
Vector Calculus Independent Study

Unit 7: Surfaces

We studied surfaces before when we investigated the graphs of scalar valued
functions of two variables. In this unit, we generalize to the notion of param-
eterized surfaces. Parameterized surfaces are defined by a mapping from two
space to three space – think of the straight longitude and latitude “lines” on
a flat map being sent to the curved longitude and latitude lines on a sphere.
While parameterized surfaces are a bit awkward at first, they soon allow you
to do all sorts of things, including integrating scalar functions and vector
fields over the surface.

In this section, you will learn:

• How to find the normal vector to an implicitly defined surface

f(x, y, z) = 0.

• How to describe a surface in R3 parametrically by a vector value func-
tion of two variables over some domain D.

• How to convert a surface from an implicit definition to a parametric
definition. [Pick two variables and make them your parameters. Solve
for the rest.]

• How to convert a surface from a parametric definition to an implicit
definition. [Just eliminate the parameters. You will go from three
equations in the five unknowns (u, v, x, y, z) to one equation in three
unknowns (hopefully x, y, and z!)]

• If you hold one of the parameters of a surface constant, you will define
a curve on the surface. If you then take a derivative of the remaining
parameter, you will get a tangent vector to the curve and thus a tangent
vector to the surface. If the surface is ~S(u, v), then we call these two

tangent vectors ∂~S
∂u

and ∂~S
∂v

. [Marsden and Tromba likes to call them ~Su

and ~Sv.]
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• These two vectors have another special property. If we think of a
rectangle in the (u, v)-plane having its lower left hand corner at (u, v)
and side lengths given by du and dv, then when we map it into R3 with
~S, it will become a parallelogram with side vectors ∂~S

∂u
du and ∂~S

∂v
dv.

• We can use this property to get a formula for the area of a surface.
When we do a double integral

∫∫
du dv, we are taking a sum over lots

of little rectangles with infinitesmal side lengths du and dv. If we

integrate
∫∫ ∣∣∣∂~S

∂u
× ∂~S

∂v

∣∣∣ du dv, we sum over the areas (= magnitude of

cross product of the side lengths) of lots of little parallelograms, all of
them tangent to the surface. When they are infinitesmially small, they
do a damn good job of approximating the surface area.

• Similarly, we can define
∫∫
f dS, the surface integral of the function

f(x, y, z) over the surface ~S, by the double integral

∫ ∫
f
(
~S(u, v)

) ∣∣∣∣∣∣∂
~S

∂u
×
∂~S

∂v

∣∣∣∣∣∣ du dv
The surface integral can be used for all of the things double, triple,
and path integrals can be used for: mass, average values, moment of
inertia, center of mass, etc. The surface integral of 1,

∫∫
1 dS, reduces

down to our surface area formula.

• The final type of integral over a surface is the flux integral,
∫∫ ~F · ~dS.

A flux integral measures how much of the vector field goes through the
surface ~S. One formula for the flux integral is

∫ ∫
~F · ~dS =

∫ ∫
~F
(
~S(u, v)

)
·

∂~S
∂u
×
∂~S

∂v

 du dv

Another equivalent formula is
∫∫ ~F · ~dS =

∫∫ ~F ·~ndS, where ~n is a unit
normal to the surface.

2



Suggested Procedure:

1. Read and do some problems from

• Rogers Chapters 23 and 24, or

• Marsden and Tromba sections 7.3, 7.4, 7.5, and 7.6.

2. Take the sample test.

3. Take a unit test.
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