A Series of Lectures on

Approximate Dynamic Programming
Lecture 2

Dimitri P. Bertsekas

Laboratory for Information and Decision Systems
Massachusetts Institute of Technology

University of Cyprus
September 2017

Bertsekas (M.L.T.) Approximate Dynamic Programming 1/20

Second Lecture

APPROXIMATE DYNAMIC PROGRAMMING |

Approximate Dynamic Programming

0 Approximation in Value Space - Limited Lookahead

e Parametric Cost Approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 3/20

Recall our Problem Structure

Discrete-time system

Xkt = Fie(Xk, Uk, W), k=0,1,....N—1

@ Xxx: State
@ ux: Control from a constraint set Uk (x«)
@ w;: Disturbance; random parameter with distribution P(wx | X, Uk)

Optimization over Feedback Policies © = {0, 1, - - -, tn—1}, With
Uk = ,Ltk(Xk) S U(Xk)
Cost of a policy starting at initial state xp:

N—1
Jr(x0) = E {gN(XN) + Z gk(XkJLk(Xk)e Wk)}

k=0

Optimal cost function:

J*(Xo) = miﬂ JT.-(Xo)

Bertsekas (M.LT.) Approximate Dynamic Programming 4/20

Recall the Exact DP Algorithm

Computes for all k and states xx: Jx(xx), the opt. cost of tail problem that starts at xx)

Go backwards, k =N —1,...,0, using
In(xn) = gn(Xn)
Jk(Xk) = min E{gk(Xk,Uk, Wk) +Jk+1 (fk(Xk,Uk,Wk))}

Uk € Uk (k)

Notes:
@ Jo(Xxo) = J*(x0): Cost generated at the last step, is equal to the optimal cost
@ Let ux(xx) minimize in the right side above for each xx and k. Then the policy
7 = {ug, ..., pun_1} is optimal

Bertsekas (M.L.T.) Approximate Dynamic Programming 5/20

Practical Difficulties of DP

The curse of dimensionality (too many values of x)

@ In continuous-state problems:

Discretization needed
Exponential growth of the computation with the dimensions of the state and control
spaces

@ In naturally discrete/combinatorial problems: Quick explosion of the number of
states as the search space increases

@ Length of the horizon (what if it is infinite?)

The curse of modeling; we may not know exactly fx and P(Xx | Xk, Uk)

@ |t is often hard to construct an accurate math model of the problem
@ Sometimes a simulator of the system is easier to construct than a model

The problem data may not be known well in advance

@ A family of problems may be addressed. The data of the problem to be solved is
given with little advance notice

@ The problem data may change as the system is controlled — need on-line
replanning and fast solution

Bertsekas (M.LT.) Approximate Dynamic Programming 6/20
pp! i

A MAJOR IDEA: Cost Approximation

One-Step Lookahead - Idea is to simplify the DP computation
@ Replace Jx.1 by an approximation Jy. 1
@ Apply Uk that attains the minimum in

in E : Jies1 (Fe(Xk, Uk,
ngkTXK) {gk(xk,uk7Wk)+ k1 (Fe(Xk, Uk Wk))}

¢-Step Lookahead

@ At state xx solve the ¢-step DP problem starting at xx and using terminal cost Jx..¢

@ If Uk, fig,q,- -, Hgpe—q is @n optimal policy for the £-step problem, apply the first
control uk

Other Names Used
Rolling or receding horizon control

Bertsekas (M.LT.) Approximate Dynamic Programming 8/20

Lookahead Computation Approaches

Let’s focus on the one-step lookahead computation at stage k

min)E{Q’;((Xk7 Uk, Wk) =+ jk+1 (fk(Xk, Uk, Wk))}

Uy € U (xx

Issues

@ A key issue: How do we choose the approximate cost functions Ji?
@ Another issue: How do we deal with the minimization and the computation of E{-}

A variety of approximation approaches (and combinations thereoff):
@ Parametric cost-to-go approximation: Use as Ji a parametric function Jk(xk, Ic)
(e.g., a neural network), whose parameter ri is “tuned" by some scheme

@ Rollout: Use as Jx the cost of some suboptimal policy, which is calculated either
analytically or by simulation

@ Problem approximation: Use Jx derived from a related but simpler problem

Bertsekas (M.LT.) Approximate Dynamic Programming 9/20

Approximation in Value Space

At State xy,
DP minimization
First ¢ Steps “Future”
< > -+
min EQgr(@muwe) + Y gk (@my (@), wim) + ke (Thie)
Uk s 410 Hk40—1 ———
Cost-to-go

Lookahead Minimization Approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 10/20

Cost Approximation Possibilities

At State z;,
DP minimization
First ¢ Steps “Future”
l : :

he—1
min EQgr(@mupwe) + Y gk (@my (@), win) + Thye(Thie)
U sHig415 - Hk40—1 ———

Computation of jk_,_g:
Simple choices

Parametric approximation
Rollout

Tail problem approximation
Bertsekas (M.L.T.)

