European Journal of Control (2005)11:310-334
© 2005 EUCA

European
Journal of
Control

Dynamic Programming and Suboptimal Control: A Survey

from ADP to MPC*

Dimitri P. Bertsekas**

Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA 02139, USA

We survey some recent research directions within
the field of approximate dynamic programming, with
a particular emphasis on rollout algorithms and model
predictive control (MPC). We argue that while they
are motivated by different concerns, these two meth-
odologies are closely connected, and the mathematical
essence of their desirable properties (cost improvement
and stability, respectively) is couched on the central
dynamic programming idea of policy iteration. In
particular, among other things, we show that the most
common MPC schemes can be viewed as rollout
algorithms and are related to policy iteration methods.
Furthermore, we embed rollout and MPC within a
new unifying suboptimal control framework, based on a
concept of restricted or constrained structure policies,
which contains these schemes as special cases.

Keywords: dynamic programming, stochastic optimal
control, model predictive control, rollout algorithm

1. Introduction

We consider a basic stochastic optimal control pro-
blem, which is amenable to a dynamic programming
solution, and is considered in many sources (including
the author’s dynamic programming textbook [14],
whose notation we adopt). We have a discrete-time
dynamic system

xk+1 :fk(xk)uk)wk)5 k:())l:"')

(1.1)

*Many thanks are due to Janey Yu for helpful comments. Research
supported by NSF Grant ECS-0218328.
**E-mail: dimitrib@mit.edu

where x; is the state taking values in some set, v, is the
control to be selected from a finite set Uy (xg), wy is a
random disturbance and f is a given function. We
assume that each wy is selected according to a prob-
ability distribution that may depend on x; and uy, but
not on previous disturbances. The cost incurred at
the k-th time period is denoted by gx(xx, ux, wi). For
mathematical rigor (to avoid measurability ques-
tions), we assume that wy takes values in a countable
set, but the following discussion applies qualitatively
to more general cases.

We initially assume perfect state information, i.e.
that the control u is chosen with knowledge of the
current state xi; we later discuss the case of imperfect
state information, where u; is chosen with knowledge
of a history of measurements related to the state. We,
thus, initially consider policies m = {uq, ji1, . - -}, which
at time k map a state xx to a control ug(x;) € Ug(xx).
We focus primarily on an N-stage horizon problem
where k takes the values 0,1,..., N — 1, and there is a
terminal cost gy(xy) that depends on the terminal
state xy. The cost-to-go of 7 starting from a state x; at
time k is denoted by

Ji (xe) = E{gN(xN) + Zgi(xi’ﬂi(xi)’wi)}'

i—k
(1.2)
The optimal cost-to-go starting from a state x; at time
kis
Jk(xk) — ir#fJ,f(xk),

Received 15 June 2005; Accepted 30 June 2005.
Recommended by E.F. Camacho, R. Tempo, S. Yurkovich,
P.J. Fleming

Dynamic Programming and Suboptimal Control

and it is assumed that J (xx) and Jx(x¢) are finite for
all x¢, m and k. The cost-to-go functions J satisfy the
following recursion of dynamic programming (DP)

Jk(xk) = ukei[if(;k) E{gk(xk, Ug, Wk) + Jr
X (fk(xk, Uy, Wk))}, k= 0, 1, . ,N* 1,

(1.3)

with the initial condition
In(xn) = gn(xn).

Our discussion applies with minor modifications to
infinite horizon problems, with the DP algorithm
replaced by its asymptotic form (Bellman’s equation).
For example, for a stationary discounted cost pro-
blem, the analog of the DP algorithm (1.3) is

J(x) = inf : E{g(x,u,w) +aJ(f(x,u,w))}, Vx,

uel(x

(1.4)

where J{x) is the optimal (a-discounted) cost-to-go
starting from x.

An optimal policy may be obtained in principle by
minimization in the right-hand side of the DP algo-
rithm (1.3), but this requires the calculation of the
optimal cost-to-go functions Jr, which for many
problems is prohibitively time-consuming. This has
motivated approximations that require a more tract-
able computation, but yield a suboptimal policy.
There is a long history of such suboptimal control
methods, and the purpose of this paper is to survey
some of them, to discuss their connections, and to
place them under the umbrella of a unified metho-
dology. Although we initially assume a stochastic
model with perfect state information, much of the
subsequent material is focused on other types of
models, including deterministic models.

A broad class of suboptimal control methods,
which we refer to as approximate dynamic program-
ming (ADP), 1s based on replacing the cost-to-go
function Jii; in the right-hand side of the DP
algorithm (1.3) by an approximation Ji;, with
Jx = gy. Thus, this method applies at time k and
state x; a control 7 (x;) that minimizes over
Up < Uk(xk)

E{ gk (Xies s W) + Tie1 (fie (Xies e wie)) }-
The corresponding suboptimal policy 7 = {7,

7> -»By_1} is determined by the approximate cost-
to-go functions Ji,J»,...,Jn (given either by their

311

functional form or by an algorithm to calculate their
values at states of interest). Note that if the problem is
stationary, and the functions J; | are all equal, as they
would normally be in an infinite horizon context,
the policy 7 is stationary.

There are several alternative approaches for select-
ing or calculating the functions J;.;. We distinguish
two broad categories:

(1) Explicit cost-to-go approximation. Here Ji| is
computed off-linre in one of a number of ways.
Some important examples are as follows:

(a) By solving (optimally) a related simpler
problem, obtained for example by state
aggregation or by some other type of problem
simplification, such as some form of enforced
decomposition. The functions J,., are
derived from the optimal cost-to-go functions
of the simpler problem. We will not discuss
this approach further in this paper, and we
refer to the author’s textbook [13] for more
details.

(b) By introducing a parametric approximation
architecture, such as a neural network or a
weighted sum of basis functions or features.
The idea here is to approximate the optimal
cost-to-go Ji.(x) with a function of a given
parametric form Ji(x) = jkﬂ(x,rkﬂ),
where .1 18 a parameter vector. This vector
is tuned by some form of ad hoc/heuristic
method (as for example in computer chess)
or some systematic method (for example, of
the type provided by the neuro-dynamic pro-
gramming and reinforcement learning meth-
odologies, such as temporal difference and
Q-learning methods; see the monographs by
Bertsekas and Tsitsiklis [8], and Sutton and
Barto [SuB9§], and the recent edited volume
by Barto et al. [2], which contain extensive
bibliographies). There has also been con-
siderable recent related work based on linear
programming, actor-critic, policy gradient
and other methods (for a sampling of recent
work, see de Farias and Van Roy [18,19],
Konda [30], Konda and Tsitsiklis [29],
Marbach and Tsitsiklis [36], and Rantzer [41],
which contain many other references). Again,
this approach will not be discussed further in
this paper.

(2) Implicit cost-to-go approximation. Here the values
of Jiy1 at the states Jr(xk, u, wg) are computed
on-line as needed, via some computation of
future costs, starting from these states (optimal or
suboptimal/heuristic, with or without a rolling

312

horizon). We will focus on a few possibilities,

which we will discuss in detail in Sections 4

and 5:

(a) Rollout, where the cost-to-go of a suboptimal/
heuristic policy (called the base policy) is used
as Ji,1. This cost is computed as necessary in
whatever form is most convenient, including
by on-line simulation. It can be seen that the
suboptimal policy 7 obtained by rollout is
identical to the policy obtained by a single
policy improvement step of the classical policy
iteration method, starting from the base
policy. There is also a variant of the rollout
algorithm where jk+1 is defined via a base
policy but may differ from the cost-to-go of
the corresponding policy. This variant still
has the cost improvement property of policy
iteration under some assumptions that are
often satisfied (see Example 3.1 and Section 4).

(b) Open-loop feedback control (OLFC), where
an optimal open-loop computation 1s used,
starting from the state x; (in the case of per-
fect state information) or the conditional
probability distribution of the state (in the
case of imperfect state information).

(c) Model predictive control (MPC), where an
optimal control computation is used in con-
junction with a rolling horizon. This compu-
tation is deterministic, possibly based on a
simplification of the original problem via
certainty equivalence, but there is also a
minimax variant that implicitly involves
reachability of target tube computations (see
Section 5).

A few important variations of the preceding
schemes should be mentioned. The first is the use of
multistep lookahead, which aims to improve the per-
formance of one-step lookahead, at the expense of
increased on-line computation. The second is the use
of certainty equivalence, which simplifies the off-line
and on-line computations by replacing the current and
future unknown disturbances wy,...,wy_; with
nominal deterministic values. A third variation, which
applies to problems of imperfect state information, is to
use one of the preceding schemes with the unknown
state x; replaced by some estimate. We briefly discuss
some of these variations in the next section.

Our paper has three objectives:

(1) To derive some general performance bounds, and
relate them to observed practical performance,
and to the issue of stability in MPC. This is done
in Section 3, and also in Section 5, where MPC is
discussed in more detail.

D.P. Bertsekas

(2) To demonstrate the connection between rollout
(and hence policy iteration) on the one hand, and
OLFC and MPC on the other hand. Indeed, we
will show that both OLFC and MPC are special
cases of rollout, obtained for particular choices of
the corresponding base policy. This is explained in
Sections 4 and 5.

(3) To introduce a general unifying framework for
suboptimal control, which includes as special
cases rollout, OLFC, and MPC, and captures the
mathematical essence of their attractive proper-
ties. This 1s the subject of Section 6.

A complete bibliography is beyond the scope of
the present paper. In this section, we will select-
ively provide a few major relevant sources, with
preference given to survey papers and textbooks.
We supplement these references with more specific
remarks at the appropriate points in subsequent
sections.

The main idea of rollout algorithms, obtaining an
improved policy starting from some other suboptimal
policy using a one-time policy improvement, has
appeared in several DP application contexts, although
the connection with policy iteration has not always
been recognized. In the context of game-playing com-
puter programs, it has been proposed by Abramson[1]
and by Tesauro [TeG96]. The name ‘rollout’ was
coined by Tesauro in specific reference to rolling the
dice in the game of backgammon. In Tesauro’s pro-
posal, a given backgammon position is evaluated by
‘rolling out” many games starting from that position,
using a simulator, and the results are averaged to
provide a ‘score’ for the position. The internet con-
tains a lot of material on computer backgammon and
the use of rollout, in some cases in conjunction with
multistep lookahead and cost-to-go approximation.

Generally, it is possible to use a base policy to
compute cost-to-go approximations Ji, but to make a
strong connection with policy iteration, it is essential
that J; be the true cost-to-go function of some policy.
For deterministic problems, this is equivalent to
requiring that the base policy has a property called
sequential consistency. However, for cost improve-
ment it is sufficient that the base policy has a weaker
property, called sequential improvement, which bears a
relation to concepts of Lyapounov stability theory
and can also be extended to general limited lookahead
policies (see Proposition 3.1 and Example 3.1). The
sequential consistency and sequential improvement
properties for deterministic problems were first for-
malized by Bertsekas et al. [3], and will be described in
Section 4 in a more general context, which includes
constraints.

Dynamic Programming and Suboptimal Control

For further work on rollout algorithms, see
Christodouleas [Chr97], Bertsekas [12], Bertsekas and
Castanon [4], Secomandi [43—45], Bertsimas and
Demir [5], Ferris and Voelker [23,24], McGovern et al.
[31], Savagaonkar et al. [SGCO02], Bertsimas and
Popescu [6], Guerriero and Mancini [GuM03], Tu and
Pattipati [47], Wu et al. [48], Chang et al. [16], Meloni
et al. [32] and Yan et al. [52]. Collectively, these
works discuss a broad variety of applications and case
studies, and generally report positive computational
experience.

The MPC approach has become popular in a variety
of control system design contexts, and particularly in
chemical process control, where meeting explicit con-
trol and state constraints is an important practical
issue. Over time, there has been increasing awareness
of the connection with the problem of reachability of
target tubes, set-membership descriptions of uncer-
tainty, and minimax control (see the discussion of
Section 5). The associated literature is voluminous and
we make no attempt to provide detailed references.
The stability analysis given here is based on the work
of Keerthi and Gilbert [28]. For extensive surveys of
the field, which give many references, see Morari and
Lee [39], Mayne et al. [33], Rawlings [42], Findeisen
et al. [22] and Qin and Badgwell [40]. For related
textbooks, see Martin-Sanchez and Rodellar [34],
Maciejowski [35] and Camacho and Bordons [17].

