /^ e A/(/) during the iteration. We will show that
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^ik '^ iik-lk)^S . (29)

\ik^\^^ '^ ^'k'ik)^S. (30)

Suppose first that (î ,̂ j^) € 5. Then by e-CSS we have

°i^L ~ PL ^ ^^^ {^is~ Ps^ ~ ^ • (31)
* ' * '* iGX(i),J*M(/) " "̂ ^ *• '

If the bid of the similarity class of i^ is based on case (a) in the bidding phase, we have

max {a - p^) > v^- = w. ,

while if case (b) holds, we have

max {a. - pJ = w. .
s&A{i),s(^MU)

Thus, in either case, the e-CS condition (31) yields

'k Ik ^'k '

Using this relation together with the bid definition (27), we obtain

proving (29).
Suppose next that {i^, ;^) ^ S. Then in both case (a) and (b), in view of the

ordering (25), we have

a. f - p. > w. ,

and using this relation together with (27), we obtain

b: , >Pi + e ,
'fc'fc !k :

proving (30).
Since the price of ̂  after the iteration is equal to the highest bid (cf. (28)),

from (29) and (30) we obtain

P'i^>Pi, if (V4)e-y (32)

P}^>Pi,^' if iik-ik)^S. (33)
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We also have pj - p^ for every / that did not receive a bid during the iteration. Thus,
the object prices cannot decrease during an iteration. Furthermore, since at least one
unassigned person bids at each iteration, it foUows from (33) that at least one object
price will increase by at least e.

We next show that e-CSS is satisfied following an iteration. Suppose that
(/fc./fc). with i^eM{i) and }\eM{j), belongs to the assignment following an
iteration and that /̂  bid for /^ during the iteration. Then

,j - Pj\s E A{i),s ^ M{)\),s did not receive a bid from any
person in M{i)) - e

,j - Pj\s G A(i),s ^ M{jf^),s did not receive a bid from any
person in M{i)\ - e,

where the next to last inequality holds as an equation if case (b) holds when the bid
of the similarity class of i^ is calculated. We also have

for all s e A{i) such that s received a bid from a person i^ e M(i). By combining
the last two relations, we see that e-CSS holds at the end of the iteration.

Consider now the case where (/j^. y^), with i^ e M(i) and /\ G M{j), belongs
to the assignment following an iteration, but i^ did not bid for /^ during the iteration
because all persons in M{i^) were assigned during the iteration. Let p" be the price
vector at the end of the last iteration where all persons in M{if^) were assigned. Then by
e-CSS we have

' ^ {a, , - D"} - e .

It is seen that the price of /^ remained unchanged since the last iteration where all
persons in M{ij^) were assigned, while the other prices could not have decreased, i.e.

By combining the last three relations, we see that e-CSS holds for the pair (ij^. 4 ) .

Q.E.D.
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PROPOSITION 3

AUCTION-SOP terminates if the problem is feasible, i.e. if there exists at
least one complete assignment.

Proof

We make the following observations:

(a) Once an object is assigned, it remains assigned throughout the remainder
of the algorithm's duration. Furthermore, except at termination, there will always
exist at least one object that has never been assigned and that has a price equal to its
initial price. This is due to the fact that a bidding and assignment phase can result in
a reassignment of an already assigned object to a different person, but cannot result
in the object becoming unassigned.

(b) When the similarity class of a person bids during an iteration, the price
of at least one of the objects that it bids for increases by at least e (cf. proposition 2).

(c) The profit rr, of a person / decreases by at least e when the person
(together with all other persons in its similarity class) bids during a number of itera-
tions which is greater than or equal to

Z IA/(/"JI , (34)

where \MiJ)\ is the cardinality of the similarity class of object /. The reason is that
the number of objects that attain within e the maximum in the definition (3) of 7r.
is at most equal to the sum (34), and the price of each of these objects must increase
(by at least e, thereby decreasing 7r,- by at least e) before the similarity class of person /
will submit a bid for any other objects.

