
Chapter 3

Multivariate Probability

3.1 Joint probability mass and density functions

Recall that a basic probability distribution is defined over a random variable, and a random
variable maps from the sample space to the real numbers.What about when you are interested
in the outcome of an event that is not naturally characterizable as a single real-valued number,
such as the two formants of a vowel?

The answer is simple: probability mass and density functions can be generalized over
multiple random variables at once. If all the random variables are discrete, then they are
governed by a joint probability mass function; if all the random variables are con-
tinuous, then they are governed by a joint probability density function. There are
many things we’ll have to say about the joint distribution of collections of random variables
which hold equally whether the random variables are discrete, continuous, or a mix of both.
1 In these cases we will simply use the term “joint density” with the implicit understanding
that in some cases it is a probability mass function.

Notationally, for random variables X1, X2, · · · , XN , the joint density is written as

p(X1 = x1, X2 = x2, · · · , XN = xn) (3.1)

or simply

p(x1, x2, · · · , xn) (3.2)

for short.

1If some of the random variables are discrete and others are continuous, then technically it is a probability
density function rather than a probability mass function that they follow; but whenever one is required to
compute the total probability contained in some part of the range of the joint density, one must sum on the
discrete dimensions and integrate on the continuous dimensions.
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3.1.1 Joint cumulative distribution functions

For a single random variable, the cumulative distribution function is used to indicate the
probability of the outcome falling on a segment of the real number line. For a collection of N
random variables X1, . . . , XN (or density), the analogous notion is the joint cumulative

distribution function, which is defined with respect to regions of N -dimensional space.
The joint cumulative distribution function, which is sometimes notated as F (x1, · · · , xn), is
defined as the probability of the set of random variables all falling at or below the specified
values of Xi:

2

F (x1, · · · , xn)
def
= P (X1 ≤ x1, · · · , XN ≤ xn)

The natural thing to do is to use the joint cpd to describe the probabilities of rectangular
volumes. For example, suppose X is the f1 formant and Y is the f2 formant of a given
utterance of a vowel. The probability that the vowel will lie in the region 480Hz ≤ f1 ≤
530Hz, 940Hz ≤ f2 ≤ 1020Hz is given below:

P (480Hz ≤ f1 ≤ 530Hz, 940Hz ≤ f2 ≤ 1020Hz) =

F (530Hz, 1020Hz)− F (530Hz, 940Hz)− F (480Hz, 1020Hz) + F (480Hz, 940Hz)

and visualized in Figure 3.1 using the code below.

3.2 Marginalization

Often we have direct access to a joint density function but we are more interested in the
probability of an outcome of a subset of the random variables in the joint density. Obtaining
this probability is called marginalization, and it involves taking a weighted sum3 over the
possible outcomes of the random variables that are not of interest. For two variables X, Y :

2Technically, the definition of the multivariate cumulative distribution function is

F (x1, · · · , xn) def
= P (X1 ≤ x1, · · · , XN ≤ xn) =

∑

~x≤〈x1,··· ,xN 〉
p(~x) [Discrete] (3.3)

F (x1, · · · , xn) def
= P (X1 ≤ x1, · · · , XN ≤ xn) =

∫ x1

−∞
· · ·

∫ xN

−∞
p(~x)dxN · · · dx1 [Continuous] (3.4)

3or integral in the continuous case
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Figure 3.1: The probability of the formants of a vowel landing in the grey rectangle can be
calculated using the joint cumulative distribution function.

P (X = x) =
∑

y

P (x, y)

=
∑

y

P (X = x|Y = y)P (y)

In this case P (X) is often called a marginal density and the process of calculating it from
the joint density P (X, Y ) is known as marginalization.

As an example, consider once again the historical English example of Section 2.4. We
can now recognize the table in I as giving the joint density over two binary-valued random
variables: the position of the object with respect to the verb, which we can denote as X,
and the pronominality of the object NP, which we can denote as Y . From the joint density
given in that section we can calculate the marginal density of X:

P (X = x) =

{
0.224 + 0.655 = 0.879 x = Preverbal

0.014 + 0.107 = 0.121 x = Postverbal
(3.5)

Additionally, if you now look at the old English example of Section 2.4.1 and how we
calculated the denominator of Equation 2.7, you will see that it involved marginalization
over the animacy of the object NP. Repeating Bayes’ rule for reference:

P (A|B) =
P (B|A)P (A)

P (B)

It is very common to need to explicitly marginalize over A to obtain the marginal prob-
ability for B in the computation of the denominator of the right-hand side.