While our main emphasis in this paper is on high-
lighting the conceptual connections between several
approaches to suboptimal control, we also present a
few new and/or unpublished results. In particular,
the material of Section 4 on rollout algorithms for
constrained DP is unpublished (it is also reported
separately in Ref. [14]). The connection of MPC with
rollout algorithms reported in Section 5 does not seem
to have been noticed earlier. Finally, the material of
Section 6 on the unifying suboptimal control frame-
work based on restricted structure policies is new.

2. Limited Lookahead Policies

An effective way to reduce the computation required
by DP is to truncate the time horizon, and use at each
stage a decision based on lookahead of a small
number of stages. The simplest possibility is to use a
one-step lookahead policy whereby at stage k and state
X one uses a control 7i,(xy), which attains the mini-
mum in the expression

min E{gr(xg, w, wi) + jk+1(fk(xk, U, W)}

u €Uk (xz)

2.1)

313

where J; is some approximation of the true cost-to-
go function Ji 1, with Iy = gy. Similarly, a two-step
lookahead policy applies at time k and state xi, the
control 7, (x;) attaining the minimum in the preceding
equation, where now J,, is obtained itself on
the basis of a one-step lookahead approximation. In
other words, for all possible states x;.; that can be
generated via the system equation starting from xy,

X1 = Sie (X, uie, Wie),

we have

jk+1(xk+1): min E{gr1 (Xeq1, k41, Wy1)

Ut EUpt Xkt)

+jk+2(fk+1(xk+1,uk+1,Wk+l))},

where Ji,, is some approximation of the cost-to-go
function Jy,. Policies with lookahead of more than
two stages are similarly defined.

Note that even with readily available cost-to-go
approximations Ji, the minimization over u; € Up(xk)
in the calculation of the one-step lookahead control
[cf. Eq. (2.1)] may involve substantial computation.
This motivates several variants/simplifications of the
basic method. For example, the minimization over
Ui (xx) in Eq. (2.1) may be replaced by a minimization
over a subset

Uk (xk) C Ui (xk) .

Thus, the control 7, (xx) used in this variant is one
that attains the minimum in the expression

min E{g(xk, urs wi) + Tt (fe (X, e wie)) -

ukEUk(Xk)

(2.2)

A practical example of this approach is when by
using some heuristic or approximate optimization, we
identify a subset Uy (x;) of promising controls, and to
save computation, we restrict attention to this subset
in the one-step lookahead minimization.

Another major simplification is common in pro-
blems of imperfect state information, where the
computational requirements of exact DP are often
prohibitive. There, the state x; is not known exactly
but may be estimated based on observations obtained
up to time k. A possible approach is then to replace
the state x; in Eqs (2.1) and (2.2) by an estimate.

A third simplification, known as (assumed)
certainty equivalence, aims to avoid the computation
of the expected value in Eqs (2.1) and (2.2), and to
simplify the calculation of the required values of Ji
by replacing the stochastic quantities wy with some

314

nominal deterministic values Wy. Then, the one-step-
lookahead minimization in Eq. (2.1) is replaced by

min [gx(xk, we, W) + Jest (f (X, e,)]
ur €U (1)

(2.3)

The cost-to-go approximation Ji is often obtained
by solving an optimal control problem where the
future uncertain quantities wy, , . . ., wy_1 arereplaced
by deterministic nominal values Wi, ,...,Wx_1.
Then, the minimization in Eq. (2.3) can be done by
solving a deterministic optimal control problem, from
the present time to the end of the horizon:

(1) Find a control sequence {7, 7.1, .-
minimizes

., Ty_;} that

N—-1

gn(xn) + Zgi(xi, u;, Wy)
=k

subject to the constraints

xi+1 :ﬁ(xi5ui5wi)7
l/liGUi(Xi), l:k,kﬁ*l,,N*l

(2) Use as control the first element in the control
sequence found:

P (k) = k.

Note that in variants of Step (1) above, the deter-
ministic optimization problem may still be difficult,
and may be solved approximately using a suboptimal
method that offers some computational advantage.
For example, when the number of stages N is large
or infinite, the deterministic problem may be defined
over a rolling horizon with a fixed number of stages.
We finally note that certainty equivalence is often used
at the modeling level, when a deterministic model is
adopted for a system which is known to involve
uncertainty.

3. Error Bounds

For any suboptimal control scheme it is important to
have theoretical bounds on its performance. Unfor-
tunately, despite recent progress, the methodology for
performance analysis of suboptimal control schemes
is not very satisfactory at present, and the validation
of a suboptimal policy by simulation is often essential
in practice. Still, however, with experience and new
theoretical research, the relative merits of different
approaches have been clarified to some extent, and it is

D.P. Bertsekas

now understood that some schemes possess desirable
theoretical performance guarantees, while others do
not. In this section, we will discuss a few performance
bounds that are available for ADP. For additional
theoretical analysis on performance bounds, based on
different approaches, see Witsenhausen [50,51].

Let us denote by Ji(x;) the expected cost-to-go
incurred by a limited lookahead policy {f, Zy, - - -»
Zy_;) starting from state x; at time k [Jx(x;) should
be distinguished from Ji(xy), the approximation of
the cost-to-go that is used to compute the limited
lookahead policy via the minimization in Eq. (2.1) or
Eq. (2.2)]. It is generally difficult to evaluate analyti-
cally the functions J, even when the functions Ji
are readily available. We, thus, aim to obtain some
estimates of Ji(x). The following proposition gives
a condition under which the one-step lookahead
policy achieves a cost Ji(x;) which is better than the
approximation J;(x;). The proposition also provides
a readily computable upper bound to Ji (x).

Proposition 3.1. Assume that for all x; and &k, we have

min E{gi (xx, uk, we) + Jerr (fe (X, 105, W)}
ukGUk(Xk)
(3.1)

< Je(xg).

Then the cost-to-go functions J corresponding to a
one-step lookahead policy that uses J; and Uj(xx)
with Uk(xx) C Ux(xx) [cf. Eq. (2.2)] satisfy for all x;
and k£

Je(xk) < min E{gx (e, uk, wi)
up €U (o)

+ Tt (S (s e, we)) - (3.2)
Proof. Fork=0,...,N— 1, denote
Je(x) = min E{ge(xe, ug, we)
ur €Uk ()
+ Tt (fie (X, 1, wi)) 3, (3.3)

and let Jy = gn. We must show that for all x; and k&,
we have Ji (x;) < fk(xk). We use backwards induction
on k. In particular, we have Jy(xy)=Jy(xn) =
]N(xN) = gN()fN) for all xy. Assuming that
Jer1(xpe1) < Jiy1 (xpeq) for all x;, 1, we have

Jie(x) = E{g (%6 T (3) s wie) et (fie (i T (), wie))
< E{g(xi. T (%) wie) + Tt (fie (s e (i) wie)) }
< E{ (kT () wie) + T 1 (fie (e T (i) wie)) }
:jk(xk),

Dynamic Programming and Suboptimal Control

for all x;. The first equality above follows from the
DP algorithm that defines the costs-to-go J; of the
limited lookahead policy, while the first inequality
follows from the induction hypothesis, and the second
inequality follows from the assumption (3.1). This
completes the induction proof. O

Note that by Eq. (3.2), the value jk(xk) of Eq. (3.3),
which is the calculated one-step lookahead cost
from state x at time k, provides a readily obtainable
performance bound for the cost-to-go Ji(x;) of the
one-step lookahead policy. Furthermore, using also
the assumption (3.1), we obtain for all x; and &,

Te(x) < Je(xx),

that 18, the cost-to-go of the one-step lookahead policy
is no greater than the lookahead approximation on
which it is based. The critical assumption (3.1) in
Proposition 3.1 can be verified in a few interesting
special cases, as indicated by the following examples.

Example 3.1 (Rollout algorithm). Suppose that Ji(x;)
is the cost-to-go J[(x;) of some given suboptimal
policy m = {po,...,ux_1+ and that the set Up(xx)
contains the control pg(xx) for all x; and k. The
resulting one-step lookahead algorithm is called the
rollout algorithm and will be discussed further in
Section 4. From the DP algorithm (restricted to the
given policy 7), we have

Te(x) = E{gk(xk, pie(xic), wie)
+ Tt (fie(Xes e (x) wi)) 1,

which in view of the assumption py(x;) € Ug(xi),
yields

Je(xe) > min E{g (k. wg, wi)
up €U ()

+ Tt (e (oo, e, we)) - (3.4)

Thus, the assumption of Proposition 3.1 is satisfied,
and it follows that the rollout algorithm performs no
worse than the policy on which it is based, starting
from any state and stage.

In a generalization of the rollout algorithm, which is
relevant to the algorithm for constrained DP given in
Section 4, and to MPC as described in Section 5,
Ji(x;) is a lower bound to the cost-to-go of some given
suboptimal policy © = {4, ..., uy_1}, starting from
xr, and furthermore satisfies the inequality

Te(xie) > E{ge(xk, pie(xi), wie)
+ Tt (fie (s e (xie)s wie)) 3

315

for all x;. Then, Eq. (3.4) holds, and from
Proposition 3.1, it follows that J.(x;) <]k(xk). Since
Je(xx) < JF(xx) by assumption, we see that again the
rollout algorithm performs no worse than the policy
on which it is based, starting from any state and stage.

Example 3.2 (Rollout algorithm with multiple
heuristics). Consider a scheme that is similar to the one
of the preceding example, except that Ji(x;) is the
minimum of the cost-to-go functions corresponding
to m heuristics, i.e.

Jk(xk) = min{J,:‘ (xk),. .. ,Ji:”’ (xk)},

where for each j, J,”(x;) is the cost-to-go of a policy
7= {10, -, Hjn—1}, starting from state x; at stage
k. From the DP algorithm, we have, for all j,

S (i) = E{ g (s e (X)» W)
I e (s e (xi)s wi)) 3

from which, using the definition of Ji, it follows that

U (xk) > E{gr (X, pjp(xk), we)

+ Tt (Fie (s e () wie))

> min E{gi(x, uk, wi)
ukGUk(Xk)

+ Tt (fie (e e, we)) -

Taking the minimum of the left-hand side over j, we
obtain

Je(xe) > min E{gi(xXe, ue, wi)
ukGUk(Xk)

+ Tt (fe(Xies e, wie)) }-

Thus, Proposition 3.1 implies that the one-step look-
ahead algorithm based on the heuristic algorithms’
costs-to-go J;' (xk), ..., J"(xk) performs better than
all of these heuristics, starting from any state and
stage. This also follows from the analysis of the pre-
ceding example, since Ji(x;) is a lower bound to all
the heuristic costs-to-go J;” (xx).

Generally, the approximate cost-to-go functions Ji
need not satisfy the assumption (3.1) of Proposition
3.1. The following proposition does not require this
assumption, and applies to any policy, not necessarily
one obtained by one-step or multi-step lookahead. It
is useful in some contexts, including the case where the
minimization involved in the calculation in the one-
step lookahead policy is not exact.

Proposition 3.2. Let Jek=0,1,...,N, be functions
of xx, with Jy(xy) = gn(xny) for all xy. Let also

316

7= {Ho, 1> ---0y_1} be a policy such that for all x;

and k, we have

i (i) + e < E{gr (X T (X), wie)
+ T (fie (o, Ty (o), wie))

<]k(xk) + o, (3.5)

where Vi, 0,k =0, ..., N — 1, are some scalars. Then
for all x; and k, we have

N-1

N-1
Te(xi) +)y < I () < Telxe) -+ 6
=k =k

(3.6)

where J (xx) is the cost-to-go of 7 starting from state
X at stage k.

Proof. We use backwards induction on k to prove
the right-hand side of Eq. (3.5). The proof of the
left-hand side is similar. In particular, we have
JT(xn) = In(xx) = gn(xy) for all xy. Assuming that

N—-1

JI?H(ka) <]k+1(xk+1) =+ Z b
i=k+1

for all x; 1, we have

T (i) = Edgr(xn, 1o (e), wie)
+ I (e (X, T (), wie))
< E{g(xk, T (xk)s wie)

N-1
Tt el () wie)} + > 6
i=k+1
B N-1
< Jp(xg) + 6 + Z i,
i=k-+1

for all x;. The first equality above follows from the
DP algorithm that defines the costs-to-go JI of =,
while the first inequality follows from the induction
hypothesis, and the second inequality follows from the
assumption (3.6). This completes the induction proof.

