Optimistic Policy Iteration and Q-learning in Dynamic Programming

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

November 2010

INFORMS, Austin, TX

Summary

- Policy iteration in infinite horizon DP

 - Maintains cost-policy pair (J^t, μ^t)
 J^t is obtained by "policy evaluation" of μ^t (need to solve a linear system)
 - μ^{t+1} is obtained by "policy improvement" based of J^t
- Focus on "optimistic" policy iteration (also known as "modified")
 - Policy evaluation is approximate: a finite number of value iterations using μ^t
 - More efficient in practice
 - Has fragile convergence properties
 - Requires a monotonicity assumption for initial condition: $T_{\mu\nu}J^0 \leq J^0$
 - Could be asynchronous: one state at a time, in any order, with "delays"
- Failure of asynchronous/optimistic policy iteration without the monotonicity condition (Williams-Baird counterexample -1993)
- A radical modification of policy evaluation: Aims to solve an optimal stopping problem instead of solving a linear system
- Convergence properties are restored/improved
- We obtain an optimistic exploration-enhanced Q-learning algorithm

References

- D. P. Bertsekas and H. Yu, "Q-Learning and Enhanced Policy Iteration in Discounted Dynamic Programming," Report LIDS-P-2831, MIT, April 2010
- D. P. Bertsekas and H. Yu, "Distributed Asynchronous Policy Iteration," Proc. Allerton Conference, Sept. 2010 (describes slightly different algorithms than these slides)
- Related lines of analysis:
 - Theory of totally asynchronous distributed algorithms from Bertsekas 1982, 1983, and Bertsekas and Tsitsiklis 1989
 - Generalized/abstract DP model: From Bertsekas 1977, and Bertsekas and Shreve 1978

Classical Value and Policy Iteration for Discounted MDP

2 New Optimistic Policy Iteration Algorithms

Discounted MDP - Fixed Point View

- J^{*}(i) = Optimal cost starting from state i
- $J_{\mu}(i)$ = Cost starting from state *i* using policy μ
- Denote by *T* and T_{μ} the mappings that transform $J \in \Re^n$ to the vectors *TJ* and $T_{\mu}J$ with components

$$(TJ)(i) \stackrel{\text{def}}{=} \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) \big(g(i, u, j) + \alpha J(j) \big), \qquad i = 1, \ldots, n,$$

and

$$(T_{\mu}J)(i) \stackrel{\text{def}}{=} \sum_{j=1}^{n} p_{ij}(\mu(i)) (g(i,\mu(i),j) + \alpha J(j)), \qquad i = 1, \dots, n$$

Bellman's equations are written as

$$J^* = TJ^*, \qquad J_\mu = T_\mu J_\mu$$

• Key structure: T and T_{μ} are sup-norm contractions,

$$\|TJ - TJ'\|_{\infty} = \max_{i=1,...,n} |(TJ)(i) - (TJ')(i)| \le \alpha \max_{i=1,...,n} |J(i) - J'(i)| = \alpha \|J - J'\|_{\infty}$$

Finding Fixed Point of *T*: Major Methods

• Value iteration (generic fixed point method): Start with any J⁰, iterate by

$$J^{t+1} = TJ^t$$

- Policy iteration (special method for *T* of the form $T = \min_{\mu} T_{\mu}$): Start with any J^0 and μ^0 . Given J^t and μ^t , iterate by:
 - Policy evaluation: $J^{t+1} = (T_{\mu t})^m J^t$ (*m* applications of $T_{\mu t}$ on J^t ; $m = \infty$ is possible)
 - Policy improvement: μ^{t+1} attains the min in TJ^{t+1} (or $T_{\mu^{t+1}}J^{t+1} = TJ^{t+1}$)
- Policy iteration is more efficient because application of T_{μ} is cheaper than application of *T* (typically, with a reasonable choice of *m*)
- Value iteration converges to J*, thanks to contraction property of T
- It converges in distributed asynchronous form, thanks to sup-norm contraction and monotonicity of *T*
- Policy iteration converges asynchronously, thanks to sup-norn contraction and monotonicity of *T* and *T_μ*, assuming monotonicity of initial condition:

$$T_{\mu^0}J^0 \leq J^0$$

Value and Policy Iteration: Graphical Interpretations

An Abstract View of the Convergence Issue

• We want to find a fixed point J^* of a mapping $T : \Re^n \mapsto \Re^n$ of the form

$$(TJ)(i) = \min_{\mu \in \mathcal{M}_i} (T_{\mu}J)(i), \qquad i = 1, \ldots, n,$$

where μ is a parameter from some set \mathcal{M}_i .

