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Summary

Policy iteration in infinite horizon DP

e Maintains cost-policy pair (J1, u!)
e J!is obtained by “policy evaluation" of u! (need to solve a linear system)
e u!t1 is obtained by “policy improvement" based of J!

@ Focus on “optimistic" policy iteration (also known as “modified")
e Policy evaluation is approximate: a finite number of value iterations using !
e More efficient in practice
@ Has fragile convergence properties
o Requires a monotonicity assumption for initial condition: 7,0 JO< SO
@ Could be asynchronous: one state at a time, in any order, with “delays"

@ Failure of asynchronous/optimistic policy iteration without the
monotonicity condition (Williams-Baird counterexample -1993)

A radical modification of policy evaluation: Aims to solve an optimal
stopping problem instead of solving a linear system

Convergence properties are restored/improved

We obtain an optimistic exploration-enhanced Q-learning algorithm
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Classical Value and Policy lteration for Discounted MDP

Discounted MDP - Fixed Point View

@ J*(i) = Optimal cost starting from state i
@ J, (i) = Cost starting from state i using policy u

@ Denote by T and T, the mappings that transform J € R" to the vectors
TJ and T, J with components

(THDE min > pi(u)(glis uf) +ad(),  i=1....m,

and

(T E Zpij(p(i)) (9(i, u(i), ) + ad(j)), i=1,....n

@ Bellman’s equations are written as
J=T1J, Jp=Tudu

@ Key structure: T and T, are sup-norm contractions,
[TI=TJ |loo = max |[(TH(N)—(TI)()| < a max |[J(I)—=J'(i)]| = | J=I ||

=1,..., n } =1,...,



Classical Value and Policy lteration for Discounted MDP

Finding Fixed Point of T: Major Methods

@ Value iteration (generic fixed point method): Start with any J°, iterate by
J1+1 _ TJ[

@ Policy iteration (special method for T of the form T = min,, T,): Start
with any J° and 1°. Given J! and 1/, iterate by:
e Policy evaluation: JI+! = (T,)™J'  (mapplications of T,,¢ on J'; m = oo is
possible)
o Policy improvement: u'*" attains the min in TJ'*" (or T i J'! = TUHT)

@ Policy iteration is more efficient because application of T,, is cheaper
than application of T (typically, with a reasonable choice of m)

@ Value iteration converges to J*, thanks to contraction property of T

@ [t converges in distributed asynchronous form, thanks to sup-norm
contraction and monotonicity of T

@ Policy iteration converges asynchronously, thanks to sup-norn
contraction and monotonicity of T and T,, assuming monotonicity of
initial condition:

Tl <



Classical Value and Policy lteration for Discounted MDP

Value and Policy lteration: Graphical Interpretations
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Classical Value and Policy lteration for Discounted MDP

An Abstract View of the Convergence Issue
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@ We want to find a fixed point J* of a mapping T : " — R of the form
(7)) = min (T.)(@),  i=1,....n,

where . is a parameter from some set M;.

@ Instead of T, we iterate with a sequence of mappings T, (which
change when there is a policy improvement)

@ Difficulty: T, has different fixed point than T ... so the target of the
iterations keeps changing



New Optimistic Policy Iteration Algorithms

An Abstract View of Our Approach

@ Embed both T and T,, within another mapping F,
@ F, has the same fixed point for all . from which J* can be extracted

@ F, is sup-norm contraction, so convergence is obtained (also in a
distributed asynchronous context)

@ In the DP context, F,, is associated with an optimal stopping problem

@ Because it is not crucial which p we use, we can modify p to effect
exploration enhancement - major issue in simulation-based policy
iteration

@ Most of what follows applies beyond «a-discounted DP



New Optimistic Policy Iteration Algorithms

Embedding to a Uniform Sup-Norm Contraction

@ Consider “Q-factors" Q(i, u) and costs J(i). For any p, define mapping
(QJ) = (Fu(QJ),M.(Q,J))
where
n
Fu(Q.J)(i,u) = 3~ py(u) (90, u, ) + amin {J(), QU (i)},
j=1
M.(Q,J)() € min F.(Q,J)(i, u)
ueU(i)
@ Key fact: This mapping is a uniform sup-norm contraction - a common
fixed point (Q*, J*) for all i, where J* (i) = minycyiy Q*(i, u)
@ We have

max {[|F.(Q, J)=Q[loo, [IMu(Q, )= [loo } < amax {[|Q=Q"[|oo, [|[J=J"[|oo }

@ Fixed point iteration with this mapping converges asynchronously

@ We operate with different mappings corresponding to different n, but
they all have a common fixed point



New Optimistic Policy Iteration Algorithms

Connection to an Optimal Stopping Problem

@ Consider the mapping
(07 J) = (FH(Q7 J)7MH(05 J))

where

Fu(@ )0, 0) = 3 py(u) (g0, ) + amin {J(), QU (i) }).