O

Example 3.3 (Certainty equivalent control). Consider
the certainty equivalent control scheme (CEC), where
each disturbance w; is fixed at a nominal value
Wi,k =0,..., N — 1, which is independent of x; and
u. Let jk(xk) be the optimal value of the problem
solved by CEC at state x; and stage k:

N—-1

Jk(xk): min B gN(XN)+ E gi(xi,”i,wi) >
i 1= o wi) —k
€Uy N—1 =

D.P. Bertsekas

and let jN(xN) = gy(xy) for all xy. Recall that the
CEC applies the control 7i (xr) = & after finding
an optimal control sequence {u,...,uy_1} for the
deterministic problem in the right-hand side above.
Note also that the following DP equation

Je(xe) = min [ge(xe, ue, We)

ukGUk(Xk)
—+ jk+1 (fk(xk, Mk,wk))]

holds, and that the control #; applied by CEC
minimizes in the right-hand side.

Let us now apply Proposition 3.2 to derive a
performance bound for the CEC. We have for all x;
and k,

Te(xe) = g (ove, T (), W)
+ Tt (e (e T (), W)
= E{g(xk, B (xx), wi)
Tt (i (oo i (), wie)) = e ()
where ~;(x;) is defined by
Ve(xk) = E{g (i, e (i), wi)
+ T (e T () wie)) 3
= gk (xie, Ty (Xke), W)
— Tt (i (%, Ty (), W)

It follows that

E{g(xk, i (%), wie) + Tt (e (s e (), we)) }
< Je(xe) + 6,

where

6k — max Vk(xk),
X

and by Proposition 3.2, we obtain the following
bound for the cost-to-go function Ji.(x;) of the CEC:

N—-1

jk(xk) <]k(xk) + Zéi.
i=k

The preceding performance bound is helpful when
it can be shown that é; < 0 for all k, in which case we
have Ji(xz) <]k(xk) for all x; and k. This is true for
example if for all x; and u;, we have

E{g(xi, i, wie) } < gk, e, Wie),
and

E{ Tkt (fe(ies e wie))} < Tied (fie (X 0, W)).

Dynamic Programming and Suboptimal Control

The most common way to assert that inequalities of
this type hold is via some kind of concavity assump-
tions; for example, the inequalities hold if the state,
control, and disturbance spaces are Euclidean spaces,
W, 18 the expected value of wy, and the functions
(X, e, +) and Ty (fi(xk. 1, -)), viewed as functions
of wyg, are concave (this is Jensen’s inequality, and
follows easily from the definition of concavity). It can
be shown that the concavity conditions just described
are guaranteed if the system is linear with respect to x;
and wy, the cost functions g; are concave with respect
to xr and wy for each fixed u, the terminal cost
function gy is concave, and the control constraint sets
Uy do not depend on xy.

4. Rollout and Open-Loop Feedback
Control

In this section, we discuss rollout and OLFC schemes
for one-step lookahead, and describe their relation.
We first consider general stochastic problems, and
we subsequently focus on deterministic problems, for
which stronger results and algorithmic procedures are
possible.

4.1. Rollout Algorithm
Consider the one-step lookahead minimization

min E{gi(xk, ue, Wi) + Jeot (fe (X, e, W)},

up €Us (1)

(4.1)

for the case where the approximating function Jy
is the cost-to-go J , of some known heuristic/
suboptimal policy == {po,...,un-1}, called base
policy (see also Example 3.1). The policy thus obtained
is called the rollout policy based on . Thus the rollout
policy is a one-step lookahead policy, with the optimal
cost-to-go approximated by the cost-to-go of the base
policy.

The salient feature of the rollout algorithm is its cost
improvement property: it improves on the performance
of the base policy (see Example 3.1). We note that
the process of starting from some suboptimal policy
and generating another policy using the one-step
lookahead process described above is known as policy
improvement, and is the basis of the policy iteration
method, a primary method for solving DP problems.
The rollout algorithm can be viewed as a single policy
iteration, and its cost improvement property is a
manifestation of the corresponding property of the

317

policy iteration method. In practice, the rollout algo-
rithm often performs surprisingly well (much better
than its corresponding base policy). This is consistent
with the observed practical behavior of the policy
iteration method, which tends to produce large
improvements in the first few iterations.

The necessary values of the approximate cost-to-go
Jir1 in Eq. (4.1) may be computed in a number of
ways:

(1) By aclosed-form expression. This may be possible
n exceptional cases where the structure of the base
policy is well-suited for a quasi-analytical cost-to-
go evaluation.

(2) By an approximate off-line computation. For
example, J; ;| may be computed approximately as
the output of a neural network or some other
approximation architecture, which is trained by
simulation.

(3) By an on-line computation, such as for example
a form of simulation or optimization. The draw-
back of simulation is that its computational
requirements may be excessive. Note, however,
that for a deterministic problem, only one simu-
lation trajectory is needed to calculate the cost-to-
go of the base policy starting from some state, so
in this case the computational requirements are
greatly reduced.

A fuller discussion of the computational issues
regarding the rollout algorithm is beyond the scope of
this paper, and we refer to the literature on the subject.
In particular, the textbook [13] contains an extensive
account.

4.2. Rollout Algorithms for Deterministic
Constrained DP

We now specialize the rollout algorithm to deter-
ministic optimal control problems, and we also
generalize it and extend its range of application to
problems with some additional constraints, taking
advantage of the special deterministic structure.

We consider a problem involving the system

ka:fk(xk,uk), kiO,...,N*l,

where x; and u; are the state and control at time k,
respectively, taking values in some sets, which may
depend on k. The initial state is given and is denoted
by xp. Each control u; must be chosen from a con-
straint set Uy (xy) that depends on the current state x.
A sequence of the form

T = (X0, Ups X1, ULy ., UN—1,XN)s

318

where

Xk+1 :fk(xk,uk), U < Uk(xk), k=0,1,...,N—1,
is referred to as a trajectory. In our terminology, a
trajectory is complete in the sense that it starts at the
given initial state xg, and ends at some state xy after N
stages. We will also refer to partial trajectories, which
are subsets of complete trajectories, involving fewer
than N stages and consisting of stage-contiguous
states and controls.

The cost of the trajectory T = (xo,uo, X1, U1, -,

Uy-1,Xy) is

N-1

V(T) = gn(xn) +) g (e, we),

k=0

(4.2)

where g,k =0,1,...,N, are given functions. The
problem is to find a trajectory T that minimizes V(T)
subject to the constraint

TcC, 4.3)
where Cis a given set of trajectories.

An optimal solution of this problem can be
found by an extension of the DP algorithm, but the
associated computation can be overwhelming. It is
much greater that the computation for the corre-
sponding unconstrained problem where the constraint
T € C is absent. This is true even in the special case
where C is specified in terms of a finite number
of constraint functions that are time-additive, i.e.
TccCif

N-1
gulxn) + ng(xk,uk) <y, m=1,...,.M,
k=0

(4.4)

where g7, k=0,1,...,N,and b™, m = 1,..., M, are
given functions and scalars, respectively. The litera-
ture contains several proposals of suboptimal solution
methods for the case where the constraints are of the
form (4.4). Most of these proposals are cast in the
context of the constrained and multiobjective shortest
path problems; see, e.g. Jaffe [26], Martins [37],
Guerriero and Musmanno [25] and Stewart and White
[46], who also survey earlier work.

The extension of the rollout algorithm to determi-
nistic problems with the constraints (4.3), uses a base
policy, which has the property that given any state x;
at stage k, it produces a partial trajectory

H(xr) = (X, ties X 15 U 1s - - - s UN—15 XN)

D.P. Bertsekas

that starts at x; and satisfies

Xit+1 :f,-(x,-,u,-), u; < U,‘(.X,'), = k,...,N* 1.

The cost corresponding to the partial trajectory H(xy)

is denoted by J{(x¢):

N-1

j(xk) = gN(xN) + Zg,-(xl-, l/l,-).
i=k

Thus, given a partial trajectory that starts at the initial
state xo and ends at a state xg, the base policy can be
used to complete this trajectory by concatenating it
with the partial trajectory H(x;). The trajectory thus
obtained is not guaranteed to be feasible (i.e. it may
not belong to C), but we assume throughout that the
state/control trajectory generated by the base policy
starting from the given initial state xo is feasible, that is

H(xq) € C.

Finding a base policy with this property may not be
easy, but this question is beyond the scope this paper.
It appears, however, that for many problems of
interest, there are natural base policies that satisfy this
feasibility requirement; this is true in particular when
C 18 specified by Eq. (4.4) with only one constraint
function (M = 1), in which case a feasible base policy
can be obtained (if at all possible) by ordinary
(unconstrained) DP, using as cost function either the
constraint function or an appropriate weighted sum of
the cost and constraint functions.

We now describe the rollout algorithm. It starts
at stage 0 and sequentially proceeds to the last stage.
At stage k, it maintains a partial trajectory
(4.5)

Ty = (X0, U0, X1, - - ., Ug—1, Xk

that starts at the given initial state xg, and is such that

Xit1 :fi(xi,ﬁi), u; € U,‘(f,'), i=0,1,...,k—1,
where ¥y = x¢. The algorithm starts with the partial
trajectory 7Tg that consists of just the initial state xq.

Foreach k=0,1,..., N —1, and given the current
partial trajectory 7y, it forms for each control
ur € Up(Xi), a (complete) trajectory T (ux) by
concatenating:

(1) The current partial trajectory T.

(2) The control u; and the next state xz+1 = fx (X, tk)-

(3) The partial trajectory H(xx, () generated by the
base policy starting from x;, .

Then, it forms the subset Ux(X) of controls uy
for which Tf(ux) is feasible, i.e. Tf(ux) € C. The

Dynamic Programming and Suboptimal Control

algorithm then selects from Uy (X;) a control % that
minimizes over ux € Ug(Xy)

G (Ko i) + T(fie (e, uie))

[We assume that the existence of a minimizing 7
is guaranteed when U, (X;) is nonempty; this is true
for example when U, (X;), and hence also Ug(X%), is
finite.] The algorithm then forms the partial trajectory
Tiy1 by adding (@, X1 1) to Tk, where

X1 = Jie (X, Ui).

For a more compact definition of the rollout algo-
rithm, let us use the union symbol U to denote the
concatenation of two or more partial trajectories.
With this notation, we have

Ty (ur) = T U () U H(fie(Rie,) (4.6)
Uk(fk) = {ur | ug € Ur(Fi), T,g(uk) eC}y. (47
The rollout algorithm selects at stage k&
U € arg min (g (T, we) + J(fie (Ko 1))
ue € Up (3)
(4.8)

and extends the current partial trajectory by setting
Ty = Tie U (Wi, Xier1), (4.9)
where

X1 = Ji (R, Tk)- (4.10)

Figure 1 provides an illustration of the algorithm.

Stage k
e P o o}
- - - O ---0O ‘o]
u u Uk-
o 0919___ck1_ oo .
X X X Xk- X o
0 1 2 Xk-1 Xk U :
-t
Ty Ukil o . o UN-T
Xi+1 XN-1 XN
-t
H(xk+1)
- c >
Tk(uk)

Fig. 1. Illustration of the rollout algorithm for constrained
deterministic DP problems. At stage k, and given the current
partial trajectory T that starts at xp and ends at X, it considers
all possible next states xgy1 = fx (¥, ux), ux € Up{Xx), and runs the
base policy starting at xx;. It then finds a control @ € Uy (¥%) such
that the corresponding trajectory T} (i) = T U (i) U H(Zp11),
where X1 = fi(Xx. k), is feasible and has minimum cost, and
extends 7y by adding to it (7, Xxi1)-

319

Note that it is possible that there is no control
ur € Ur(Xk) that satisfies the constraint T (ux) € C
[i.c. the set Ux(Xy) is empty], in which case the algo-
rithm breaks down. We will show, however, that this
cannot happen under some conditions that we now
introduce.