Roger Levy – Probabilistic Models in the Study of Language draft, November 6, 2012 39



3.3 Linearity of expectation, covariance, correlation,

and variance f sums of random variables

3.3.1 Linearity of the expectation

Linearity of the expectation is an extremely important property and can expressed in two
parts. First, if you rescale a random variable, its expectation rescales in the exact same way.
Mathematically, if Y = a+ bX, then E(Y ) = a+ bE(X).

Second, the expectation of the sum of random variables is the sum of the expectations.
That is, if Y =

∑
i Xi, then E(Y ) =

∑
i E(Xi). This holds regardless of any conditional

dependencies that hold among the Xi.
We can put together these two pieces to express the expectation of a linear combination

of random variables. If Y = a+
∑

i biXi, then

E(Y ) = a+
∑

i

biE(Xi) (3.6)

This is incredibly convenient. We’ll demonstrate this convenience when we introduc the
binomial distribution in Section 3.4.

3.3.2 Covariance

The covariance between two random variables X and Y is a measure of how tightly the
outcomes of X and Y tend to pattern together. It defined as follows:

Cov(X, Y ) = E[(X − E(X))(Y − E(Y ))]

When the covariance is positive, X tends to be high when Y is high, and vice versa; when
the covariance is negative, X tends to be high when Y is low, and vice versa.

As a simple example of covariance we’ll return once again to the Old English example of
Section 2.4; we repeat the joint density for this example below, with the marginal densities
in the row and column margins:

(1)

Coding for Y
0 1

Coding for X Pronoun Not Pronoun
0 Object Preverbal 0.224 0.655 .879
1 Object Postverbal 0.014 0.107 .121

.238 .762

We can compute the covariance by treating each of X and Y as a Bernoulli random variable,
using arbitrary codings of 1 for Postverbal and Not Pronoun, and 0 for Preverbal and
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Pronoun. As a result, we have E(X) = 0.121, E(Y ) = 0.762. The covariance between the
two can then be computed as follows:

(0− 0.121)× (0− .762)× .224 (for X=0,Y=0)

+(1− 0.121)× (0− .762)× 0.014 (for X=1,Y=0)

+(0− 0.121)× (1− .762)× 0.655 (for X=0,Y=1)

+(1− 0.121)× (1− .762)× 0.107 (for X=1,Y=1)

=0.014798

If X and Y are conditionally independent given our state of knowledge, then Cov(X, Y )
is zero (Exercise 3.2 asks you to prove this).

3.3.3 Covariance and scaling random variables

What happens to Cov(X, Y ) when you scale X? Let Z = a + bX. It turns out that the
covariance with Y increases by b (Exercise 3.4 asks you to prove this):

Cov(Z, Y ) = bCov(X, Y )

As an important consequence of this, rescaling a random variable by Z = a+ bX rescales its
variance by b2: Var(Z) = b2Var(X) (see Exercise 3.3).

3.3.4 Correlation

We just saw that the covariance of word length with frequency was much higher than with
log frequency. However, the covariance cannot be compared directly across different pairs of
random variables, because we also saw that random variables on different scales (e.g., those
with larger versus smaller ranges) have different covariances due to the scale. For this reason,
it is commmon to use the correlation ρ as a standardized form of covariance:

ρXY =
Cov(X, Y )√

V ar(X)V ar(Y )

[1] 0.020653248 -0.018862690 -0.009377172 0.022384614

In the word order & pronominality example above, where we found that the covariance
of verb-object word order and object pronominality was 0.01, we can re-express this rela-
tionship as a correlation. We recall that the variance of a Bernoulli random variable with
success parameter π is π(1−π), so that verb-object word order has variance 0.11 and object
pronominality has variance 0.18. The correlation between the two random variables is thus

0.01√
0.11×0.18

= 0.11.

