A Series of Lectures on Approximate Dynamic Programming Lecture 2

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems Massachusetts Institute of Technology

> University of Cyprus September 2017

Second Lecture

APPROXIMATE DYNAMIC PROGRAMMING I

Outline

Approximation in Value Space - Limited Lookahead

Parametric Cost Approximation

Recall our Problem Structure

Discrete-time system

$$x_{k+1} = f_k(x_k, u_k, w_k), \qquad k = 0, 1, ..., N-1$$

- x_k: State
- u_k : Control from a constraint set $U_k(x_k)$
- w_k : Disturbance; random parameter with distribution $P(w_k \mid x_k, u_k)$

Optimization over Feedback Policies $\pi = \{\mu_0, \mu_1, \dots, \mu_{N-1}\}$, with $u_k = \mu_k(x_k) \in U(x_k)$

Cost of a policy starting at initial state x_0 :

$$J_{\pi}(x_0) = E\left\{g_N(x_N) + \sum_{k=0}^{N-1} g_k(x_k, \mu_k(x_k), w_k)\right\}$$

Optimal cost function:

$$J^*(x_0) = \min_{\pi} J_{\pi}(x_0)$$

Recall the Exact DP Algorithm

Computes for all k and states x_k : $J_k(x_k)$, the opt. cost of tail problem that starts at x_k

Go backwards, $k = N - 1, \dots, 0$, using

$$J_{N}(x_{N}) = g_{N}(x_{N})$$

$$J_{k}(x_{k}) = \min_{u_{k} \in U_{k}(x_{k})} E\Big\{g_{k}(x_{k}, u_{k}, w_{k}) + J_{k+1}(f_{k}(x_{k}, u_{k}, w_{k}))\Big\}$$

Notes:

- $J_0(x_0) = J^*(x_0)$: Cost generated at the last step, is equal to the optimal cost
- Let $\mu_k^*(x_k)$ minimize in the right side above for each x_k and k. Then the policy $\pi^* = \{\mu_0^*, \dots, \mu_{N-1}^*\}$ is optimal

Practical Difficulties of DP

The curse of dimensionality (too many values of x_k)

- In continuous-state problems:
 - Discretization needed
 - Exponential growth of the computation with the dimensions of the state and control spaces
- In naturally discrete/combinatorial problems: Quick explosion of the number of states as the search space increases
- Length of the horizon (what if it is infinite?)

The curse of modeling; we may not know exactly f_k and $P(x_k \mid x_k, u_k)$

- It is often hard to construct an accurate math model of the problem
- Sometimes a simulator of the system is easier to construct than a model

The problem data may not be known well in advance

- A family of problems may be addressed. The data of the problem to be solved is given with little advance notice
- The problem data may change as the system is controlled need on-line replanning and fast solution

A MAJOR IDEA: Cost Approximation

One-Step Lookahead - Idea is to simplify the DP computation

- Replace J_{k+1} by an approximation \tilde{J}_{k+1}
- Apply \bar{u}_k that attains the minimum in

$$\min_{u_k \in U_k(x_k)} E\Big\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1} \big(f_k(x_k, u_k, w_k) \big) \Big\}$$

ℓ-Step Lookahead

- At state x_k solve the ℓ -step DP problem starting at x_k and using terminal cost $\tilde{J}_{k+\ell}$
- If $\overline{u}_k, \overline{\mu}_{k+1}, \dots, \overline{\mu}_{k+\ell-1}$ is an optimal policy for the ℓ -step problem, apply the first control \overline{u}_k

Other Names Used

Rolling or receding horizon control

Lookahead Computation Approaches

Let's focus on the one-step lookahead computation at stage *k*

$$\min_{u_k \in U_k(x_k)} E\Big\{ g_k(x_k, u_k, w_k) + \tilde{J}_{k+1} \big(f_k(x_k, u_k, w_k) \big) \Big\}$$