Definition 4.1. The base policy is called sequentially

consistent 1f whenever it generates a partial trajectory
(Xk, U, xk+15 Ui 1s -5 UN—T, xN))

starting from state xj, it also generates the partial

trajectory

(karl) U1 xk+25 Ui, oo s UN—T xN))

starting from state xjyq.

Thus, a base policy is sequentially consistent if,
when started at intermediate states of a partial
trajectory that it generates, it produces the same
subsequent controls and states. If we denote by g (xx)
the control applied by the base policy when at state
xz, then the sequence of control functions =« =
{140, pi1, - ., iy—1} can be viewed as a policy. The cost-
to-go of this policy starting at state xi, call it J (xx),
and the cost J(x;) produced by the base policy starting
from x; need not be equal. However, they are equal
when the base policy is sequentially consistent, that is

T () = J(xk), Vxi, k,

because in this case, m generates the same partial tra-
jectory as the base policy, when starting from the same
state. It follows that, for a sequentially consistent base
policy, we have

G (X i (1)) T (e (s pic(xi0)) = T (xi), Vxg, k.
(4.11)

Note that base policies that are of the ‘greedy’ type
tend to be sequentially consistent, as explained in
Ref. [13], Section 6.4. The next definition provides
an extension of the notion of sequential consistency.

Definition 4.2. The base policy is called sequentially
improving if for every xg, the partial trajectory

H(xi) = (X, Wiy Xt 15 Wit 15 - - - UN—1, XN)5

has the following properties:

(1)

G (X, i) + T(Xigt) < T(xk). (4.12)

320

(2) If for some partial trajectory of the form

(x0, ug, X1, . .., Uk_1,xx) we have
(X0, g, X1 5>t 1, X) U H{x) € C,
then
(X0, U5 X1y« s U1 Xpe» U, Xy 1) U H(xgy1) € C.

Properties (1) and (2) of the preceding definition
provide some basic guarantees for the use of the
control u; dictated by the base policy at state x;. In
particular, property (1) guarantees that when uy is
used, the cost J(xz, 1) of the base policy starting from
the new state x| will not be ‘excessive’, in the sense
that it will be no more than the cost J(xx) — gx (xx, ux)
‘predicted’ at state x;. Property (2) guarantees that
when #, is used, the base policy will maintain feasi-
bility starting from the new state xj .

Note that if the base policy is sequentially con-
sistent, it is also sequentially improving [cf. Eqs (4.11)
and (4.12)]. An example of an interesting case where
the sequential improvement property holds arises in
MPC (see the next section). There, the base policy
drives the system to a cost-free and absorbing state
within a given number of stages, while minimizing
the cost over these stages. It can be verified that for a
system with a cost-free and absorbing state, a base
policy of this type is sequentially improving. For
another case where the base policy is sequentially
improving, let the constraint set C consist of all tra-
jectories T = (xo, uo, X1, U1, - - -, Un—1,Xy) sSuch that

N-1

gulxy) + ng(xk,uk) <y, m=1,...,.M,
=0

[cf. Eq. (4.4)]. Let ém(xk) be the value of the m-th
constraint function corresponding to the partial
trajeCtory H(xk) - (Xk, U, X 1> U415 - - - 5 UN-15 XN),
generated by the base policy starting from xi, that is

N-1
C" () = g% (xw) +Zg’l-”(x,-,u,-), m=1,..., M.
i—k

Then, it can be seen that the base policy is sequentially
mproving if in addition to Eq. (4.12), the partial
trajectory H(xy) satisfies

&l (X,) +(~?m(xk+1) < C’m(xk), m=1,...,.M.

(4.13)
The reason is that if a trajectory of the form

(X0, tto, X1, .. ., uk—1, Xk) U H(x)

D.P. Bertsekas

belongs to C, then we have
k=1 .
Zg;”(x,-,u,-) +C () <0, m=1,...,.M,
=0

and from Eq. (4.13), it follows that

k—1
> gl () + & (i) + € (xpar) <7

This implies that the trajectory

(XO,UO,XI, sy Uk—1, Xy uk)xk+l)) H(xk+l)

belongs to C, thereby verifying property (2) of the
definition of sequential improvement.

The essence of our main result is contained in the
following proposition. To state compactly the result,
consider the partial trajectory

Tk = (X0, W0, X1, - - - » Uk—1, Xk)

maintained by the rollout algorithm after k stages, the
set of trajectories

{T¢(ue) | ur € Up(Zie)}

that are feasible [cf. Eqs (4.6) and (4.7)], and the tra-
jectory T, within this set that corresponds to the
control 7, chosen by the rollout algorithm, that is

T,: = T,g(ﬁk) =Ty U (ﬂk) U H(Yk+1), (4.14)

where
it = Ji(Xee, Ty).-

The result asserts that as k increases, the cost of the
corresponding trajectories T,: cannot increase.

Proposition 4.1. Assume that the base policy is
sequentially improving. Then for each k, the set
Ui (Xt) is nonempty, and
V(H(x)) = V(Ty) 2 V(T))
> 2 V(T) 2 V(Ty),

where the trajectories T,: are given by Eq. (4.14) for
all k.

Proof. Let the trajectory generated by the base policy

starting from x, have the form
! / ! ! /
H(xo) = (X0, tg, X1, Uy, ..o sy, Xn),

and note that since H(x) € C by assumption, we have
)y, € Up(xo). Thus, the set Uy(xo) is nonempty. Also,

Dynamic Programming and Suboptimal Control

we have
V(H(xo)) = J(x0) > go(x0, ufy) + J(fo(xo0, up)),

where the inequality follows by the sequential
improvement assumption [cf. Eq. (4.12)]. Since

U € arg min [go(xo, u0) + J(fo(xo, u0))],

g€ Up(xp)

it follows by combining the preceding two relations
and the definition of Tg [cf. Eq. (4.14)] that

V(H(x0)) 2 go(x0.) + J(%1) = V(Ty),

while T}, is feasible by the definition of Tp(xo).

The preceding argument can be repeated for the
next stage, by replacing xo with X, and H(xo) with T,.
In particular, let 7, have the form

TC - = ’ o ’ ’
Ty = (X0, o, X1, U], X, Uy, Uy 1, X))

Since T, is feasible as noted earlier, we have u] €
U, (1), so that U, (X) is nonempty. Also, we have

V(Ty) = go(xo,) + J(X1)
> go(xo,) + g1(F1, 1)) + J(f1(X1, 1)),

where the inequality follows by the sequential
improvement assumption. Since

7 €arg min [g (%,)+ J(f1 (X1, m)))s

u1€U1(§1)

it follows by combining the preceding two relations
and the definition of T, that

V(Ty) > golx0. o) + &1 (X1, 7)) + J(F) = V(T)),

while 7, is feasible by the definition of T, (X)).
Similarly, the argument can be successively repe-

ated for every k, to verify that U, (X) is nonempty and
that V(T _,) > V(T}) for all k. O

Proposition 4.1 implies that the rollout algorithm
generates at each stage k a feasible trajectory that is no
worse than its predecessor in terms of cost. Since the
starting trajectory is H(xo) and the final trajectory is

C

Ty = (X0, 70, X1, ..., UN-1, %N),

we have the following.

Proposition 4.2. If the base policy is sequentially
improving, then the rollout algorithm produces a
trajectory (xo, %o, X1, - - - » Un—1, xn) that is feasible and
has cost that is no larger than the cost of the trajectory
generated by the base policy starting from xy.

321

By a simple extension of the argument used to show
Proposition 4.2, we can also show that when the base
policy is sequentially improving, then the trajectory
(x0,%0,X1,--.,Un-1,%Xn) produced by the rollout
algorithm satisfies for all k=1,...,N—1,

N1
J(Xe) > gn(Fn) + Zgi(fi,ﬁi)-
=k

In words, the cost-to-go of the rollout algorithm
starting from state X, is no worse than the cost-to-go
of the base policy starting from X;. Thus, J(X;) pro-
vides a readily computable upper bound to the cost-
to-go of the rollout algorithm starting from Xj.

We will now discuss some variations and extensions
of the rollout algorithm for constrained deterministic
problems. Let us consider the case where the sequen-
tial improvement assumption is not satisfied. Then,
even if the base policy generates a feasible trajectory
starting from the initial state xq, it may happen that
given the partial trajectory T}, the set of controls
Uy (%) that corresponds to feasible trajectories T (1)
[cf. Eq. (4.7)] is empty, in which case the rollout
algorithm cannot extend the trajectory T further. To
bypass this difficulty, we propose a modification of
the algorithm, called fortified rollout algorithm, which
is an extension of an algorithm given in Ref. [3] for the
case of an unconstrained DP problem (see also [13],
Section 6.4).

The fortified rollout algorithm, in addition to the
partial trajectory

Tk = (X0, %0, X1, - - - » Hg—1, Xk)5

maintains a (complete) trajectory T, which is feasible
and agrees with T} up to state X, i.e. T has the form

T: (x())n():xl)' . .,ﬁk,],fk,l/lk,)ck+1,. . .,l/lel,xN),

for some wuy,Xpiyq,-..,uy_1,Xy such that x;., =
Silwi, x;) fori=k,..., N—1, with x; = X. Initially, Tg
consists of the initial state xp, and T is the trajectory
H(xo), generated by the base policy starting from xq.
At stage k, the algorithm forms the subset Ui(X;) of
controls u; € Ur(Xy) such that T () € C and

k-1
> gl i) + g, we) + T fic (e ur)) < V(T).
=0

There are two cases to consider:

(1) The set Uk(fk) is nonempty. Then, the algorithm

selects from Ug(Xx) a control @, that minimizes
over uy € Ur(Xy)

8k (X) + J(fe (Ko).

322

It then forms the partial trajectory
Tir1 = Tie U (e, Xer1),

where X1 = fx (%, %), and replaces T with the
trajectory

T U (T) U H(Xpp1)-

(2) The set Ux(X;) is empty. Then, the algorithm
forms the partial trajectory Ty.; by concatenating
Ty by the control/state pair (ug, xx11) subsequent
to X; in 7, and leaves 7 unchanged.

It can be seen with a little thought that the fortified
rollout algorithm will follow the initial trajectory 7,
the one generated by the base policy starting from xg,
up to the point where it will discover a new feasible
trajectory with smaller cost to replace 7. Similarly, the
new trajectory 7 may be subsequently replaced by
another feasible trajectory with smaller cost, etc. Note
that if the base policy is sequentially improving, the
fortified rollout algorithm generates the same trajec-
tory as the (nonfortified) rollout algorithm given
earlier. However, it can be verified, by modifying the
proofs of Propositions 4.1 and 4.2, that even when the
base policy is not sequentially improving, the fortified
rollout algorithm will generate a trajectory that is
feasible and has cost that is no worse than the cost of
the trajectory generated by the base policy starting
from x.

We finally consider the case where C is specified by
the time-additive constraints

N—-1

gulxn) + ng(xk,uk) <p”, m=1,...,M,
k=0

(4.15)

[cf. Eq. (4.4)], representing restrictions on M resour-
ces. Then, it is natural for the base policy to take into
account the amounts of resources already expended.
One way to do this is by augmenting the state xj to
include the quantities

k1
= Zg’f(x,-,u,-), m=1,...,M,
i=0

¥ =0,

Wi = g1 Govrun—1)) + > gl (v).
i=0

D.P. Bertsekas

In other words, we may reformulate the state of the
system to be (xg, yi, ..., ¥), and to evolve according
to the new system equation

Xet1 = fe(xe,uk), k=0,...,N—1,
Vi = Vi v &l (e w), m=1,.... M,
k—0,.. N—2,

Yy =Yy Hen(fva (vt un-1))
+ g (xnv_1, un—1).

o =0,

The time-additive constraints (4.15) are then refor-
mulated as 7 <b”, m=1,...,M. The rollout
algorithm described earlier, when used in conjunc-
tion with this reformulated problem, allows for base
policies whose generated trajectories depend not only
on xx but also on y},...,yM, and brings to bear
Propositions 4.1 and 4.2.

4.3. Open-Loop Feedback Control

We will now discuss a classical suboptimal control
scheme, which turns out to be a special case of the
rollout algorithm. We have so far focused on pro-
blems of perfect state information where the state x; is
observed exactly. In an imperfect state information
problem, control at stage & is applied with knowledge
of the information vector

Ik == (Z], .