If X and Y are independent, then their covariance (and hence correlation) is zero.
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3.3.5 Variance of the sum of random variables

It is quite often useful to understand how the variance of a sum of random variables is
dependent on their joint distribution. Let Z = X1 + · · ·+Xn. Then

Var(Z) =
n∑

i=1

Var(Xi) +
∑

i 6=j

Cov(Xi, Xj) (3.7)

Since the covariance between conditionally independent random variables is zero, it follows
that the variance of the sum of pairwise independent random variables is the sum of their
variances.

3.4 The binomial distribution

We’re now in a position to introduce one of the most important probability distributions for
linguistics, the binomial distribution. The binomial distribution family is characterized
by two parameters, n and π, and a binomially distributed random variable Y is defined as
the sum of n identical, independently distributed (i.i.d.) Bernoulli random variables, each
with parameter π.

For example, it is intuitively obvious that the mean of a binomially distributed r.v. Y
with parameters n and π is πn. However, it takes some work to show this explicitly by
summing over the possible outcomes of Y and their probabilities. On the other hand, Y
can be re-expressed as the sum of n Bernoulli random variables Xi. The resulting
probability density function is, for k = 0, 1, . . . , n: 4

P (Y = k) =

(
n

k

)
πk(1− π)n−k (3.8)

We’ll also illustrate the utility of the linearity of expectation by deriving the expectation
of Y . The mean of each Xi is trivially π, so we have:

E(Y ) =
n∑

i

E(Xi) (3.9)

=
n∑

i

π = πn (3.10)

which makes intuitive sense.
Finally, since a binomial random variable is the sum of n mutually independent Bernoulli

random variables and the variance of a Bernoulli random variable is π(1 − π), the variance
of a binomial random variable is nπ(1− π).

4Note that
(
n
k

)
is pronounced “n choose k”, and is defined as n!

k!(n−k)! . In turn, n! is pronounced “n

factorial”, and is defined as n× (n− 1)× · · · × 1 for n = 1, 2, . . . , and as 1 for n = 0.
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3.4.1 The multinomial distribution

The multinomial distribution is the generalization of the binomial distribution to r ≥ 2
possible outcomes. (It can also be seen as the generalization of the distribution over multino-
mial trials introduced in Section 2.5.2 to the case of n ≥ 1 trials.) The r-class multinomial is
a sequence of r random variablesX1, . . . , Xr whose joint distribution is characterized by r pa-
rameters: a size parameter n denoting the number of trials, and r−1 parameters π1, . . . , πr−1,
where πi denotes the probability that the outcome of a single trial will fall into the i-th class.

(The probability that a single trial will fall into the r-th class is πr
def
= 1 − ∑r−1

i=1 πi, but
this is not a real parameter of the family because it’s completely determined by the other
parameters.) The (joint) probability mass function of the multinomial looks like this:

P (X1 = n1, · · · , Xr = nr) =

(
n

n1 · · ·nr

) r∏

i=1

πi (3.11)

where ni is the number of trials that fell into the r-th class, and
(

n
n1···nr

)
= n!

n1!...nr!
.

3.5 Multivariate normal distributions

Finally, we turn to the multivariate normal distribution. Recall that the univari-
ate normal distribution placed a probability density over outcomes of a single continuous
random variable X that was characterized by two parameters—mean µ and variance σ2.
The multivariate normal distribution in N dimensions, in contrast, places a joint probability
density on N real-valued random variables X1, . . . , XN , and is characterized by two sets of
parameters: (1) a mean vector µ of length N , and (2) a symmetric covariance matrix (or
variance-covariance matrix) Σ in which the entry in the i-th row and j-th column expresses
the covariance between Xi and Xj. Since the covariance of a random variable with itself is
its variance, the diagonal entries of Σ are the variances of the individual Xi and must be
non-negative. In this situation we sometimes say that X1, . . . , XN are jointly normally

distributed.
The probability density function for the multivariate normal distribution is most easily ex-

pressed using matrix notation (Section A.9); the symbol x stands for the vector 〈x1, . . . , xn〉:

p(x) =
1√

(2π)N |Σ|
exp

[
−(x− µ)TΣ−1(x− µ)

2

]
(3.12)

For example, a bivariate normal distribution (N = 2) over random variables X1 and
X2 has two means µ1, µ2, and the covariance matrix contains two variance terms (one for
X1 and one for X2), and one covariance term showing the correlation between X1 and Y2.