Issues

- A key issue: How do we choose the approximate cost functions \tilde{J}_k ?
- \bullet Another issue: How do we deal with the minimization and the computation of $\textit{E}\{\cdot\}$

A variety of approximation approaches (and combinations thereoff):

- Parametric cost-to-go approximation: Use as \tilde{J}_k a parametric function $\tilde{J}_k(x_k, r_k)$ (e.g., a neural network), whose parameter r_k is "tuned" by some scheme
- Rollout: Use as \tilde{J}_k the cost of some suboptimal policy, which is calculated either analytically or by simulation
- Problem approximation: Use \tilde{J}_k derived from a related but simpler problem

Approximation in Value Space

At State
$$x_k$$
DP minimization

First ℓ Steps

"Future"

$$\lim_{u_k,\mu_{k+1},...,\mu_{k+\ell-1}} E\left\{g_k(x_k,u_k,w_k) + \sum_{m=k+1}^{k+\ell-1} g_k(x_m,\mu_m(x_m),w_m) + \tilde{J}_{k+\ell}(x_{k+\ell})\right\}$$

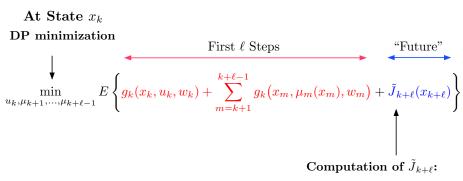
Cost-to-go

Lookahead Minimization

Approximation

Approximation

Cost Approximation Possibilities



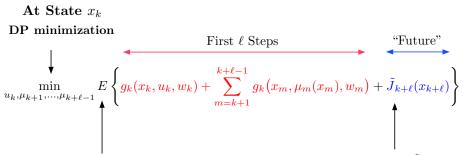
Simple choices

Parametric approximation

Rollout

Tail problem approximation

Approximate Minimization Possibilities



Approximations:

Replace $E\{\cdot\}$ with nominal values (certainty equivalent control)

Limited simulation (Monte Carlo tree search)

Computation of $\tilde{J}_{k+\ell}$:

Simple choices

Parametric approximation

Rollout

Tail problem approximation

A First-Order Division of Lookahead Choices

Long lookahead ℓ and simple choice of $\widetilde{J}_{k+\ell}$

Some examples

$$ilde{J}_{k+\ell}(x)\equiv 0$$
 (or a constant)

$$\tilde{J}_{k+\ell}(x) = g_N(x)$$

For problems with a "goal state" use a simple penalty $\tilde{J}_{k+\ell}$

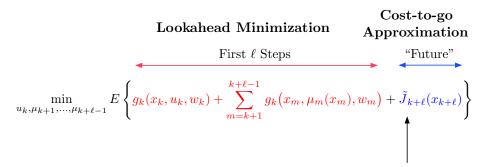
$$\tilde{J}_{k+\ell}(x) =
\begin{cases}
0 & \text{if } x \text{ is a goal state} \\
>> 1 & \text{if } x \text{ is not a goal state}
\end{cases}$$

- Long lookahead ⇒ A lot of DP computation
- Often must be done off-line

Short lookahead ℓ and sophisticated choice $\tilde{J}_{k+\ell} \approx J_{k+\ell}$

- The lookahead cost function approximates (to within a constant) the optimal cost-to-go produced by exact DP
- We will next describe a variety of off-line and on-line approximation approaches

Approximation in Value Space by Parametric Approximation



Parametric approximation

Parametric Approximation Architectures

$$J_k(x_k) \approx \tilde{J}_k(x_k, r_k)$$

with

 $r_k = (r_{1,k}, \dots, r_{m,k})$ a vector of "tunable" scalar weights

- We use \tilde{J}_k in place of J_k (the optimal cost-to-go function) in a one-step or multistep lookahead scheme
- $\tilde{J}_k(x_k, r_k)$ is called an approximation architecture
- Role of r_k : By adjusting r_k we can change the "shape" of \tilde{J}_k so that it is "close" to to the optimal J_k (at least within a constant)