<5 Zks U, - - ,l/lk,]),

where for all &, z; is an observation obtained at stage
k, and related to the current state x; and the preceding
control u;_1 through a given conditional probability
distribution. Following the observation zz, a control
u 1s chosen by the controller with knowledge of the
information I, and the associated the conditional
probability distribution P, |, . Then, a cost g(xy, uy) is
incurred, where x; is the current (hidden) state. While
problems of imperfect state information are very hard
to solve optimally, they can be reduced to problems of
perfect state information whose state is the condi-
tional distribution P, (seee.g., [13]).

Generally, in a problem with imperfect state infor-
mation, the performance of the optimal policy
improves when extra information is available. How-
ever, the use of this information may make the
DP calculation of the optimal policy intractable. This
motivates a suboptimal policy, based on a more
tractable computation that in part ignores the avail-
ability of extra information. This policy was first
suggested by Dreyfus [21], and is known as the open-
loop feedback controller (OLFC for short). It uses the

Dynamic Programming and Suboptimal Control

current information vector /i to determine P, ;,, but
it calculates the control uy as if no further measure-
ments will be received, by using an open-loop opti-
mization over the future evolution of the system. In
particular, u; is determined as follows:

(1) Given the information vector I, compute the
conditional probability distribution P,,|;, (in the
case of perfect state information, where /i includes
Xg, this step 1s unnecessary).

(2) Find a control sequence {#@, @ 1,- ..,y that
solves the open-loop problem of minimizing

N-1
E{gn(xy) + Zgi(xi, up, wi) | I}
i=k

subject to the constraints

Xitl :ﬁ(xi’ui’wi)’ Ml'GUl" l:k5k+1”N71

(3) Apply the control input
iy (I) = W

Thus the OLFC uses at time k the new measurement
zy to calculate the conditional probability distribution
P, However, it selects the control input as if future
measurements will be disregarded.

In any suboptimal control scheme, one would like
to be assured that measurements are advantageously
used. By this we mean that the scheme performs at
least as well as any open-loop policy that uses a
sequence of controls that is independent of the values
of the measurements received. An optimal open-
loop policy can be obtained by finding a sequence

{ug, ui,. .., uy_,} that minimizes
B N-1
T(uo,ur,. oty 1) = E{gn(xn) + > gr(xp e, wio)
k=0

subject to the constraints
Xt = (X, Ues Wi), e € Ui, k=0, 1,..

A nice property of the OLFC is that it performs at
least as well as an optimal open-loop policy, as shown
by the following proposition. In contrast, the CEC
does not have this property (for example, for a one-
stage problem, the optimal open-loop controller and
the OLFC are both optimal, but the CEC may be
strictly suboptimal).

Proposition 4.3. The cost J7 corresponding to an
OLFC satisfies

J?SJs)

where Jj is the cost corresponding to an optimal open-
loop policy.

LN

323

The preceding proposition shows that the OLFC
uses the measurements advantageously even though
it selects at each period the present control input as if
no further measurements will be taken in the future. A
proof from first principles was given in Bertsekas [11]
(this proof is reproduced in Ref. [13]; it was extended
by White and Harrington [49]). However, it is much
simpler to argue that the proposition is a special case
of the cost improvement property of the rollout
algorithm (cf. Example 3.1), based on the following
observation.

Let us view the given problem of imperfect state
information as a problem of perfect state information
whose ‘state’ at the k-th stage is the distribution Py, .
Let us also view the optimal open-loop policy starting
at the next ‘state’ P, .., as a base policy. Then it can
be seen that the OLFC is just the rollout algorithm
corresponding to this base policy. According to the
generic cost improvement property of rollout algo-
rithms, the performance of the OLFC is no worse that
the performance of the optimal open-loop policy (the
base policy) starting from the initial state Py, This is
precisely the statement of Proposition 4.3.

We finally note that a form of suboptimal control
that is intermediate between the optimal feedback
controller and the OLFC is provided by a generaliza-
tion of the OLFC called the partial OLFC (POLFC);
see [13]. Similar to OLFC, this controller uses past
measurements to compute Py, but calculates the
control input on the basis that some (but not neces-
sarily all) of the measurements will in fact be taken in
the future, and the remaining measurements will not
be taken. This method often allows one to deal with
those measurements that are troublesome and com-
plicate the solution, while taking into account the
future availability of other measurements that can be
reasonably dealt with. The POLFC can also be viewed
as a form of rollout policy whose base policy takes
into account some (but not all) of the future mea-
surements rather than being open-loop.

5. Model Predictive Control

MPC was motivated by the desire to introduce non-
linearities and constraints into the linear-quadratic
control framework, while obtaining a suboptimal but
stable closed-loop system. We will describe MPC for
the more general case of a time-invariant nonlinear
deterministic system and nonquadratic cost. The state
and control belong to the Euclidean spaces R" and R,
respectively, and may be constrained. In particular,
the system is

Xk+1 :f(xk,uk), k = 0, 1,. AN

324

and the cost per stage is

g(xk)uk)) k:())l)"')
and is assumed nonnegative for all x; and wu;. We
impose state and control constraints
xp€X, up<€U(xg), k=0,1,...,
and we assume that the set X contains the origin of R".
Furthermore, if the system is at the origin, it can be
kept there at no cost with control equal to 0, that is
0 U(0), f0,0)=0, g(0,0)=0.

We want to derive a stationary feedback controller
that applies control zz(x) at state x, and is stable in the
sense that xr — 0 and Z(xx) — 0 for all initial states
xo € X. Furthermore, we require that for all initial
states xo € X, the state of the closed-loop system

Xk+1 :f(xk: ﬁ(xk))’

satisfies the state and control constraints. Finally, to
satisfy the stability requirement through a cost mini-
mization, we require that the total cost of the feedback
controller &z over an infinite number of stages is finite:

Zg(xk’ﬁ(xk)) < 00, (51)
k=0

and that the nonnegative function g is such that the
preceding relation implies that x; — 0 and z(x;) — 0.
A primary example is a quadratic cost per stage,

g(x,u) = xX'Qx + u'Ru,

where the matrices Q and R are positive definite and
symmetric.

In order for such a controller to exist, it is evidently
sufficient [in view of the assumptions f(0, 0)=0 and
£(0, 0) =0] that there exists a positive integer m such
that for every initial state xo € X, one can find a
sequence of controls up, k =0,1,...,m— 1, which drive
to 0 the state x,, of the system at time m, while keeping
all the preceding states x\,xs,...,Xy_1 Within X and
satisfying the control constraints uy € U(xp),...,
Um—1 € U(xpm—1). We refer to this as the constrained
controllability assumption. In practical applications,
the constrained controllability assumption can often
be checked easily. Alternatively, the state and control
constraints can be constructed in a way that the
assumption is satisfied using the methodology of
reachability of target tubes; see the end of this section.

D.P. Bertsekas

Let us now describe a form of MPC under the
constrained controllability assumption. At each stage
k and state x; € X, it solves an m-stage deterministic
optimal control problem involving the same cost per
stage and constraints, and the requirement that the
state after m stages be exactly equal to 0. This is the
problem of minimizing

k+m—1

Z g(xi’ ui)’

i=k

(5.2)

subject to the system equation constraints

i= kL. ktm L,
(5.3)

Xit1 :f(xi, Mi),

the state and control constraints

xieX, ue€ U(X,‘), l:k,k+1,,k+n’l71,
(5.4)

and the terminal state constraint
.Xk+m — O (55)

By the constrained controllability assumption, this
problem has a feasible solution. Let

{ﬁ/m ﬁk+1 yre- 7ﬁk+mf1}

be a corresponding optimal control sequence. The
MPC applies at stage k the first component of this
sequence,

(xXk) = U,

and discards the remaining components.

We now show that the MPC satisfies the stability
condition (5.1). Let xo, uo, X1, u1, ... be the state and
control sequence generated by MPC:

up = U(Xe)s Xer1 = fxe 4(xe)), k=0,1,....
Denote by J(x) the optimal cost of the m-stage pro-
blem solved by MPC when at a state x € X; cf. Egs
(5.2)-(5.5). Let also J(x) = oo be the optimal cost

starting at x of a corresponding (m — 1)-stage pro-
blem, i.e. the optimal value of the cost

m—2

g(xk, Uy) *
k=0
where x¢ = x, subject to the constraints

xk€X, welU(lx), k=0,1,...,m—2,

Dynamic Programming and Suboptimal Control

and
Xm—1 — 0.

[For states x € X for which this problem does not
have a feasible solution, we write J(x) = co.] Having
one less stage in our disposal to drive the state to
0 cannot decrease the optimal cost, so we have for
all x e X

~

J(x) < J(x). (5.6)

From the definitions of J and J, we have for all k,

min [g(ve, u) -+ J(f(xk, 1))]

ueU(x)

= &(Xi 1) + I (e i1) = J(xk), (5.7)
so using Eq. (5.6) with x = x;;1, we see that
() + J(xen) < J(xe), k=0,1,....
(5.8)

Adding this equation for all k£ in the range [0, K],
where K= 0,1, ..., we obtain

K
Toex) + > g0k, u) < J(xo).
k=0

Since J(xx-1) > 0 (in view of the nonnegativity of g),
it follows that

g(xe ue) < J(x0), K=0,1,...,

]~

(5.9)

T
[==)

and taking the limit as K — oo,

gk u) < J(x0) < o0

NgE

T
[==)

This shows the stability condition (5.1).

We note that the one-step lookahead function J
implicitly used by MPC [cf. Eq. (5.7)] is the cost
corresponding to a certain base policy. This policy 1s
defined by the open-loop control sequence that drives
to 0 the state after m — 1 stages and keeps the state at
0 thereafter, while observing the state and control
constraints x; € X and u; € U(x;), and minimizing
the cost. Thus, we can also view MPC as a rollout
algorithm with the base policy defined by the sequence
just described. This base policy may not be sequen-
tially consistent, but it is sequentially improving
(cf. Definitions 4.1 and 4.2). The reason is that if

325

(xk+1 s Ufet-1, xk+27 U2y xk+M71 s Uktm—1, 0) is the
sequence generated by the (m — 1)-stage base policy
starting from state xj., we have

(X1) + J(Xig2) < T(xXei1);

this follows by an argument similar to the argument
we used to show Eq. (5.8) based on Eqs (5.6) and (5.7).
Thus, property (1) of Definition 4.2 is satisfied, while
the feasibility property (2) of that definition is also
satisfied because of the structure of the constraints
of the problem solved at each stage by MPC. In fact
the stability property of MPC is a special case of
the cost improvement property of rollout algorithms
that employ a sequentially improving base policy
(cf. Proposition 4.2), which under our assumptions for
the cost per stage g, implies that if the base policy
results in a stable closed-loop system, the same is true
for the corresponding rollout algorithm. Note that the
constrained controllability assumption is used to
satisfy the feasibility assumption on the base policy
within the rollout context of Section 4.

The connection between MPC and rollout is con-
ceptually useful, and may lead to new algorithms for
specialized or different types of control problems. For
example, it can be exploited to derive MPC schemes
involving more complex constraints in analogy with
the rollout algorithm given in Section 4.

Looking back into the argument that we used
to prove stability [cf. Egs (5.6)—(5.9)], we see that to
obtain the stability property (5.1), we do not need to
solve the m-stage optimal control problem (5.2)—(5.5).
It is sufficient instead to apply at any stage k and state
xr € X, a control uy = uy, where u;, is the first element
of a sequence {@, % 1,...,0m 1} generated by
an m-stage base policy starting at x; (7 may be
dependent on xi, but for simplicity we do not show
this dependence). This control sequence, together
with the corresponding generated state sequence
{Xt> Xps 15+ - s Xk must have the following two
properties:

(1) xXk1 € X. A X X

(2) glxr, x) + J(xk1) < J(xx), where J(x) is some
function of x that is nonnegative over the set X
[for example, J(x) can be the cost incurred by
the base policy over m stages starting from x, cf.

Eq. (5.8)].

Property (2) above 1s a Lyapounov stability-type of
condition, where J(x) is the Lyapounov function.
Note that property (1) is weaker than the property
x;e Xforalli=k+1,...,k+m— 1 satisfied by the
sequence {ix, Wkr1, ..., drm—1) that is generated by
MPC at stage k. However, the later property is also

326

needed to show property (2) [cf. Eq. (5.8)] via the
argument of Eqs (5.6) and (5.7).