- Instead of *T*, we iterate with a sequence of mappings *T<sub>μ<sup>k</sub>*, (which change when there is a policy improvement)
 </sub></sup>
- Difficulty: *T_μ* has different fixed point than *T* ... so the target of the iterations keeps changing

An Abstract View of Our Approach

- Embed both T and T_{μ} within another mapping F_{μ}
- F_{μ} has the same fixed point for all μ from which J^* can be extracted
- *F_µ* is sup-norm contraction, so convergence is obtained (also in a distributed asynchronous context)
- In the DP context, F_{μ} is associated with an optimal stopping problem
- Because it is not crucial which μ we use, we can modify μ to effect exploration enhancement major issue in simulation-based policy iteration
- Most of what follows applies beyond α -discounted DP

Embedding to a Uniform Sup-Norm Contraction

• Consider "Q-factors" Q(i, u) and costs J(i). For any μ , define mapping

$$(Q,J) \mapsto (F_{\mu}(Q,J), M_{\mu}(Q,J))$$

where

$$\begin{aligned} F_{\mu}(Q,J)(i,u) \stackrel{\text{def}}{=} \sum_{j=1}^{n} p_{ij}(u) \big(g(i,u,j) + \alpha \min \left\{ J(j), Q(j,\mu(j)) \right\} \big), \\ M_{\mu}(Q,J)(i) \stackrel{\text{def}}{=} \min_{u \in U(i)} F_{\mu}(Q,J)(i,u) \end{aligned}$$

- Key fact: This mapping is a uniform sup-norm contraction a common fixed point (Q^{*}, J^{*}) for all μ, where J^{*}(i) = min_{u∈U(i)} Q^{*}(i, u)
- We have

$$\max\left\{\|F_{\mu}(\boldsymbol{Q},\boldsymbol{J})-\boldsymbol{Q}^{*}\|_{\infty},\,\|\boldsymbol{M}_{\mu}(\boldsymbol{Q},\boldsymbol{J})-\boldsymbol{J}^{*}\|_{\infty}\right\}\leq\alpha\max\left\{\|\boldsymbol{Q}-\boldsymbol{Q}^{*}\|_{\infty},\,\|\boldsymbol{J}-\boldsymbol{J}^{*}\|_{\infty}\right\}$$

- Fixed point iteration with this mapping converges asynchronously
- We operate with different mappings corresponding to different μ , but they all have a common fixed point

Connection to an Optimal Stopping Problem

Consider the mapping

$$(Q,J) \mapsto (F_{\mu}(Q,J), M_{\mu}(Q,J))$$

where

$$F_{\mu}(Q,J)(i,u) \stackrel{\text{def}}{=} \sum_{j=1}^{n} p_{ij}(u) \big(g(i,u,j) + \alpha \min \big\{ J(j), Q(j,\mu(j)) \big\} \big),$$

$$M_{\mu}(Q,J)(i) \stackrel{\text{def}}{=} \min_{u \in U(i)} F_{\mu}(Q,J)(i,u)$$

- For fixed J and μ the fixed point of F_μ(·, J) is the optimal cost of an optimal stopping problem [transitions: (i, u) → (j, μ(j)), stopping cost at j: J(j)]
- Iteration with $F_{\mu}(\cdot, J)$ for fixed J and μ , aims to solve the stopping problem associated with J and μ
- Iteration with M_μ(·, J), does a "value iteration/policy improvement" to update the stopping problem

Special Case: Optimistic Policy Iteration with Improved Convergence

- Maintain J^t, μ^t, and V^t(i) = Q(i, μ^t(i)) (not necessary to maintain the entire vector Q)
 - If $t \in \mathscr{T}_i$, do a "policy evaluation" at *i*: Set

$$V^{t+1}(i) = \sum_{j=1}^{n} p_{ij}(u) (g(i, \mu^{t}(i), j) + \alpha \min \{J^{t}(j), V^{t}(j)\}),$$

and leave $J^t(i)$, $\mu^t(i)$ unchanged.

• If $t \in \overline{\mathscr{T}}_i$, do a "policy improvement" at *i*: Set

$$J^{t+1}(i) = V^{t+1}(i) = \min_{u \in U(i)} \sum_{j=1}^{n} p_{ij}(u) (g(i, u, j) + \alpha \min \{J^{t}(j), V^{t}(j)\})$$

set $\mu^{t+1}(i)$ to a *u* that attains the minimum.