The covariance matrix would look like

(
σ2
11 σ2

12

σ2
12 σ2

22

)
. Once again, the terms σ2

11 and σ2
22 are
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Figure 3.2: Visualizing the multivariate normal distribution

simply the variances of X1 and X2 respectively (the subscripts appear doubled for notational
consistency). The term σ2

12 is the covariance between the two axes. 5 Figure 3.2 visualizes a

bivariate normal distribution with µ = (0, 0) and Σ =

(
1 1.5
1.5 4

)
. Because the variance is

larger in the X2 axis, probability density falls off more rapidly along the X1 axis. Also note
that the major axis of the ellipses of constant probability in Figure 3.2b does not lie right
on the X2 axis, but rather is at an angle reflecting the positive covariance.

The multivariate normal distribution is very useful in modeling multivariate data such
as the distribution of multiple formant frequencies in vowel production. As an example,
Figure 3.3 shows how a large number of raw recordings of five vowels in American English
can be summarized by five “characteristic ellipses”, one for each vowel. The center of each
ellipse is placed at the empirical mean for the vowel, and the shape of the ellipse reflects the
empirical covariance matrix for that vowel.

In addition, multivariate normal distributions plays an important role in almost all hier-
archical models, covered starting in Chapter 8.

5The probability density function works out to be

p(x1, x2) =
1

2π
√
σ2
11σ

2
22 − σ4

12

exp

[
(x1 − µ1)

2σ2
22 − 2(x1 − µ1)(x2 − µ2)σ

2
12 + (x2 − µ2)

2σ2
11

σ2
11σ

2
22 − σ4

12

]

Note that if σ11 is much larger than σ22, then x2−µ2 will be more important than x1−µ1 in the exponential.
This reflects the fact that if the variance is much larger on the X1 axis than on the X2 axis, a fixed amount
of deviation from the mean is much less probable along the x2 axis.
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(b) Representation as multivariate normal
distributions. The character is placed at
the empirical mean for each vowel, and
the covariance structure of each vowel is
represented by an equiprobability ellipse

Figure 3.3: F1 and F2 formant frequency representations using multivariate normal distri-
butions, based on the data of Peterson and Barney (1952)

3.5.1 The sum of jointly normal random variables

Yet another attractive property of the multivariate normal distribution is that the sum of
a set of jointly normal random variables is itself a normal random variable. The mean and
variance of the sum can be computed based on the formulae given in Sections 3.3.1 and 3.3.5.
So if 〈X1, . . . , Xn〉 are jointly normal with mean 〈µ1, . . . , µn〉 and covariance matrix Σ, then
Z = X1+· · ·+Xn is normally distributed with mean

∑n
i=1 µi and variance

∑n
i=1 σ

2
i +

∑
i 6=j σij .

3.6 The central limit theorem

The central limit theorem is a powerful result from probability theory that states that
the sum of a large quantity of i.i.d. random variables will have an approximately normal
distribution, regardless of the distribution of the individual random variables. More formally,
suppose that we have n i.i.d. random variables Xi, with Y = X1 + · · ·+Xn. From linearity
of the variance, we know that Y ’s mean is µY = nE[Xi], and its variance is σ2

Y = nσ2
Xi
. The

central limit theorem states that as the number n of random variables grows, the distribution
of the random variable Z = Y−µY

σY
approaches that of a standard normal random variable.

The central limit theorem traditionally serves as the basis for using the normal distribu-
tion to model the outcome of a complex process with many underlying contributing factors.
Exercise 3.12 explores a simple example illustrating the truth of the theorem, showing how
a binomial distribution with large n can be approximated by the normal distribution.
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3.7 Joint entropy, conditional entropy, and mutual in-

formation

In Section 2.12 we introduced the basic information-theoretic ideas of surprisal and entropy.
With multivariate probability, there is not much more to say about surprisal: all there is to
say is that the surprisal of the joint outcome of multiple random variables is the log of the
inverse of the joint probability of outcomes:

log
1

P (x1, x2, . . . , xn)
or − logP (x1, x2, . . . , xn). (3.13)

However, there is much more to say about entropies. In the rest of this section we will
limit the discussion to cases where there are two random variables X and Y , but most of
what is discussed can be generated to collections of arbitrary quantities of random variables.