The MPC scheme that we have described is just the
starting point for a broad methodology with many
variations. For example, the m-stage problem solved
by MPC at each stage may be modified so that instead
of requiring that the state be 0 after m stages, one may
use a large penalty for the state being nonzero after m
stages. Then, the preceding analysis goes through, as
long as the terminal penalty is chosen so that Eq. (5.6)
is satisfied. In another variant, instead of aiming to
drive the state to 0 after m stages, one aims to reach a
sufficiently small neighborhood of the origin, within
which a stabilizing controller, designed by other
methods, may be used. This variant is also well-suited
for taking into account disturbances described by set
membership, as we now proceed to explain.

5.1. MPC with Set-Membership Disturbances

To extend the MPC methodology to the case where
there are disturbances wy in the system equation

Xir1 = J(Xk, g, Wi),

we must first modify the stability objective. The
reason is that in the presence of disturbances, the
stability condition (5.1) is impossible to meet. A rea-
sonable alternative is to introduce a set-membership
constraint wy € W(xy, ug) for the disturbance and a
target set T for the state, and to require that the
controller specified by MPC drives the state to T with
finite cost.

To formulate the MPC, we assume that 7 C X, and
that once the system state enters 7, we will use some
control law [i that keeps the state within T for all
possible values of the disturbances, that is

S, j(x),w) e T, forallxe T, we W(x,i(x)).
(5.10)

Finding such a target set 7 and control law /i can be
addressed via the methodology of infinite time
reachability, and will be discussed at the end of this
section.

Once we specify the target set 7, we can view it
essentially as a cost-free and absorbing state, similar
to our view of the origin in the earlier deterministic
context. Consistent with this interpretation, we
mtroduce the stage cost function

glx,u) fx¢T,
x’ - .
g(xu) { 0 ifxeT,

D.P. Bertsekas

where g is a nonnegative function with the property
that for any sequence {xg, to, X, 41, . . .} generated by
the system, the condition

oQ
Zg(xk, U) < 00,
k=0

implies that x; — 0 and u; — 0 [for example, g can be
quadratic of the form g(x, u) = X’Qx + ' Ru, where Q
and R are positive definite, symmetric matrices].

The MPC is now defined as follows: at each stage
k and state x; € X with x; ¢ T, it solves the m-stage
minimax control problem of finding a policy /i,
Dieyts oo s By that minimizes

k+m—1
max

W €W (5, 0x7)), Z g(xi, (1)),

kg et =k
subject to the system equation constraints

Xiv1 =f(x5, p(x),wy), i=kk+1,.. . k+m—1,
the control and state constraints

x€X, [(x;), eUlx), i=kk+1,....k+m—1,
and the terminal state constraint

x; €T, forsomeiclk+1,k+m].
These constraints must be satisfied for all disturbance
sequences satisfying

w; € Wix, fy(x), i=kk+1,...,k+m—1.
The MPC applies at stage k the first component of the
policy fi, firts- - - » erm—i thus obtained,

B(xe) = fie(x)

and discards the remaining components. For states x
within the target set 7, the MPC applies the control
fi(x) that keeps the state within 7, as per Eq. (5.10) , at
no further cost [a(x) = f(x) for x € 7.

We make a constrained controllability assumption,
namely that the m-stage minimax problem solved at
each stage by MPC has a feasible solution for all
xr € X with x; ¢ T (this assumption can be checked
using the target tube reachability methods, described
at the end of this section). Note that this problem is a
potentially difficult minimax control problem, which
generally must be solved by DP (see e.g., Section 1.6 of
Ref. [13]).

Dynamic Programming and Suboptimal Control

The stability analysis of MPC (in the modified sense
of reaching the target set T with finite cost, for all
possible disturbance values) is similar to the one given
earlier in the absence of disturbances. Furthermore,
we can view MPC in the presence of disturbances as a
special case of a rollout algorithm, suitably modified
to take account of the set-membership description of
the disturbances. Let us provide the details of this
analysis.

We first show that 7z attains reachability of the
target tube {X, X, ...} in the sense that

Jx,ax),w)e X, forallxe X and we W(x,7(x)).
(5.11)

Indeed, for x € T, MPC applies the control ji(x),
which by assumption keeps the next state within 7,
and hence also within X (since T C X). Hence,
Eq. (5.11) is satisfied for x € 7. For x € X with x ¢ 7,
the constraints of the m-stage minimax problem
solved by MPC starting from x include Eq. (5.11).
Hence the reachability condition (5.11) is satisfied.
(Note that the constrained controllability assumption
that the m-stage minimax problem solved at each
stage by MPC has a feasible solution is critical for this
analysis.)

Consider now any sequence {xg,uo, X1, 4[,...}
generated by MPC [ie. xo € X, x0 ¢ T, wx = m(xe),
Xk+1 :f(xk,uk,wk) and Wi € W(xk,uk)]. We will
show that

Kr—1

Z g(xk, uk) < j(X()) < 00,
k=0

(5.12)

where J(x) is the optimal cost starting at state x € X of
the m-stage minimax control problem solved by MPC,
and K7 is the smallest integer k such that x; € T (with
Ky =00 if x; ¢ T for all k). Note that as a con-
sequence of Eq. (5.12) there are two possibilities:

(1) The state reaches the target set 7 at some finite
time Ky, in which case it is kept within T for all
subsequent times, by the definition of MPC.

(2) The state never reaches the target set 7 (Ky = 00),
in which case we have g(xy, uy) = 2(xy, uy) for all
k, and the infinite horizon cost >~ 8(x¢, ux) is
finite. By our assumption regarding g, this implies
that x; — 0 and . — 0.

In either case (1) or (2), Eq. (5.12) can be viewed as a
property of stability in the presence of disturbances
(assuming that 7 is a bounded set).

To show Eq. (5.12), we argue similar to the case
where there are no disturbances. Let us consider an
optimal control problem that is similar to the one

327

solved at each stage by MPC, but has one stage less.
In particular, given x € X with x¢ 7, consider the
minimax control problem of finding a policy

fos o1y - - 5 Ly that minimizes
m—2
max gy (%)), (5.13)
w;EW(x;, il x;)), &
=01,.m—2 =
subject to the system equation constraints
xi+1 :f(xi)ﬂi(xi))wi)) 1:0) 1,...,7)’172,
(5.14)
the control and state constraints
xi€X, fi(x)eUlx), i=0,1,...,m—2,
(5.15)
and the terminal state constraint
x; €T, forsomeic[l,m—1]. (5.16)

These constraints must be satisfied for all disturbance
sequences with

wp € Wi(x;, (%), i=0,1,...,m—2. (5.17)
Let Ji (xg) be the corresponding optimal value, and
define J(x¢) =0 for xo € T, and J(xp) = oo for all
xo ¢ T for which the problem has no feasible solution.
Tt can be seen that the control 7z(x) applied by MPC at

a state x € X with x ¢ T, minimizes over u € U(x)

max [g(x, u) + J(f(x,u,w))].
weW(x,u)
By using the fact J(x) < J(x), it follows that for all
x € X with x ¢ T, we have

max_[g(x, A(x)) + J(f(x, Blx), w))] < J(x).

weW(x,u)
Hence, for all k such that x; € X with x; ¢ T, we have
8ok 1) + I (1) < I (),

where j(ka) =0 if x4y1 € T, and by adding over
k=0,1,...,K7 — 1, we obtain the desired result
(5.12).

Note that similar to the case where there are no
disturbances, we can interpret MPC as a rollout
algorithm with a base policy defined as follows: for
x € T, the base policy applies ji(x), and for x € X with
x ¢ T, it applies the first element of a sequence that
solves the (m — l)-stage problem described above,
1.e. minimizes the cost (5.13) subject to the constraints
(5.14)-(5.17).

328
5.2. MPC and Infinite-Time Reachability

We will now describe the connection of MPC, and the
methodology of reachability of target sets and tubes,
first introduced and developed for discrete-time sys-
tems by the author in his Ph.D. thesis [9], and sub-
sequent papers [7,10]. Reachability, as well as the
broader subject of estimation and control for systems
with a set-membership description of the uncertainty,
stayed outside mainstream control theory and practice
for a long time, but have received renewed attention
since the late 1980s, in the context of robust control
and MPC. We refer to the surveys by Deller [20],
Kosut et al. [27], Blanchini [15] and Mayne [38], which
give many additional references. Section 4.6.2 of the
textbook [13] provides an introduction to the subject,
which is relevant to the material that follows.
Consider the system

Xirt = S Xk, i, Wie),

where wy is known to belong to a given set Wi (x, ug),
which may depend on the current state x; and control
ur. A basic reachability problem is to find a policy
7= {po,-. ., pn—1} with pg(xg) € Ug(xg) for all xi
and k, such that for each k = 1,2,..., N, the state x;
of the closed-loop system

X1 = S (ks o (), wie)

belongs to a given set X, called the rarget set at time k.

We may view the set sequence {X, X5,..., Xy} asa
‘tube’ within which the state must stay, even under
the worst possible choice of the disturbances wy from
within the corresponding sets Wi(xg, px(xx)). If there
exists a policy 7 = {po, ..., un—1 } that keeps the state
xp within X for all k=1,..., N — 1, starting from
a given Initial state xg, we say that the tube
{X1,X2,..., Xy} is reachable from xg.

Turning back to the MPC formulation, we note that
the constrained controllability assumption is in effect
an assumption about reachability of a certain target
tube. In particular, for a deterministic system, this
assumption requires that the state constraint set X is
such that for all initial states within X, there exists a
control sequence that keeps the state of the system
within x for the next m — 1 stages, and drives the state
to 0 at the m-th stage. This is equivalent to assuming
that the tube {X|, X5,..., X} is reachable from all
xo € X, where

X\ =Xy= - =Xp1 =X, X,—{0}.

For the case of a system driven by disturbances
described by set membership, the constrained

D.P. Bertsekas

controllability assumption requires that we know two
sets with favorable reachability properties: the target
set T that the system aims at and the set X within
which the state must stay as it approaches 7. An
equivalent statement of the assumption is that the

tube {X|,X5,...,X,,} is reachable from all x4 € X,
where
X=X, = =Xp1=X, X,=T,

and that the set T is infinitely reachable, in the sense
that there exists a control law p that keeps the state
within 7 for all possible values of the disturbances,
that is

Jlx, g(x),w) e T, forallxeT,we W(x,ji(x)).
(5.18)

We may view the problem of infinite time reachability
of a set T as a limit/infinite horizon version of the
problem of reachability of a target tube: instead of a
tube consisting of a finite number of sets, we consider
a tube with an infinite number of sets of the form
{T,T,...}.

The computation as well as the definition of MPC
critically depends on being able to solve the two
reachability problems formulated above: reachability
of a (finite horizon) target tube, and infinite time
reachability of a set (or reachability of an infinite
horizon target tube). One may formulate the problem
of reachability of a target tube {X),X>,...,Xn}
as a minimax control problem, where the cost at
stage k is

() 0 if x € Xg,
Bkl Xk) = 1 ikaﬁXk.

With this choice, the optimal cost-to-go from a given
initial state xg is the minimum number of violations of
the target tube constraints x; € X that can occur
when the w; are optimally chosen, subject to the
constraint wy, € Wi (xg,u), by an adversary wishing
to maximize the number of violations. In particular, if
Ji(xr) = 0 for some x; € Xy, there exists a policy such
that starting from xi, the subsequent system states
x,i=k+1,...,N, are guaranteed to be within the
corresponding sets X;.
It can be seen that the set

Xie = {xklJi(x¢) = 0}

is the set that we must reach at time & in order to be
able to maintain the state within the subsequent target
sets. Accordingly, we refer to Xy as the effective target
set at time k. We can generate the sets X with a

Dynamic Programming and Suboptimal Control

backwards recursion, first obtained in Ref. [9], which
may be derived from the DP algorithm for minimax
problems, but can also be easily justified from first
principles. In particular, we start with

Xy = X, (5.19)

and fork=0,1,...,N— 1, we have

X = {xi € X |there exists u; € Uy(xy) such that

i (ks e, wie) € Xy,
for all w, ¢ Wk(xk,uk)}. (5.20)

In general, it is not easy to characterize the effective
target sets X;. However, a few special cases involving
the linear system

Xpo1 = Agxg + Brug +wi, k=0,1,...,N—1,
where 4, and By are given matrices, are amenable to
exact or approximate computational solution. One
such case is when the sets X} are polyhedral, and the
sets Ug(xr) and Wi(xg,u) are also polyhedral, and
independent of x; and u;. Then the effective target sets
are polyhedral and can be computed by linear pro-
gramming methods.