M.(Q. () = min F.(Q. J)( u)

@ For fixed J and p the fixed point of F, (-, J) is the optimal cost of an
optimal stopping problem [transitions: (i, u) — (j, u(j)), stopping cost at
JER0))

@ lteration with F,(-,J) for fixed J and u, aims to solve the stopping
problem associated with J and p

@ lteration with M,.(-, J), does a “value iteration/policy improvement" to
update the stopping problem



New Optimistic Policy Iteration Algorithms

Special Case: Optimistic Policy Iteration with Improved Convergence

@ Maintain J', u!, and V*(i) = Q(i, 1'(i)) (not necessary to maintain the
entire vector Q)

o Ift € .7, do a “policy evaluation" at i: Set
VE(i) = Zp,j u) (g (i, ' (i), j) + amin {J'(j), VI()1),
Jj=1
and leave J!(i), p!(i) unchanged.
e Ift € .7, do a “policy improvement" at i: Set

JHI() = v () = ?lljn)Zp,j(u) (i, u,f) + amin {J'(), VI()})

set u!t1(J) to a u that attains the minimum.

@ We restrict the increases of V' in policy evaluations (using J' as a
“stopping" cost)

@ A variant with interpolation: In place of min{J’, V'} use
(1 =)y min{J’, Vi3 + V!
when J' < V!, with~! | 0.



New Optimistic Policy Iteration Algorithms

Some Computational Experiments
(Using the slightly different algorithms of the Allerton conference paper)

Williams-Baird Counterexample
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New Optimistic Policy Iteration Algorithms

Exploration-Enhanced Model-Based Policy lteration

@ We may replace the current policy n with a randomized policy v

{v(uli)|ue Ui}
which provides exploration
@ We use the map Q — F,, Q, the vector of Q-factors with components

(Fuv Q)i u) = ZP:/ u) | gli,u, )+ D w(v | jymin {J(), QU, v)}
veU(j)

@ The randomized v may be related to the current p but may include
unlimited amount of exploration

Vg Hk+1 Vk+1 -
—» Policy Qi+1 .| Policy Exploration il Policy

—p| Evaluation " | Improvement Enhancement Evaluation
Ik Je+1 |— _J Je+1

@ The preceding uniform contraction analysis and algorithms generalize

A




New Optimistic Policy Iteration Algorithms

Exploration-Enhanced Model-Free Q-Learning

@ Select a state-action pair (i, Ux)

@ Policy improvement (for k in a selected subset of times): Update Jk, u«
according to

J, ix) = min ik, u i) = arg min i, u for i =
k+1 (k) ueU(ik)ok(k’ ), k() gueu(j)Qk(m )s K

For i # ik, leave Ji(i) and ux (i) unchanged
@ Policy evaluation (for all k): Select a stepsize ~;, 4,).« € (0, 1] and an
exploration policy v u,),«

e Generate a successor state jy according to distribution pj, j(uk), j =1, . .,
o Generate a control v according to distribution v,y k(v | k), v € U(jk)
o Update the (ik, ux)th component of Q according to

Qur1 (k> k) = (1 = i ue) k) Qi (i, U)

ek (s Ui i) + aemin {Ji i), Qules i })
and leave all other components of Qx unchanged
@ Exploration policy v(;, 4,).x may be (arbitrarily) related to current policy 1

@ There are versions that use cost function approximation and the
stopping algorithm of Tsitsiklis and VanRoy (1999)

n



New Optimistic Policy Iteration Algorithms

Generalized DP — Abstract Mappings T and T,

@ Introduce a mapping H(i, u,J) and denote
(TH() = m[ijr(wl) H(i, u,J), (Tud)(i) = H(i, p(i),J)
ueUu(/
i.e., TJ = min, T.J, where the min is taken separately for each
component
@ Many DP models beyond standard discounted can be modeled this way
e Semi-Markov and minimax discounted problems
@ Stochastic shortest path problems
@ Q-learning versions of the above
o Multi-agent aggregation
@ Assume that for all i and u € U(i)
|H(i,u,J) = H(i,u,J")| < alld = ||
@ Then T and T, are sup-norm contractions with fixed points J* and J,,
@ The preceding uniform contraction analysis and algorithms generalize



New Optimistic Policy Iteration Algorithms

Concluding Remarks

A new approach to optimistic and exploration-enhanced policy iteration
o Replaces policy evaluation step with a stopping problem
@ Is based on a uniform sup-norm contraction ... common fixed point for all
e Yields: 1) Improved convergence properties, and 2) Exploration benefit

Several interlocking research directions
Optimistic Q-learning (lookup table, simulation, stochastic analysis)

Optimistic policy iteration/Q-learning with cost function approximation
and enhanced exploration

Convergence in distributed asynchronous mode (using convergence
theory of distributed asynchronous algorithms)

Generalized DP (and some nonDP) models: Fixed points of parametric
minimization maps

A nonDP context: Distributed asynchronous computation of fixed point of
a concave sup-norm contraction

Application to monotone (DP or nonDP) mappings (instead of sup-norm
contractions)

THANK YOU!
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