We now argue by contradiction and assume that the algorithm never terminates.
Then the prices of a proper and nonempty subset 7 " of objects increase to +°°
(cf. observations (a) and (b) above), while the profits rr- of a nonempty subset / " of
persons decrease to - « (cf. observation (c) above). For all z E / " , we must have
y " D Aii), since otherwise, from definition (3), it is seen that the profit of ( would
be bounded. The objects in / " after some iteration can only be assigned to objects
from / " , since the profits of persons not in / " remain bounded and the prices of
objects in / " increase to +»>. Furthermore, in view of observation (c) above, only
persons from / " wQl be unassigned after some iteration. Therefore, the cardinality
of / " is greater than the cardinality of 7 " , while we have J" D A{i) for all i in / " .
This contradicts the existence of a complete assignment. Q.E.D.

By combining now propositions 1 - 3 , we see that if the problem is feasible
and e < l/min{5p, ^oK then AUCTION-SOP will terminate with an optimal assignment.
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4. The auction algorithm for the transportation problem

We now consider a transportation problem of the form

N

maximize X X ^tj fij
i=\

subject to J l fii = (Xi, /• = 1,. . . ,7V

where a., and AO) are as in the assignment problem, and a,- and 0̂  are given positive
integers called the supply of source i and the demand of sink /, respectively. For
feasibility, it is necessary to assume that

N M

This problem can be converted into an assignment problem by replacing source /
(sink / ) with a,, similar persons (or /3̂ . similar objects, respectively). We call this assign-
ment problem (ATP). An integer flow variable f^j in (TP) is equivalent to assignment
of -̂ similar persons (corresponding to source i) to f^^ similar objects (corresponding
to sink / ) . A flow vector / = {yjyl; e -4(01 satisfying

0 < /̂ y , for all (/, / ) with j G A{i), (36)

Yfij < a,-, for all I, and J ^ . < (3^, for all/, (37)
/ '

corresponds to an assignment in (ATP). This assignment is complete if and only if
the flow vector / i s feasible in (TP).

Consider now the auction algorithm for (ATP) as modified in the previous
section to take into account similar persons and objects. We assume that the initial
assignment and price vector satisfy the e-CSS condition of the previous section, and
that initially all objects in the same similarity class have equal prices. The assignment
and price vector pairs generated by the modified auction algorithm will satisfy e-CSS
at the beginning of each iteration. Furthermore, all objects from the same similarity
class which are assigned to persons from the same similarity class have equal prices;
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see the note preceding proposition 2. Therefore, the price vector can be described by
specifying, for each {i.f) with /' € A{i), a common price y^ for all objects of the
similarity class of / which are assigned to persons in the similarity class of /, together
with the common initial price y^j for the unassigned objects in the similarity class of/.

We denote by R{j) the set of indices i =• \ ,2,... ,N for which there are some
objects in the similarity class of / which are assigned to some persons in the similarity
class of /, together with the index 0, if there is some unassigned object in the similarity
class of/. Because initially all objects in the same similarity class have equal prices, and
all prices are nondecreasing, we see that at the beginning of each iteration we have

Vo; < .v,y, if OeR{/) and / € / ? ( / ) . (38)

Furthermore, from e-CSS we see that the price vector p with coordinates given by

pj = min >•,.- , (39)

satisfies the e-CS condition
-

T T - e < a . . / 7 . ,

where TT^, the profit of source i, is given by (cf. (3)) *•

max .{%-Pj\- (40)

In the context of the transportation problem (TP), this condition is restated as

4 >0-7r.-e<fl,^.-p^.. (41)

which may be viewed as a version of the e-CS condition of [6,11,9,10] as applied to
the transportation problem (TP).

The following proposition derives the appropriate threshold value for e that
guarantees optimality of a feasible flow vector / and a price vector p that satisfy the
e-CS condition (41).

PROPOSITION 4

If the feasible flow vector / and the price vector p satisfy the e-CS condi-
tion (41) with e < l/min{M, A^}, then / i s optimal.