Another case of interest is when the sets X are
ellipsoids, and the sets Up(x;) and Wi (xk, uy) are also
ellipsoids that do not depend on x; and (xg,ux),
respectively. In this case, the effective target sets Xy
are not ellipsoids, but can be approximated by inner
ellipsoids X, with

X’VkC?k

(this requires that the ellipsoids U, have sufficiently
large size, for otherwise the target tube may not be
reachable and the problem may not have a solution).
Furthermore, the state trajectory {xi,x2,...,Xn}
can be maintained within the ellipsoidal tube
{X’l, X, ... ,X’N} by using a /linear control law (see [13],
p- 214). We refer to the author’s Ph.D. thesis work [9]
and the subsequent paper [7], for a more detailed
analysis.

When the problem is stationary and f;, Xx, U and
Wi do not depend on £, as in the MPC formulation, an
infinitely reachable set can often be obtained, at least
in principle, by a form of value iteration, 1.e. start with
some (sufficiently large) target set Y, and sequentially
construct an infinite sequence of corresponding
effective target sets { Y} satisfying Yy, = Y and

Yii1 = {x € Y |there exists u € U(x) with
flx,u,w) € Yy, forall we W(x,u)}.

329

Clearly, Y is the set of all initial states x € ¥ for
which there exists a k-stage policy that keeps the state
of the system within Y for the next k stages. We have

7k+1 C 7/{5 Vk)

and we may view the intersection

Y.~ ()
k=0

as the set within which the state can be kept for an
arbitrarily large (but finite) number of time periods.
Paradoxically, under some unusual circumstances, the
set Y, may not be infinitely reachable, i.e. there may
exist states in Y, starting from which it may be
impossible to remain within Y., for an indefinitely
long horizon, i.e. an infinite number of time periods.
Conditions that guarantee infinite reachability of Y,
have been investigated by the author in Ref. [10], and
include compactness of the sets Y, U(x) and W(x, i),
and continuity of the function /. Under these condi-
tions, the set Y, 1s the largest infinitely reachable set
contained within Y. Refs [9,10] also focus on the case
where the system is linear, and the sets ¥, U and W
are ellipsoids. For this case, these references provide
a methodology, based on a Riccati-like equation
for constructing infinitely reachable ellipsoidal inner
approximations to Y., and an associated linear con-
trol law that attains infinite time reachability.

6. Restricted Structure Policies

We will now introduce a general unifying suboptimal
control scheme that contains as special cases several
of the control schemes we have discussed: rollout,
OLFC and MPC. The idea is to simplify the problem
by selectively restricting the information and/or the
controls available to the controller, thereby obtaining
a restricted but more tractable problem structure,
which can be used conveniently in a one-step looka-
head context.

An example of such a structure is one where fewer
observations are obtained, or one where the control
constraint set is restricted to a single or a small number
of given controls at each state. Generally, a restricted
structure is associated with a problem where the
optimal cost achievable is less favorable than in the
given problem; this will be made specific in what fol-
lows. At each stage, we compute a policy that solves
an optimal control problem involving the remaining
stages and the restricted problem structure. The con-
trol applied at the given stage is the first component of
the restricted policy thus obtained.

330

An example of a suboptimal control approach that
uses a restricted structure is the OLFC, where one uses
the information available at a given stage as the
starting point for an open-loop computation (where
future observations are ignored). Another example is
the rollout algorithm, where at a given stage one
restricts the controls available at future stages to be
those applied by some suboptimal policy. Still another
example is MPC, which under some conditions may
be viewed as a form of rollout algorithm, as discussed
in the preceding section.

For a problem with & stages, implementation of the
suboptimal scheme to be discussed requires the solu-
tion of a problem involving the restricted structure at
each stage. The horizon of this problem starts at the
current stage, call it k£, and extends up to the final stage
N. This solution yields a control u; for stage &
and a policy for the remaining stages k + 1,..., N — 1
(which must obey the constraints of the restricted
structure). The control u; is used at the current
stage, while the policy for the remaining stages
k+1,...,N—1is discarded. The process is repeated
at the next stage k + 1, using the additional informa-
tion obtained between stages k and k + 1.

Similarly, for an infinite horizon model, imple-
mentation of the suboptimal scheme requires, at each
stage k, the solution of a problem involving the
restricted structure and a (rolling) horizon of fixed
length. The solution yields a control u; for stage k and
a policy for each of the remaining stages. The control
ur 1s then used at stage k, and the policy for the
remaining stages is discarded. For simplicity in what
follows, we will focus attention to the finite horizon
case, but the analysis applies, with minor modifica-
tions, to infinite horizon cases as well.

Our main result is that the performance of the
suboptimal control scheme is no worse than the one of
the restricted problem, i.e. the problem corresponding
to the restricted structure. This result unifies and
generalizes our analysis for the OLFC (which is
known to improve the cost of the optimal open-loop
policy, cf. Section 4) for the rollout algorithm (which
is known to improve the cost of the corresponding
suboptimal policy, cf. Section 4) and for MPC (where
under some reasonable assumptions, stability of the
suboptimal closed-loop control scheme is guaranteed,
cf. Section 5).

For simplicity, we focus on the imperfect state
information framework for stationary finite-state
Markov chains with N stages; the ideas apply to much
more general problems with perfect and imperfect
state information, as well problems with an infinite
horizon. We assume that the system state is one of a
finite number of states denoted 1,2,...,n. When a

D.P. Bertsekas

control u 1s applied, the system moves from state i to
state j with probability p;;(u). The control u is chosen
from a finite set U. Following a state transition, an
observation is made by the controller. There is a finite
number of possible observation outcomes, and the
probability of each depends on the current state and
the preceding control. The information available to
the controller at stage & is the information vector
Io=(z1, - Zko gy -+ U 1),

where for all i, z; and u; are the observation and
control at stage i, respectively. Following the obser-
vation zg, a control u; is chosen by the controller and a
cost g(xg,ux) is incurred, where x; is the current
(hidden) state. The terminal cost for being at state x
at the end of the N stages is denoted G(x). We wish
to minimize the expected value of the sum of costs
incurred over the N stages.

We can reformulate the problem into a problem of
perfect state information where the objective is to
control the column vector of conditional probabilities
7

k= (Phs-- 2P0
with
pizP(xk:ij), j=1,...,n

We refer to pr as the belief state, and we note that it
evolves according to an equation of the form

D1 = P(pr, u, zit1).

The function @ represents an estimator, as discussed.
The initial belief state pg is given.
The corresponding DP algorithm has the form

_ : /
Ji(pr) = {}klelgkag ()

+ E2k+1 {Jk+l (q)(pk, U, ZkJrl)) |Pk, uk}]’

where g(u) is the column vector with components
g(Lug),...,g(n, u), and plg(ux), the expected stage
cost, is the inner product of the vectors pr and g(uz).
The algorithm starts at stage N, with

In(pn) = PyG,

where G is the column vector with components
G(1),...,G(n), and proceeds backwards.
We will also consider another control structure,
where the information vector is
I = (Z1... k=0,...,N—1,

-)Ek)MO)' L ,l/lk,]),

Dynamic Programming and Suboptimal Control

with Z; being some observation for each i (possibly
different from z;), and the control constraint set at
each p; is a given set U(py). The probability dis-
tribution of Z; given x; and uz_; is known, and may
be different than the one of z;. Also U(py) may be
different from U [in what follows, we will assume that
U(py) is a subset of U].

We introduce a suboptimal policy, which at stage &,
and starting with the current belief state p;, applies
a control z,(pr) € U, based on the assumption that
the future observations and control constraints will
be according to the restricted structure. More speci-
fically, this policy chooses the control at the typical
stage k and state x; as follows:

Restricted structure policy: At stage k and state xg,
apply the control

P (Pr) = uk,

where
(vt fes1 Gt) - s N1 Z 15+ -2 ZN— 15 Uy - - UN-2))

is a policy that attains the optimal cost achievable
from stage k onward with knowledge of p; and
with access to the future observations Zg.1,...,Zn_1
(in addition to the future controls), and subject to the
constraints

ue € U, peit(prsn) € U(prin)s-- -
pn-1(py-1) € U(px-1)-

Let Ji(pi) be the cost-to-go, starting at belief state
pr at stage k, of the restricted structure policy
{Hos - - - » By_q } just described. This is given by the DP
algorithm

Je(pr) = g (T (pe)

+ Bz ATkt (@ (i i (P> 200)) | Pios e (i)}
6.1)

for all p and k, with the terminal condition Jy(py) =
PG for all py.

Let us also denote by J/(px) the optimal cost-to-go
of the restricted problem, i.e. the one where the
observations and control constraints of the restricted
structure are used exclusively. This 1s the optimal cost
achievable, starting at belief state p; at stage &, using
the observations z,,i =k + 1,..., N — 1, and subject
to the constraints

ue € U(pr), prest (Pi1) € U(Prst)s -
pv-1(py-1)€U(py_1).

331

We will show, under certain assumptions to be
introduced shortly, that

Je(pe) < T (pe),

and we will also obtain a readily computable upper
bound to Ji (py). To this end, for a given belief vector
pr and control u;, € U, we consider three optimal
costs-to-go corresponding to three different patterns
of availability of information and control restriction
over the remaining stagesk + 1,..., N — 1. We denote:

Yo, k=0,...,N—1,

Or(P> ui): The cost achievable from stage k onward
starting with py, applying u; at stage k, and optimally
choosing each future control u;, i=k+1,...,N—1,
with knowledge of pg, the observations ziiy,...,z;
and the controls u,...,u;—;, and subject to the
constraint u; € U.

O (pr,ug): The cost achievable from stage k
onward starting with pg, applying u; at stage k,
and optimally choosing each future control
w,i=k+1,...,N—1, with knowledge of pi, the
observations Zxy 1, . . ., z;, and the controls u, . .
and subject to the constraint u; € U(p;). Note that
this definition is equivalent to

- Ui-1,

Qi (P> (i) = 2}611[1/ Q% pie> ui), (6.2)

where 77, (pr) is the control applied by the restricted
structure policy just described.

Q;(Prsur): The cost achievable from stage &
onward starting with pi, applying u; at stage k, opti-
mally choosing the control ug; with knowledge of py,
the observation z;, 1, and the control u;, subject to the
constraint ux+; € U, and optimally choosing each of
the remaining controls u;,i=k+2,...,N—1, with
knowledge of pi, the observations zx.1,Zxi2,---,Zs
and the controls u,..., u;—1, and subject to the
constraints ; € U(p,).

Thus, the difference between Qf(pk,uc) and
Or(pr,ur) is due to the difference in the control
constraint and the information available to the
controller at all future stages k+1,...,N—1
[U(pks1)s---» U(py-1) versus U, and Zpyy,...,Zy
versus zpyi,....zy-1, respectively]. The difference
between Q¢ (pr., ux) and Q% (pr, ux) is due to the dif-
ference in the control constraint and the information
available to the controller at the single stage k+ 1
[U(pry1) versus U, and Z; | versus zj |, respectively].
Our key assumptions are that

Ulp) CU, Ypp k=0,....N—1, (6.3)
Ok (Pe-) < OL(pes) < O (P k)
Vpk, ur € U, k:(),...,Nfl. (6.4)

332

Roughly, this means that the control constraint U(p)
is more stringent than U, and the observations
Zk+1,- -+, 2Zn—1 are ‘weaker’ (no more valuable in terms
of improving the cost) than the observations
Zgit1,. -, 2Zy-1- Consequently, if Eqgs (6.3) and (6.4)
hold, we may interpret a controller that uses in part
the observations Z; and the control constraints U(py),
in place of z; and U, respectively, as ‘handicapped’ or
‘restricted’.
Let us denote:

Je(pr): The optimal cost-to-go of the original
problem, starting at belief state p; at stage k. This is
given by

Ji(pe) = min Qr(pr, uk)- (6.5)
up €U

Ji(pr): The optimal cost achievable, starting at
belief state p; at stage k, using the observations
zZ,,i=k+1,...,N— 1, and subject to the constraints

we € U, perr(pes1) € U(pira), - -
py-1(py-1) € U(py-1)-

This is given by

Ji(pe) = min Qi (pr, ue), (6.6)

and it is the cost that is computed when solving the
optimization problem of stage k& in the restricted
structure policy scheme. Note that we have for all pg,

Ji(pe) = min O (pr, uk)

w€U(pr)

> }}l}éfll/ Qi (P> ur) = J(pi), (6.7)

where the inequality holds in view of the assumption
U (pk) c U

Our main result is as follows.

