Name_

Date_

Vector Calculus Independent Study

Unit 5 Sample Test

- 1. [25 points] Graph the vector field $\vec{F}(x, y) = (y, x^2)$. Be sure to include multiple points in each quadrant of the graph, and to sketch a few flow lines (assume \vec{F} is a velocity vector field).
- 2. [15 points] Why **isn't** $\vec{F}(x, y, z) = (-y, -x, x)$ a conservative field?
- 3. [20 points] Find a scalar potential for the gradient field $\vec{F}(x, y, z) = (z^3 + 2xy, x^2 + 2xy, 3xz^2)$.
- 4. [20 points] Calculate the divergence and curl of the vector field $\vec{F}(x, y, z) = (4xy, -x^2, 4z)$.
- 5. [20 points] Verify that the path $\vec{\sigma}(t) = (\sin(t), \cos(t), e^t)$ is a flow line of the velocity vector field $\vec{F}(x, y, z) = (y, -x, z)$.