Proof

I f / i s not optimal, there must exist a cycle with no repeated nodes
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along which flow can be pushed without violating the feasibility of / and with an
improvement of the primal cost. Here the nodes i^ and /^ are sources and sinks,
respectively, and we have j ^ E A{i^),j^_^.^ €. A{i^),m = \,2,... ,k - \.jf^ E A{i^),
/j £ A{i^). Because Y has no repeated nodes, we have k < miniA/, A î, which based
on the hypothesis on e, implies that

^e < 1 . (42)

Furthermore, we must have

/ , > 1, m = \,...,k (43)
m 'm

(in order to be able to push flow from f^ back to / ^ ) , and

k k

y a,. . + I < fl, ,. + T a. . (44)
/71 = 1 m = 2

(since pushing flow along Y improves the cost and the coefficients a- are integer). It
follows that

Using (43) and the e-CS condition (41) we obtain

iTf - € <a. . -p. , m = \,. . .,k.. (46)
m 'm 'm >m ^ '

The last two inequalities and the condition ke < \ (cf. (42)) yield

fc k

which is a contradiction. Q.E.D.
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Based on the equivalence of transportation problems, and assignment problems
with similar persons and objects discussed earlier, it is seen that proposition 1 is a
special case of proposition 4.

We now describe our transportation algorithm by restating AUCTION-SOP
for the equivalent assignment problem (ATP) in terms of a flow variable ĵ y and a price
variable for each (i, / ) with / £ A{i), together with a set of initial price variables y^j
for all sinks /. The generic iteration of this algorithm consists of a bidding phase and
an assignment phase, stated below. At the start of the iteration we have a set of flow
variables yj- and price variables >',-• satisfying conditions (39), (40) and (41). At the
end of the iteration we obtain a set of flow variables/^ and price variables j',!,- satisfying
the same conditions. To simplify the statement of the algorithm we define, for any
fiow vector / ,

foi = & i - 1 fii^ / = 1 . 2 M. (47)

We also assume that

ye-4(0

for all i; this guarantees that case (c) in the biddingphase of AUCTION-SOP does not
arise.

BIDDING PHASE

For each source / such that Z/j- < ot^:

Consider the collection

n ( 0 = {a,y - yf^j\j e A{i), and either /: = 0 and f^j > 0 or

k i= i and / € A{k), f^. > 0} , (48)

and assume that n ( / ) is ordered in decreasing order, i.e. for some n we have

with

«,7 - yk i ^°ii ~ yk i • for all « - 1 , . . . , « - 1 .

Let m be the smallest integer m' such that



88 D.P. Bertsekas, D.A. Castanon, The auction algorithm

Define flows /-y for all / £ .^4(0.1 ^ Im^ pven by

4 = fi/ \
{

and then define

4 .
Compute the scalar w, as follows: If/^y > 0 for more than one sink /, then

and otherwise

where n is the first integer n' for which /„. "^ Ji-
Compute the "bid" of source / for each fiow /j,̂ - > 0 as

b.j = a.. - w. + e .

(As before, we characterize this situation by saying that source / bid for a fiow incre-
ment f-j of sink / at a price Z>,y, and that sink / received a bid from source / for a fiow
Increment fjj at a price b--.)

ASSIGNMENT PHASE

For each sink/:

Let P{j) be the set of sources from which / received a bid for a positive flow
increment in the bidding phase of the iteration. Assume that P{f) is ordered in
decreasing bid value, i.e. P{ j) is of the form

where

f, J > 0, b. i > b. ., for m = 1, . . . , m - 1.
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Let
m

n = m if I
m = i

and, otherwise, let n be the smallest integer m' such that

Then update the fiows f^;, for ( such that / e A{i), by

4
m = I

f-j = 0 Otherwise

Set also

Based on the results proved for the auction algorithm of the previous section,
the transportation algorithm above terminates with an optimal solution provided that
the transportation problem (TP) is feasible and e < l/min{yV/, N).

5. The auction algorithm for inequality constrained transportation
problems

The ideas and algorithms of the previous sections can be extended to inequality
constrained assignment and transportation problems of the form

maximize ^
1 = 1 j

subject to X fif ^ °^i^ i = I,.. . ,N

(TPI)
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The e-complementary slackness conditions take the form

f,j > 0 => TT, - e < a,j - Pj , (49)

TT,. >0, V l = I N

Pj>0, V/= 1 M

where the source profits TT,- are given by

TT = max {a^j-pj\, V / = 1 TV.
{fc!/ex(k)l

It can be shown that if a feasible flow vector/satisfies, together with a price vector p ,
the above conditions, then/is optimal if e < llmin\M,N\.