Proposition 6.1. Under the assumptions (6.3) and
(6.4), there holds

Jielpe) < Tl pi) < Tl pi) < Tl pi),
Ve, k=0,...,N—1.

Proof. The inequality Ji(pi) < Ji(px) is evident,
since Ji(pg) is the optimal cost-to-go over a class of
policies that includes the restricted structure policy
{Tigs - - -» Bn_1 - Also the inequality Ji(pe) < J(pk)
follows from the definitions [see Eq. (6.7)]. We prove
the remaining inequality Ji(pi) < JS(pi) by induc-
tion on k.

D.P. Bertsekas

We have Jy(py) = J5(py) =0 for all py. Assume
that for all px. |, we have

7k+1(Pk+1) < J2+1(Pk+l)-

Then, for all py,

Ji(pr) = P& ([T (pr))
Bz ATk 1 (@ i e (P1)s 200 | P B ()}

< p&(F(pr))
Bz AT (PP B (Pi)s 2ie41)) | Pis B (i) }

= P& (T (pr))
+E,., {uglligy Qerl (Q(pics (P)s Zhor1)s Uiy 1)

| P P (i)}

(P P (i)
(P T (Pic))
Je (i)

0
< Q;

where the first equality holds by Eq. (6.1), the first
inequality holds by the induction hypothesis, the
second equality holds by Eq. (6.6), the third equality
holds by the definition of QAE, the second inequal-
ity holds by the assumption (6.4) and the last equality
holds from the definition (6.2) of the restricted struc-
ture policy. The induction is complete. O

The main conclusion from the proposition is that
the performance of the restricted structure policy
{To»---sBn_1} 18 no worse than the performance
associated with the restricted control structure. Fur-
thermore, at each stage &, the value Ji(pr), which is
obtained as a byproduct of the on-line computation of
the control 7, (pg), is an upper bound to the cost-to-
2o Ji(pr) of the suboptimal policy. This is consistent
with our earlier results that show the cost improve-
ment property of the rollout algorithm and the OLFC,
and the stability property of MPC.

7. Conclusions

This paper has aimed to outline the connections
between some suboptimal control schemes that have
been the focus of much recent research. The under-
lying idea of these schemes is to start with a sub-
optimal/heuristic policy, and to improve it by using its
cost-to-go (or a lower bound thereof) as an approx-
imation to the optimal cost-to-go, the principal theme
of the policy iteration method. While this viewpoint 1s
natural in DP-based optimization, it is somewhat
indirect within the control-oriented context of

Dynamic Programming and Suboptimal Control

MPC, where a principal issue is the stability of the
closed-loop system. We have tried to emphasize the
relation between the stability property of MPC and
the cost improvement property of the underlying
policy iteration methodology.

The connections between the various schemes
described here may be helpful in better understanding
their underlying mechanisms, and in extending the
scope of their practical applications. In particular, the
success of MPC in control engineering applications
should motivate the broader use of rollout algorithms
in practice, while the rollout and restricted policy cost
improvement analyses should motivate the use of
MPC methods in other problem domains, involving
for example more complex state and control con-
straints. Finally, it should be mentioned that while in
rollout algorithms for constrained DP, the issue of
constructing a feasible base policy is left unresolved,
in MPC it is addressed via the well-understood
methodology of reachability of target tubes.

References

1. Abramson B. Expected-outcome: a general model of
static evaluation. IEEE Trans Pattern Anal Machine
Intell 1990; 12: 182193

2. Barto A, Powell W, Si J (eds). Learning and
approximate dynamic programming. IEEE Press, NY,
2004

3. Bertsekas DP, Tsitsiklis JN, Wu C. Rollout algorithms
for combinatorial optimization. Heuristics 1997; 3:
245-262

4. Bertsekas DP, Castanon DA. Rollout algorithms
for stochastic scheduling problems. Heuristics 1999; 5:
89-108

5. Bertsimas D, Demir R. An approximate dynamic
programming approach to multi-dimensional knapsack
problems. Manage Sci 2002; 4: 550-565

6. Bertsimas D, Popescu I. Revenue management in a
dynamic network environment. Transportation Sci
2003; 37: 257-277

7. Bertsekas DP, Rhodes IB. On the minimax reachab-
ility of target sets and target tubes. Automatica 1971; 7:
233-247

8. Bertsekas DP, Tsitsiklis JN. Neuro-dynamic program-
ming. Athena Scientific, Belmont, MA, 1996

9. Bertsekas DP. Control of uncertain systems with a
set-membership description of the uncertainty, Ph.D.
Dissertation, Massachusetts Institute of Technology,
Cambridge, MA, 1971 (Available in scanned form from
the author’s www site)

10. Bertsekas DP. Infinite time reachability of state space
regions by using feedback control. IEEE Trans Autom
Control 1972; AC-17: 604-613

11. Bertsekas DP. On the solution of some minimax control
problems. In: Proceedings of the 1972 IEEE decision
and control conference, New Orleans, LA, 1972

12. Bertsekas DP. Differential training of rollout policies.
In: Proceedings of the 35th Allerton conference on

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

333

communication, control, and computing, Allerton Park,
1L, 1997, pp. 913-922

Bertsekas DP. Dynamic programming and optimal
control. 3rd edn. Athena Scientific, Belmont, MA, 2005
Bertsekas DP. Rollout algorithms for constrained
dynamic programming. Laboratory for Information
and Decision Systems Report 2646, MIT, 2005
Blanchini F. Set invariance in control—a survey.
Automatica 1999; 35: 1747-1768

Christodouleas,J.D. Solution Methods for Multi-
processor Network Scheduling Problems with
Application to Railroad Operations, Ph.D. Thesis,
Operations Research Center, Massachusetts Institute
of Technology, 1997.

Chang HS, Givan RL, Chong EKP. Parallel rollout for
online solution of partially observable Markov decision
processes. Discrete Event Dynam Syst 2004; 14: 309—-341
Camacho EF, Bordons C. Model predictive control.
2nd edn. Springer-Verlag, New York, NY, 2004

de Farias DP. Van Roy B. The linear programming
approach to approximate dynamic programming.
Operations Res 2003; 51: 850—865

de Farias DP, Van Roy B. On constraint sampling in
the linear programming approach to approximate
dynamic programming. Math Operations Res 2004;
29: 462-478

Deller JR. Set membership identification in digital
signal processing. IEEE ASSP Mag 1989; October:
4-20

Dreyfus SD. Dynamic programming and the calculus of
variations. Academic Press, NY, 1965

Findeisen R, Imsland L, Allgower F, Foss BA.
State and output feedback nonlinear model
predictive control: an overview. Eur J Control 2003; 9:
190-205

Ferris MC, Voelker MM. Neuro-dynamic program-
ming for radiation treatment planning. Numerical
Analysis Group Research Report NA-02/06, Oxford
University Computing Laboratory, Oxford University,
2002

Ferris MC, Voelker MM. Fractionation in radiation
treatment planning. Math Program B 2004; 102:
387-413

Guerriero F, Musmanno R. Label correcting methods
to solve multicriteria shortest path problems. J Optim
Theory Appl 2001; 111: 589-613

Guerriero F, Mancini M. A Co-operative Parallel
Rollout Algorithm for the Sequential Ordering
Problem, Parallel Computing, 2003; 29: 663677

Jaffe JM. Algorithms for finding paths with multiple
constraints. Networks 1984; 14: 95-116

Kosut RL, Lau MK, Boyd SP. Set-membership identi-
fication of systems with parametric and nonparametric
uncertainty. IEEE Trans Autom Control 1992; AC-37:
929-941

Keerthi SS, Gilbert EG. Optimal, infinite horizon
feedback laws for a general class of constrained discete
time systems: stability and moving-horizon approxima-
tions. J Optim Theory Appl 1988; 57: 265-293

Konda VR, Tsitsiklis JN. Actor-critic algorithms.
SIAM J Control Optim 2003; 42: 1143-1166

Konda VR. Actor-critic algorithms. Ph.D. Thesis,
Department of Electrical Engineering and Computer
Science, MIT, Cambridge, MA, 2002

334

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

McGovern A, Moss E, Barto A. Building a basic
building block scheduler using reinforcement learning
and rollouts. Mach Learning 2002; 49: 141-160
Meloni C, Pacciarelli D, Pranzo M. A rollout
metaheuristic for job shop scheduling problems. Ann
Operations Res 2004; 131: 215-235

Mayne DQ, Rawlings JB, Rao CV, Scokaert POM.
Constrained model predictive control: stability and
optimality. Automatica 2000; 36: 789-814
Martin-Sanchez JM, Rodellar J. Adaptive predictive
control. From the concepts to plant optimization.
Prentice-Hall International (UK), Hemel Hempstead,
Hertfordshire, UK, 1996

Maciejowski JM. Predictive control with constraints.
Addison-Wesley, Reading, MA, 2002

Marbach P, Tsitsiklis JN. Simulation-based optimiza-
tion of Markov reward processes. IEEE Trans Autom
Control 2001; AC-46: 191-209

Martins EQV. On a multicriteria shortest path problem.
Eur J Operational Res 1984; 16: 236245

Mayne DQ. Control of constrained dynamic systems.
Eur J Control 2001; 7: 87-99

Morari M, Lee JH. Model predictive control:
Past, present, and future. Comput Chem Eng 1999; 23:
667-682

Qin SJ, Badgwell TA. A survey of industrial model
predictive control Technology. Control Eng Practice
2003; 11: 733-764

Rantzer A. On relaxed dynamic programming in
switching systems. IEE Proc Special Issue Hybrid Syst
2005 (to appear)

Rawlings JB. Tutorial overview of model predictive
control. Control Syst Mag 2000; 20: 38—-52

Secomandi N. Comparing neuro-dynamic program-
ming algorithms for the vehicle routing problem with

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

D.P. Bertsekas

stochastic demands. Comput Operations Res 2000; 27:
1201-1225

Sutton R and Barto AG. Reinforcement Learning, MIT
Press, Cambridge, MA, 1998

Secomandi N. A rollout policy for the vehicle routing
problem with stochastic demands. Operations Res 2001;
49: 796-802

Secomandi N. Analysis of a rollout approach to
sequencing problems with stochastic routing applica-
tions. J Heuristics 2003; 9: 321352

Stewart BS, White CC. Multiobjective A*. JACM 1991;
38: 775-814

Tesauro G and Galperin GR. 1996 “On-Line Policy
Improvement Using Monte Carlo Search,” presented at
the 1996 Neural Information Processing systems Con-
ference, Denver, CO; also in M. Mozer et al. (eds.),
Advances in Neural Information Processing Systems 9,
MIT Press (1997).

Tu F, Pattipati KR. Rollout strategies for sequential
fault diagnosis. IEEE Trans Syst Man Cybernet A 2003;
86-99

Wu G, Chong EKP, Givan RL. Congestion control
using policy rollout. In: Proceedings of the 2nd IEEE
CDC, Maui, Hawaii. 2003; pp 4825-4830

White CC, Harrington DP. Application of Jensen’s
inequality to adaptive suboptimal design. J Optim
Theory Appl 1980; 32: 89-99

Witsenhausen HS. Inequalities for the performance of
suboptimal uncertain systems. Automatica 1969; 5:
507-512

Witsenhausen HS. On performance bounds for uncer-
tain systems. SIAM J Control 1970; 8: 55-89

Yan X, Diaconis P, Rusmevichientong P, Van Roy B.
Solitaire: man versus machine. Adv Neural Inform
Process Syst 2005; 17: (to appear)

