
Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Optimistic Policy Iteration and Q-learning in Dynamic
Programming

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

November 2010

INFORMS, Austin, TX

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Summary

Policy iteration in infinite horizon DP

Maintains cost-policy pair (J t , µt)
J t is obtained by “policy evaluation" of µt (need to solve a linear system)
µt+1 is obtained by “policy improvement" based of J t

Focus on “optimistic" policy iteration (also known as “modified")

Policy evaluation is approximate: a finite number of value iterations using µt

More efficient in practice

Has fragile convergence properties

Requires a monotonicity assumption for initial condition: Tµ0 J0 ≤ J0

Could be asynchronous: one state at a time, in any order, with “delays"

Failure of asynchronous/optimistic policy iteration without the
monotonicity condition (Williams-Baird counterexample -1993)

A radical modification of policy evaluation: Aims to solve an optimal
stopping problem instead of solving a linear system

Convergence properties are restored/improved

We obtain an optimistic exploration-enhanced Q-learning algorithm

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

References

D. P. Bertsekas and H. Yu, “Q-Learning and Enhanced Policy Iteration in
Discounted Dynamic Programming," Report LIDS-P-2831, MIT, April
2010

D. P. Bertsekas and H. Yu, “Distributed Asynchronous Policy Iteration,"
Proc. Allerton Conference, Sept. 2010 (describes slightly different
algorithms than these slides)

Related lines of analysis:
Theory of totally asynchronous distributed algorithms from Bertsekas 1982,
1983, and Bertsekas and Tsitsiklis 1989

Generalized/abstract DP model: From Bertsekas 1977, and Bertsekas and
Shreve 1978

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Outline

1 Classical Value and Policy Iteration for Discounted MDP

2 New Optimistic Policy Iteration Algorithms

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Discounted MDP - Fixed Point View

J∗(i) = Optimal cost starting from state i
Jµ(i) = Cost starting from state i using policy µ

Denote by T and Tµ the mappings that transform J ∈ <n to the vectors
TJ and TµJ with components

(TJ)(i) def
= min

u∈U(i)

nX
j=1

pij(u)
`
g(i, u, j) + αJ(j)

´
, i = 1, . . . , n,

and

(TµJ)(i) def
=

nX
j=1

pij
`
µ(i)

´`
g(i, µ(i), j) + αJ(j)

´
, i = 1, . . . , n

Bellman’s equations are written as

J∗ = TJ∗, Jµ = TµJµ

Key structure: T and Tµ are sup-norm contractions,

‖TJ−TJ ′‖∞ = max
i=1,...,n

˛̨
(TJ)(i)−(TJ ′)(i)

˛̨
≤ α max

i=1,...,n

˛̨
J(i)−J ′(i)

˛̨
= α‖J−J ′‖∞

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Finding Fixed Point of T : Major Methods

Value iteration (generic fixed point method): Start with any J0, iterate by

J t+1 = TJ t

Policy iteration (special method for T of the form T = minµ Tµ): Start
with any J0 and µ0. Given J t and µt , iterate by:

Policy evaluation: J t+1 = (Tµt)mJ t (m applications of Tµt on J t ; m =∞ is
possible)
Policy improvement: µt+1 attains the min in TJ t+1 (or Tµt+1 J t+1 = TJ t+1)

Policy iteration is more efficient because application of Tµ is cheaper
than application of T (typically, with a reasonable choice of m)
Value iteration converges to J∗, thanks to contraction property of T

It converges in distributed asynchronous form, thanks to sup-norm
contraction and monotonicity of T

Policy iteration converges asynchronously, thanks to sup-norn
contraction and monotonicity of T and Tµ, assuming monotonicity of
initial condition:

Tµ0 J0 ≤ J0

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Value and Policy Iteration: Graphical Interpretations

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ 45 Degree Line
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ
Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

M =
�
(u, w) | there exists x ∈ X

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1

Cost =0 Cost = c < 0 Prob. = 1− p Prob. = 1 Prob. = p P

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

�
(g(x), f(x)) | x ∈ X

�

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1

Policy Improvement Exact Policy Evaluation Approximate Policy
Evaluation

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1

Policy Improvement Exact Policy Evaluation Approx. Policy Evalu-
ation

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1 J0 �→ (J1, µ1)

Policy Improvement Exact Policy Evaluation Approx. Policy Evalu-
ation

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

1

J0 J1 = TJ0 J2 = TJ1 J J∗ = TJ∗ TJ Tµ1J Jµ1 = Tµ1Jµ1

Value Iteration 45 Degree Line J t+1 = TJ t J2 = T 2
µ1J1 J0 �→ (J1, µ1)