We begin by defining the joint entropy of X and Y analogously from the surprisal of
a joint outcome:

H(X, Y ) =
∑

x,y

P (x, y) log
1

P (x, y)
(3.14)

What gets really interesting is when we break down the joint entropy into its constituent
parts. We start by imagining situations in which we obtain knowledge of X while remaining
ignorant of Y . The average entropy that Y will have after we learn about X is called the
conditional entropy of Y given X and is notated as follows:

H(Y |X) =
∑

x

P (x)
∑

y

P (y|x) log2
1

P (y|x) (3.15)

where P (x) is the marginal probability of x. Note that this equation follows simply from
the definition of expectation. Recall that in Section 2.12 we showed the distributions and
entropies of non-punctuation words and their corresponding parts of speech. Returning to
this example and slightly modifying the dataset (now excluding all sentences in which either
the first or the second word was a punctuation term, a more stringent criterion), we find
that the entropy of the part of speech for the second word is 3.66 and that its conditional
entropy given the first word’s part of speech is 2.43. That is, the first word removes about
a third of the entropy of the second word!

Next, we can ask how much information we would lose regarding the joint distribution
of X and Y if we were to treat the two variables as independent. Recall once again from
Section 2.12 that the KL divergence from Q to P measures the penalty incurred by using
Q to approximate P . Here, let us define Q(x, y) = PX(x)PY (y) where PX and PY are the
marginal probabilities for X and Y respectively. The KL divergence from Q to P is known
as the mutual information between X and Y and is defined as

I(X;Y ) =
∑

x,y

P (x, y) log
P (x, y)

PX(x)PY (y)
(3.16)
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H(X|Y ) H(Y |X)I(X;Y )

H(X, Y )

Figure 3.4: Entropy and mutual information for two random variables as a Venn diagram.
Circle sizes and positions reflect the entropies of our example, where X is the first-word part
of speech and Y is the second-word part of speech.

In our example, the mutual information between the parts of speech for the first and
second words comes out to 1.23. You may notice that the three numbers we have just seen
stand in a very simple relationship: 3.66 = 2.43 + 1.23. This is no coincidence! In general,
given any two random variables X and Y , the entropy of Y can always be decomposed as
precisely the sum of the mutual information—which measures how much X tells you about
Y—and the conditional entropy—which measures how much X doesn’t tell you about Y :

H(Y ) = I(X;Y ) +H(Y |X) and likewise H(X) = I(X;Y ) +H(X|Y ). (3.17)

There is one more remarkable decomposition to be had. In our example, the entropy
of the first-word part of speech is 3.38, and the joint entropy for the two words is 5.81. In
general, the joint entropy of X and Y is the sum of the individual variables’ entropies minus
the mutual information—which measures the redundancy between X and Y :

H(X, Y ) = H(X) +H(Y )− I(X;Y ) (3.18)

In our case, 3.38 + 3.66 - 1.23 = 5.81. This decomposition arises from the original definition
of mutual information as the coding penalty incurred for assuming independence between
two variables.

In closing this section, let us notice that mutual information comes up in both an asym-
metric decomposition—in the decomposition of H(Y ) as how much information X gives
about Y—and in a symmetric decomposition—in the relationship between a joint entropy
and the marginal entropies. For two random variables, the complete set of relations among
the joint entropies, individual-variable entropies, conditional entropies, and mutual informa-
tion can be depicted in a Venn diagram, as in Figure 3.4. The relations described in this
section are well worth reviewing repeatedly, until they become second nature.
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3.8 Exercises

Exercise 3.1: Simpler formula for variance.
Show from the definition of the variance as Var(X) ≡ E[(X − E(X))2] that it can

equivalently be written as Var(X) = E[X2] − E[X]2, which we stated without proof in
Section 2.9.2. [Section 3.3.1]

Exercise 3.2: Covariance of conditionally independent random variables.
Use linearity of the expectation to prove that if two random variables X and Y are

conditionally independent given your state of knowledge, then Cov(X, Y ) = 0 under this
state of knowledge. (Hint: you can rewrite

∑
x,y Xp(X = x)Y p(Y = y) as

∑
xXp(X =

x)
∑

y Y p(Y = y), since X and p(X = x) are constant with respect to y.)

Exercise 3.3: ♣

• What is the covariance of a random variable X with itself?

• Now show that if you rescale a random variable X by defining Z = a + bX, then
Var(Z) = b2Var(X).