Two key Issues

- The choice of the parametric class $\tilde{J}_k(x_k, r_k)$; there is a large variety
- The method for tuning/adjusting the weights ("training" the architecture)

Feature-Based Architectures

Feature extraction

- A process that maps the state x_k into a vector $\phi_k(x_k) = (\phi_{1,k}(x_k), \dots, \phi_{m,k}(x_k))$, called the feature vector associated with x_k
- A feature-based cost approximator has the form

$$\tilde{J}_k(x_k,r_k) = \hat{J}_k(\phi_k(x_k),r_k)$$

where r_k is a parameter vector and \hat{J}_k is some function, linear or nonlinear in r_k

• With a well-chosen feature vector $\phi_k(x_k)$, a good approximation to the cost-to-go is often provided by linearly weighting the features, i.e.,

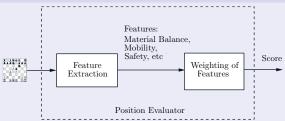
$$\tilde{J}_k(x_k, r_k) = \hat{J}_k(\phi_k(x_k), r_k) = \sum_{i=1}^m r_{i,k}\phi_{i,k}(x_k) = r'_k\phi_k(x_k)$$

This can be viewed as subspace approximation; view the features the $\phi_{i,k}(x_k)$ as basis functions

Feature Selection: A Major Issue

- Any generic basis functions, such as classes of polynomials, wavelets, radial basis functions, etc, can serve as features
- In some cases, problem-specific features can be "hand-crafted"

Computer chess example



- Think of state: board position; control: move choice
- Use a feature-based position evaluator assigning a score to each position
- Most chess programs use a linear architecture with "manual" choice of weights
- Some computer programs choose the weights by a least squares fit using lots of grandmaster play examples

An Example of Architecture Training: Sequential DP Approximation

A common way to train architectures $\tilde{J}_k(x_k, r_k)$ in the context of DP

- We start with $\tilde{J}_N = g_N$ and sequentially train going backwards, until k = 1
- Given a cost-to-go approximation \tilde{J}_{k+1} , we use one-step lookahead to construct a large number of state-cost pairs (x_k^s, β_k^s) , $s = 1, \ldots, q$, where

$$\beta_k^s = \min_{u \in U_k(x_k^s)} E\Big\{g(x_k^s, u, w_k) + \tilde{J}_{k+1}\big(f_k(x_k^s, u, w_k), r_{k+1}\big)\Big\}, \qquad s = 1, \ldots, q$$

• We "train" an architecture \tilde{J}_k on the training set $(x_k^s, \beta_k^s), s = 1, \dots, q$

Training by least squares/regression

• We minimize over r_k

$$\sum_{s=1}^{q} \left(\tilde{J}_k(\boldsymbol{x}_k^s, r_k) - \beta^s \right)^2 + \gamma \|r_k - \overline{r}\|^2$$

where \bar{r} is an initial guess for r_k and $\gamma > 0$ is a regularization parameter

- Incremental gradient methods are typically used for this. They take advantage of the large sum structure of the cost function
- For a linear architecture the training problem is a linear least squares problem

Neural Networks for Parametric Approximation

Neural nets can be used in a sequential DP approximation scheme: Train the stage k neural net (i.e., compute \tilde{J}_k) using a training set generated with the stage k+1 neural net (which defines \tilde{J}_{k+1})

Focus at the typical stage *k* and drop the index *k* for convenience

Neural nets are approximation architectures of the form

$$\tilde{J}(x,v,r) = \sum_{i=1}^{m} r_i \phi_i(x,v) = r' \phi(x,v)$$

involving two parameter vectors r and v with different roles

- View $\phi(x, v)$ as a feature vector; view r as a vector of linear weighting parameters for $\phi(x, v)$
- The training is done by least squares/regression
- By training *v* jointly with *r*, we obtain automatically generated features!