TJ = minµ TµJ

Policy Improvement Exact Policy Evaluation Approx. Policy Evalu-
ation

Policy µ Policy µ∗ (a) (b) rµ = 0 Rµ Rµ∗

rµ∗ ≈
c

1− α
,

c

α
rµ = 0

1 2

k Stages j1 j2 jk

rµ1 rµ2 rµ3 rµk+3

Rµ1 Rµ2 Rµ3 Rµk+3

Controllable State Components Post-Decision States

State-Control Pairs: Fixed Policy µ Case (j, v) P ∼ |A|

j�0 j�1 j�k j�k+1 j�0 u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

j0 j1 jk jk+1 i0 i1 ik ik+1

u p(z | j) g(i, u,m) m m = f(i, u) q(j | m)

(i, y) (j, z) States j g(i, y, u, j) pij(u) g(i, u, j) v µ(j)
�
j, µ(j)

�

f̄�
2,Xk

(−λ)

x̃1 x̃2 x̃3 x̃4 Slope: x̃k+1 Slope: x̃i, i ≤ k

f�(λ)

Constant− f�
1 (λ) f�

2 (−λ) F ∗
2,k(−λ)F ∗

k (λ)

1

Policy Improvement

Policy Improvement

Value Iterations

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

An Abstract View of the Convergence Issue

Nonmonotone
Optimistic PI

Monotone
Optimistic PI

Value
Iteration

J∗ Jµ Jµ� Jµ�� Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

J∗ Jµ Jµ� Jµ��Jµ0 Jµ1 Jµ2 Jµ3 Jµ0

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

1

We want to find a fixed point J∗ of a mapping T : <n 7→ <n of the form

(TJ)(i) = min
µ∈Mi

(TµJ)(i), i = 1, . . . , n,

where µ is a parameter from some setMi .

Instead of T , we iterate with a sequence of mappings Tµk , (which
change when there is a policy improvement)

Difficulty: Tµ has different fixed point than T ... so the target of the
iterations keeps changing

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

An Abstract View of Our Approach

Embed both T and Tµ within another mapping Fµ

Fµ has the same fixed point for all µ from which J∗ can be extracted

Fµ is sup-norm contraction, so convergence is obtained (also in a
distributed asynchronous context)

In the DP context, Fµ is associated with an optimal stopping problem

Because it is not crucial which µ we use, we can modify µ to effect
exploration enhancement - major issue in simulation-based policy
iteration

Most of what follows applies beyond α-discounted DP

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Embedding to a Uniform Sup-Norm Contraction

Consider “Q-factors" Q(i, u) and costs J(i). For any µ, define mapping

(Q, J) 7→
`
Fµ(Q, J),Mµ(Q, J)

´
where

Fµ(Q, J)(i, u)
def
=

nX
j=1

pij(u)
`
g(i, u, j) + αmin

˘
J(j),Q(j, µ(j))}

´
,

Mµ(Q, J)(i) def
= min

u∈U(i)
Fµ(Q, J)(i, u)

Key fact: This mapping is a uniform sup-norm contraction - a common
fixed point (Q∗, J∗) for all µ, where J∗(i) = minu∈U(i) Q∗(i, u)

We have

max
˘
‖Fµ(Q, J)−Q∗‖∞, ‖Mµ(Q, J)−J∗‖∞

¯
≤ αmax

˘
‖Q−Q∗‖∞, ‖J−J∗‖∞

¯
Fixed point iteration with this mapping converges asynchronously

We operate with different mappings corresponding to different µ, but
they all have a common fixed point

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Connection to an Optimal Stopping Problem

Consider the mapping

(Q, J) 7→
`
Fµ(Q, J),Mµ(Q, J)

´
where

Fµ(Q, J)(i, u)
def
=

nX
j=1

pij(u)
`
g(i, u, j) + αmin

˘
J(j),Q(j, µ(j))

¯´
,

Mµ(Q, J)(i) def
= min

u∈U(i)
Fµ(Q, J)(i, u)

For fixed J and µ the fixed point of Fµ(·, J) is the optimal cost of an
optimal stopping problem [transitions: (i, u) 7→ (j, µ(j)), stopping cost at
j : J(j)]

Iteration with Fµ(·, J) for fixed J and µ, aims to solve the stopping
problem associated with J and µ

Iteration with Mµ(·, J), does a “value iteration/policy improvement" to
update the stopping problem

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Special Case: Optimistic Policy Iteration with Improved Convergence

Maintain J t , µt , and V t(i) = Q(i, µt(i)) (not necessary to maintain the
entire vector Q)

If t ∈ Ti , do a “policy evaluation" at i : Set

V t+1(i) =
nX

j=1

pij (u)
`
g
`
i, µt (i), j

´
+ αmin

˘
J t (j),V t (j)}

´
,

and leave J t (i), µt (i) unchanged.

If t ∈ T i , do a “policy improvement" at i : Set

J t+1(i) = V t+1(i) = min
u∈U(i)

nX
j=1

pij (u)
`
g(i, u, j) + αmin

˘
J t (j),V t (j)}

´
set µt+1(i) to a u that attains the minimum.

We restrict the increases of V t in policy evaluations (using J t as a
“stopping" cost)

A variant with interpolation: In place of min{J t ,V t} use

(1− γ t) min{J t ,V t}+ γ tV t

when J t < V t , with γ t ↓ 0.