Finally, the auction algorithm of the previous section can be used to solve
inequality constrained problems, provided the initial flow and price vector pair satisfies
the above e-CS conditions and the set n( / ) of eq. (48) in the bidding phase is modified
to include only scalars a-.-yj^, that are nonnegative. In particular, if due to this
restriction the set !!(/) is empty, then source / does not participate in the bidding
phase. The algorithm terminates when for all sources i either the set 11(0 is empty or
the supply a,- is assigned, that is,

6. Computational results

The algorithm of section 4 for (equality constrained) transportation problems
was implemented in a code called TRANSAUCTION, and was compared with the
following state-of-the-art codes:

(1) AUCTION (written by Bertsekas [8]): This is a public domain code imple-
menting the auction algorithm for the assignment problem described in
section 2. Computational results with an early (and somewhat inefficient)
version of this code [10] show that for sparse assignment problems, AUCTION
outperfomis by a large margin the code by Jonker and Volgenant [20]. This
latter code is a two-phase method; the first phase is an extensive initialization
procedure based on the relaxation method of [4] and the second phase is a
sequential shortest path method. Our own experiments indicate also that for
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sparse problems. AUCTION outperforms by a large margin other types of two-
phase methods which combine the relaxation method with a Hungarian-type
or sequential shortest path method.

(2) RELAXII (written by Bertsekas and Tseng [12]): This is a state-of-the-art
code for general linear minimum cost network flow problems, based on the
relaxation method [5,11].

(3) RNET (written by Grigoriadis and Hsu): This is a state-of-the-art code for
general linear minimum cost network fiow problems, based on the simplex
method.

In analogy with earlier auction algorithms, TRANSAUCTION applies the
algorithm of the previous section with successively smaller values of e, starting from
a large value and ending with e = 1/miniA/, A'}; the price vector obtained at the end
of each application of the algorithm is used as the starting price vector for the next
application of the algorithm. The idea of successive reduction of e is known as e-scaling
and has been suggested in the original proposal of the auction algorithm as a method
of improving performance, e-scaling was analyzed first in [16] (and more fully in
[17]), in the broader context of the e-relaxation method of [6,7] , where it was
shown that it leads to polynomial algorithms. By introducing appropriate data structures
and e-scaling, and by combining the complexity analysis of the unsealed e-relaxation
method [6] ,and of scaling ([16,17] and also [9,10]),itispossible touse the algorithm
of the previous section to construct an 0((>/ + A')^log(Cmin{A/, A/"!)) transportation
algorithm, where C = max{|a^ll/ E /!(/) I. This is demonstrated in more general form in
a report by the authors, which will be published shortly. Our TRANSAUCTION code has
polynomial complexity, but does not use all the data structures needed to attain the poly-
nomial complexity bound just mentioned; it is doubtful that an implementation attain-
ing this bound would perform better than TRANSAUCTION in practice. The details
of the e-scaling scheme that we used are somewhat complicated. Roughly, all cost
coefficients a,- are first multiplied with min\M. N\, so that the threshold value of e
that guarantees optimality is e = 1; then e is initialized at a value of C min{M,N\/2
for the first application of the algorithm of the previous section; e is reduced by a
certain factor (4—6 are recommended values) with each successive application of the
algorithm until the final value e == 1 is reached. There is also an additional feature,
called adaptive scaling, whereby the value of e is gradually modified before the algo-
rithm terminates based on some heuristic rules. Adaptive scaling is also used optionally
in the public domain version of the AUCTION code.