Exercise 3.4
Show that if you rescale X as Z = a+ bX, then Cov(Z, Y ) = bCov(X, Y ).

Exercise 3.5
Prove Equation 3.7—that is, that Var(X1+· · ·+Xn) =

∑n
i=1 Var(Xi)+

∑
i 6=j Cov(Xi, Xj).

Exercise 3.6
Let’s return to coin flipping, but use a different process to generate a sequence of coin flips.

Suppose I start flipping a coin with success parameter π, and every time it comes up tails I
keep on flipping, but the first time it comes up heads I stop. The random variable of interest
is the length of the sequence of coin flips. The geometric distribution characterizes the
probability density on this random variable. The probability mass function of the geometric
distribution has the form

P (X = k) = (1− π)aπb, k ∈ {1, 2, · · · }

for some choice of a and b. Complete the specification of the distribution (i.e., say what
a and b are are) and justify it.

Exercise 3.7
The file brown-counts-lengths-nsyll contains the following properties for each word

type found in the parsed Brown corpus:

• The token frequency of the word;
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• The length of the word in letters;

• The number of syllables in the word, as determined by the CMU Pronouncing dictio-
nary (http://www.speech.cs.cmu.edu/cgi-bin/cmudict).

Plot histograms of the number of syllables for word, over (a) word types and (b) word
tokens. Which of the histograms looks more binomially-distributed? Which looks more
geometrically-distributed? Try to find a good fit (by eyeball assessment) to each of the
histograms by choosing binomial or geometric parameters that match the data as well as you
can.

Exercise 3.8
The negative binomial distribution is a generalization of the geometric distribution in

which you are interested in how many coin flips you can make before you achieve a total of r
successes (where the successes are included in the total number of flips). The distribution is
characterized by two parameters: the required number of successes r, and the probability p of
success on any given coin flip. (The geometric distribution is a negative binomial distribution
for which r = 1.) If the total number of coin flips obtained in a given trial is k, then the
probability mass function for a negative binomial distribution with parameters p, r has the
form

P (X = k; r, p) =

(
a

b

)
(1− p)cpd, k ∈ {r, r + 1, · · · }

for some choice of a, b, c, d. Complete the specification of the distribution (i.e., say what
a, b, c, d are) and justify it.

Exercise 3.9: Linearity of expectation
You put two coins in a pouch; one coin is weighted such that it lands heads 5

6
of the time

when it’s flipped, and the other coin is weighted such that it lands heads 1
3
of the time when

it’s flipped. You shake the pouch, choose one of the coins from it at random and flip it twice.
Write out both the marginal density for the outcome of the first flip and the joint density
for the outcome of the two coin flips. Define the random variable X as the number of heads
resulting from the two coin flips. Use linearity of the expectation to compute E(X). Then
compute E(X) directly from the joint density to confirm that linearity of the expectation
holds.

Exercise 3.10
Explain why rescaling a random variable by Z = a+ bX changes the variance by a factor

of b2, so that Var(Z) = b2 Var(X). (See Section 3.3.3.)

Exercise 3.11
You are planning on conducting a word recognition study using the lexical-decision

paradigm, in which a participant is presented a letter sequence on a computer screen and
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then presses a key on the keyboard as soon as she recognizes it as either a word (the key
F) or a non-word (the key J). The distribution of measured response times for non-words in
this study is the sum of two independent random variables: X, the elapsed time from the
appearance of the letter string on the screen to the participant’s successful pressing of a key;
and Y , the time elapsed between the pressing of the key and the successful recording of the
key press by the computer (this distribution is governed by the polling rate and reliability of
the keyboard). Suppose that X has mean 600 and standard deviation 80, and Y has mean 15
and standard deviation 9 (all measured in milliseconds). What are the mean and standard
deviation of recorded reaction times (X + Y )? [Section 3.3.5]

Exercise 3.12
Test the validity of the central limit theorem. Choose your own probability distribution,

generate n i.i.d. random variables, add them together repeatedly, and standardize them
(subtract out the mean and divide by the standard deviation). Use these multiple trials to
generate estimated probability density and cumulative distribution functions. Compare these
to the density and cumulative distribution function of the standard normal distribution. Do
this for at least (a) the uniform and (b) the Bernoulli distribution. You’re also welcome to
use other distributions or invent your own.

1
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