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Some Computational Experiments
(Using the slightly different algorithms of the Allerton conference paper)

Williams-Baird Counterexample

Malicious Order of
Component Selection

Random Order of
Component Selection

"Classical" Algorithm New Algorithm Interpolated Variant

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Exploration-Enhanced Model-Based Policy Iteration

We may replace the current policy µ with a randomized policy ν˘
ν(u | i) | u ∈ U(i)

¯
which provides exploration

We use the map Q → FJ,νQ, the vector of Q-factors with components

(FJ,νQ)(i, u) =
nX

j=1

pij(u)

0@g(i, u, j) + α
X

v∈U(j)

ν(v | j) min
˘

J(j),Q(j, v)
¯1A

The randomized ν may be related to the current µ but may include
unlimited amount of exploration

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Sk Qk+1 Sk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

LP CONVEX NLP

Simplex

Policy Evaluation Improvement Exploration Enhancement

νk Jk Qk+1 Jk+1 µk+1 νk+1 Qk+1

Subgradient Cutting plane Interior point Subgradient

Polyhedral approximation

LPs are solved by simplex method

NLPs are solved by gradient/Newton methods.

Convex programs are special cases of NLPs.

Modern view: Post 1990s

LPs are often best solved by nonsimplex/convex methods.

Convex problems are often solved by the same methods as LPs.

Nondifferentiability and piecewise linearity are common features.

Primal Problem Description

Dual Problem Description

Vertical Distances

Crossing Point Differentials

Values f(x) Crossing points f∗(y)

−f∗
1 (y) f∗

1 (y) + f∗
2 (−y) f∗

2 (−y)

Slope y∗ Slope y

A union of points An intersection of halfspaces

minx

�
f1(x) + f2(x)

�
= maxy

�
f∗
1 (y) + f∗

2 (−y)
�

Abstract Min-Common/Max-Crossing Theorems

1

The preceding uniform contraction analysis and algorithms generalize

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Exploration-Enhanced Model-Free Q-Learning

Select a state-action pair (ik , uk)

Policy improvement (for k in a selected subset of times): Update Jk , µk

according to

Jk+1(ik) = min
u∈U(ik)

Qk (ik , u), µk+1(j) = arg min
u∈U(j)

Qk (ik , u), for i = ik

For i 6= ik , leave Jk (i) and µk (i) unchanged
Policy evaluation (for all k): Select a stepsize γ(ik ,uk),k ∈ (0, 1] and an
exploration policy ν(ik ,uk),k

Generate a successor state jk according to distribution pik j (uk), j = 1, . . . , n

Generate a control vk according to distribution ν(ik ,uk),k (v | jk), v ∈ U(jk)

Update the (ik , uk)th component of Q according to

Qk+1(ik , uk) =
`
1− γ(ik ,uk),k

´
Qk (ik , uk)

+γ(ik ,uk),k

“
g(ik , uk , jk) + αmin

˘
Jk (jk),Qk (jk , vk)

¯”
and leave all other components of Qk unchanged

Exploration policy ν(ik ,uk),k may be (arbitrarily) related to current policy µk

There are versions that use cost function approximation and the
stopping algorithm of Tsitsiklis and VanRoy (1999)

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Generalized DP – Abstract Mappings T and Tµ

Introduce a mapping H(i, u, J) and denote

(TJ)(i) = min
u∈U(i)

H(i, u, J), (TµJ)(i) = H
`
i, µ(i), J

´
i.e., TJ = minµ TµJ, where the min is taken separately for each
component

Many DP models beyond standard discounted can be modeled this way

Semi-Markov and minimax discounted problems
Stochastic shortest path problems
Q-learning versions of the above
Multi-agent aggregation

Assume that for all i and u ∈ U(i)˛̨
H(i, u, J)− H(i, u, J ′)

˛̨
≤ α‖J − J ′‖∞

Then T and Tµ are sup-norm contractions with fixed points J∗ and Jµ
The preceding uniform contraction analysis and algorithms generalize

Classical Value and Policy Iteration for Discounted MDP New Optimistic Policy Iteration Algorithms

Concluding Remarks

A new approach to optimistic and exploration-enhanced policy iteration
Replaces policy evaluation step with a stopping problem
Is based on a uniform sup-norm contraction ... common fixed point for all µ
Yields: 1) Improved convergence properties, and 2) Exploration benefit

Several interlocking research directions

Optimistic Q-learning (lookup table, simulation, stochastic analysis)

Optimistic policy iteration/Q-learning with cost function approximation
and enhanced exploration

Convergence in distributed asynchronous mode (using convergence
theory of distributed asynchronous algorithms)

Generalized DP (and some nonDP) models: Fixed points of parametric
minimization maps

A nonDP context: Distributed asynchronous computation of fixed point of
a concave sup-norm contraction

Application to monotone (DP or nonDP) mappings (instead of sup-norm
contractions)

THANK YOU!

	Classical Value and Policy Iteration for Discounted MDP
	New Optimistic Policy Iteration Algorithms