- We restrict the increases of *V*^t in policy evaluations (using *J*^t as a "stopping" cost)
- A variant with interpolation: In place of $\min\{J^t, V^t\}$ use

$$(1 - \gamma^t) \min\{J^t, V^t\} + \gamma^t V^t$$

when $J^t < V^t$, with $\gamma^t \downarrow 0$.

Some Computational Experiments (Using the slightly different algorithms of the Allerton conference paper)

Williams-Baird Counterexample

Malicious Order of Component Selection

Random Order of Component Selection

Exploration-Enhanced Model-Based Policy Iteration

• We may replace the current policy μ with a randomized policy ν

$$\big\{\nu(u \mid i) \mid u \in U(i)\big\}$$

which provides exploration

• We use the map $Q \rightarrow F_{J,\nu}Q$, the vector of Q-factors with components

$$(F_{J,\nu}Q)(i,u) = \sum_{j=1}^{n} p_{ij}(u) \left(g(i,u,j) + \alpha \sum_{v \in U(j)} \nu(v \mid j) \min \left\{ J(j), Q(j,v) \right\} \right)$$

 The randomized ν may be related to the current μ but may include unlimited amount of exploration

• The preceding uniform contraction analysis and algorithms generalize

Exploration-Enhanced Model-Free Q-Learning

- Select a state-action pair (*i*_k, *u*_k)
- Policy improvement (for k in a selected subset of times): Update J_k, μ_k according to

 $J_{k+1}(i_k) = \min_{u \in U(i_k)} Q_k(i_k, u), \quad \mu_{k+1}(j) = \arg\min_{u \in U(j)} Q_k(i_k, u), \quad \text{for } i = i_k$

For $i \neq i_k$, leave $J_k(i)$ and $\mu_k(i)$ unchanged

- Policy evaluation (for all k): Select a stepsize γ_{(i_k,u_k),k} ∈ (0, 1] and an exploration policy ν_{(i_k,u_k),k}
 - Generate a successor state j_k according to distribution $p_{i_k j}(u_k), j = 1, ..., n$
 - Generate a control v_k according to distribution $\nu_{(i_k,u_k),k}(v \mid j_k), v \in U(j_k)$
 - Update the (*i_k*, *u_k*)th component of *Q* according to

$$Q_{k+1}(i_k, u_k) = (1 - \gamma_{(i_k, u_k), k}) Q_k(i_k, u_k) + \gamma_{(i_k, u_k), k} \Big(g(i_k, u_k, j_k) + \alpha \min \{ J_k(j_k), Q_k(j_k, v_k) \} \Big)$$

and leave all other components of Q_k unchanged

- Exploration policy $\nu_{(i_k,u_k),k}$ may be (arbitrarily) related to current policy μ_k
- There are versions that use cost function approximation and the stopping algorithm of Tsitsiklis and VanRoy (1999)

Generalized DP – Abstract Mappings T and T_{μ}

• Introduce a mapping H(i, u, J) and denote

$$(TJ)(i) = \min_{u \in U(i)} H(i, u, J), \qquad (T\mu J)(i) = H(i, \mu(i), J)$$

i.e., $TJ = \min_{\mu} T_{\mu}J$, where the min is taken separately for each component

- Many DP models beyond standard discounted can be modeled this way
 - Semi-Markov and minimax discounted problems
 - Stochastic shortest path problems
 - Q-learning versions of the above
 - Multi-agent aggregation
- Assume that for all *i* and $u \in U(i)$

$$|H(i, u, J) - H(i, u, J')| \le \alpha ||J - J'||_{\infty}$$

- Then T and T_{μ} are sup-norm contractions with fixed points J^* and J_{μ}
- The preceding uniform contraction analysis and algorithms generalize

Concluding Remarks

- A new approach to optimistic and exploration-enhanced policy iteration
 - Replaces policy evaluation step with a stopping problem
 - Is based on a uniform sup-norm contraction ... common fixed point for all μ
 - Yields: 1) Improved convergence properties, and 2) Exploration benefit
- Several interlocking research directions
- Optimistic Q-learning (lookup table, simulation, stochastic analysis)
- Optimistic policy iteration/Q-learning with cost function approximation and enhanced exploration
- Convergence in distributed asynchronous mode (using convergence theory of distributed asynchronous algorithms)
- Generalized DP (and some nonDP) models: Fixed points of parametric minimization maps
- A nonDP context: Distributed asynchronous computation of fixed point of a concave sup-norm contraction
- Application to monotone (DP or nonDP) mappings (instead of sup-norm contractions)

THANK YOU!