The test problems we used were of two types. The first type are problems
generated randomly with the public domain program NETGEN [22]. Figure 6 shows
the times required by AUCTION and TRANSAUCTiON for solving NETGEN assign-
ment problems of different sizes. The figure refiects the additional overhead (between
2 and 3) which is required to maintain the data structures used by the implementation
of the auction algorithm for transportation problems.
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20 -1

1 0 -
TRANSAUCTION

AUCTION

100 200 300 400 500 600

NMENStON OF NETGEN ASSIGNMENT PROBLEM

Fig. 6. Comparison of AUCTION and TRANSAUCTION
for NETGEN iissignmcnt problems of different size. The
number of arcs in each problem was 12.5% of maximum.

20 H

i ,0

TRANSAUCTION

NSI NG2 NG3 NG4 NGS NG6 NG7 NG8 NGS NG10

NETGEN TRANSPORTATION PROBLEMS

Fig. 7. Performance of TRANSAUCTION, RELAXII and RNET
algorithms on NETGEN transportation problem benchmarks.
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Figure 7 illustrates the computation times required by the TRANSAUCTION,
RELAXII and RNET codes to solve the first ten standard problems of [22]. (These
tests were done on a VAX 11-750 because we do not have a version of RNET that
runs on an MAC II.) Here we have symmetric transportation problems, with the number
of supply nodes ranging from 100 to 150 and the number of arcs ranging from 1300
to 6300. Figure 7 shows that TRANSAUCTION runs slower than RELAXII and
roughly comparable with RNET. The total supply in these problems is 1000 times
the number of sources.

The second type of problems that we tested are asymmetric transportation
problems with relatively few levels of supplies and demands; by this we mean that
the sources (sinks) can be divided into a few groups with roughly comparable values
of supply (demand) within each group. Problems arise often in practice, where few
sources with large supplies are allocated to many sinks with small demands. They are
the type of problems for which TRANSAUCTION outperforms substantially both
RELAXII and RNET. This is supported by the results shown in figs. 8 - 1 0 . For
these problems, the TRANSAUCTION code obtains an optimal solution in 20-50%
of the time required by RELAXII. Figures 8 - 1 0 indicate that the advantage of
TRANSAUCTION over the other codes increases with problem dimension. The
problems of these figures are representative of the results obtained from many test
runs with qualitatively similar problems.

600 -\
RNET

100 300 1000
PROBLEM SIZE

3000

Fig. 8. Performance of TRANSAUCTION, RELAXU and RNET on transportation-
assignment problems. All problems have 100 sinks. 10 with large demand and 90
with small demand. Problem size is described by the number of sources, all of
which have unit supply. The number of arcs in each problem is 14% of maximum.
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3001

200XS0 400X100 1200X300
PROBLEM SrZE

TRANSAUCTION

2000X500

Fig. 9. Performance of TRANSAUCTION and RELAXII on transportation problems
of homogeneous type. The number of sources equals four times the number of
sinks. The supply of each source ranges from 1 - 9 , with average 5. The sinks are
divided into two classes, with 10% of the sinks having 50% of demand divided
evenly, while 90% of the sinks divide the remaining 50% of demand evenly. The
average number of arcs in each problem is 5% of maximum.

60 -

5 50

20 -

10 -

RELAXII

TRANSAUCTION

200 400 500 300

NUMBER OF SOURCES

1000

Fig. 10. Perfomiance of TRANSAUCTION and RELAXII on transportation prob-
lems of homogeneous type. The number of sinks is kept constant at 100, with 10
sinks with demand 225 and 90 sinks with demand 25. The average number of arcs
in each problem is 14% of maximum. The supplies of the sources were generated
according to a uniform distribution over [1, iOO| (for the 100-source problem),
[1,301 (for the 300-source problem), and [1, 10] (for the 1000-source problem),
with corrections made to ensure that the total demand was equal to the total supply.
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7. Conclusions

The auction algorithm of this paper is consistent with the current trend of

solving linear programming problems using ideas from nonlinear programming. It

has performed better than all transportation codes available to us on various classes

of asymmetric transportation problems with relatively few levels of suuplies and

demands. The algorithm is suitable for parallel implementation; parallel versions

have already been developed, but this work lies outside the scope of this paper. The

algorithm can also be extended to solve general linear minimum cost flow problems

in O{N^\o%{NC)) time. This extension, together with its complexity analysis, will

be given in a future publication.
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