Approximate Dynamic Programming 11/20

Approximate Minimization Possibilities

At State z;
DP minimization
First ¢ Steps “Future”
I) :

k+£—1
min E gk(l'k;, U, wls:) + Z 9k (wm-, Hm (‘/L)m)v wm) + Jk'M ($k+z)
Uk B 415Hhk4+0—1 m=k+1

Approximations: Computation of ij:

Replace E{-} with nominal values Simple choices

(certainty equivalent control) Parametric approximation

Limited simulation Rollout

(Monte Carlo tree search) Tail problem approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 12/20

A First-Order Division of Lookahead Choices

Long lookahead ¢ and simple choice of J.¢
@ Some examples B
Jire(x) =0 (or a constant)
Jire(x) = gn(x)
For problems with a “goal state" use a simple penalty Jx

0 if x is a goal state
>> 1 if x is not a goal state

Jre(x) = {

@ Long lookahead = A lot of DP computation
@ Often must be done off-line

Short lookahead ¢ and sophisticated choice Jx. ¢ ~ Jk¢

@ The lookahead cost function approximates (to within a constant) the optimal
cost-to-go produced by exact DP

@ We will next describe a variety of off-line and on-line approximation approaches

Bertsekas (M.LT.) Approximate Dynamic Programming 13/20
pp! i

Approximation in Value Space by Parametric Approximation

Cost-to-go
Lookahead Minimization Approximation
First £ Steps “Future”
< > >
k+e—1
min E X gi(ar, we,wi) + Y gi(@ms pin (@m), wm) + Jiyo(Trie)
Uk HE+1s5Hk4+0—1 ———

Parametric approximation

Bertsekas (M.L.T.) Approximate Dynamic Programming 15/20

Parametric Approximation Architectures

Jk(Xk) ~ Jk(Xk, rk)

with
e = (k- - -, Imx) a vector of “tunable"scalar weights

@ We use Jx in place of Ji (the optimal cost-to-go function) in a one-step or
multistep lookahead scheme

@ Ji(x«, r¢) is called an approximation architecture

@ Role of r,: By adjusting rc we can change the “shape” of Ji so that it is “close” to
to the optimal Ji (at least within a constant)

Two key Issues

@ The choice of the parametric class Jk(xk, rx); there is a large variety
@ The method for tuning/adjusting the weights (“training" the architecture)

Bertsekas (M.L.T.) Approximate Dynamic Programming 16/20
pp! i gl

Feature-Based Architectures

Feature extraction

@ A process that maps the state xx into a vector ¢x(Xx) = (d1.4(Xk). -, dmi(Xk)),
called the feature vector associated with xx

@ A feature-based cost approximator has the form
Tk, 1) = Ji (e (xk), 1)

where ry is a parameter vector and jk is some function, linear or nonlinear in ry

@ With a well-chosen feature vector ¢« (xx), a good approximation to the cost-to-go is
often provided by linearly weighting the features, i.e.,

Ik (X, 1) = Jic (b (%), 1 Zﬂk‘brk (%) = redr(x«)

i=1

Linear Cost

State Tk | Feature Extraction | Feature Vector ¢x(zk)| Tinear |Approximator rex(zx)
— —

Mapping Mapping

This can be viewed as subspace approximation; view the features the ¢; «(xx) as basis
functions

Bertsekas (M.LT.) Approximate Dynamic Programming 17/20

Feature Selection: A Major Issue

@ Any generic basis functions, such as classes of polynomials, wavelets, radial basis
functions, etc, can serve as features

@ In some cases, problem-specific features can be “hand-crafted”

Computer chess example

' '
0 i
i Features: {
0 Material Balance, D
! Mobility, '
ceerw ! Safety, etc | Score
nirLy T
o ' Feature Weighting of [t
W8y ' Extraction Features
PR

Position Evaluator
@ Think of state: board position; control: move choice
@ Use a feature-based position evaluator assigning a score to each position
@ Most chess programs use a linear architecture with “manual” choice of weights

@ Some computer programs choose the weights by a least squares fit using lots of
grandmaster play examples

Bertsekas (M.LT.) Approximate Dynamic Programming 18/20

An Example of Architecture Training: Sequential DP Approximation

A common way to train architectures Jk(xk, r¢) in the context of DP

@ We start with Jy = gy and sequentially train going backwards, until k = 1

@ Given a cost-to-go approximation Jx.1, we use one-step lookahead to construct a
large number of state-cost pairs (x¢, 85), s=1,. .., q, where

B¢ = min E{Q(Xf,u,wk)+Jk+1(fk(xks,u,Wk),rm)}, s=1,...,q9
u€ Uk(xg)

@ We “train” an architecture Ji on the training set (x§, 55), s =1,...,q

Training by least squares/regression
@ We minimize over ri .
2 112
> (Il) = 8°)° + Al = 7
s=1

where 7 is an initial guess for r, and v > 0 is a regularization parameter

@ Incremental gradient methods are typically used for this. They take advantage of
the large sum structure of the cost function

@ For a linear architecture the training problem is a linear least squares problem

Bertsekas (M.LT.) Approximate Dynamic Programming 19/20

Neural Networks for Parametric Approximation

Neural nets can be used in a sequential DP approximation scheme: Train the stage k
neural net (i.e., compute Ji) using a training set generated with the stage k + 1 neural
net (which defines Jg.1)

Focus at the typical stage k and drop the index k for convenience
@ Neural nets are approximation architectures of the form

m

Jix,v,r) =" ngi(x,v) = r'g(x,v)
i=1
involving two parameter vectors r and v with different roles
@ View ¢(x, v) as a feature vector; view r as a vector of linear weighting parameters
for ¢(x, v)
@ The training is done by least squares/regression
@ By training v jointly with r, we obtain automatically generated features!

Bertsekas (M.L.T.) Approximate Dynamic Programming 20/20

	Approximation in Value Space - Limited Lookahead
	Parametric Cost Approximation

