
Fixation durations in first-pass reading reflect uncertainty about word identity
Nathaniel J. Smith

njsmith@cogsci.ucsd.edu
UC San Diego Department of Cognitive Science

9500 Gilman Drive #515, La Jolla, CA 92093-0515 USA

Roger Levy
rlevy@ling.ucsd.edu

UC San Diego Department of Linguistics
9500 Gilman Drive #108, La Jolla, CA 92093-0108 USA

Abstract

In reading, it is often assumed that words are recognized suf-
ficiently quickly, accurately, and unambiguously that down-
stream processes may proceed with perfect information about
word identity. For example, word predictability is believed to
affect early reading time measures, yet a word’s predictability
cannot be calculated without knowledge of the word’s identity.
We argue that such information is not, in general, available
to the language processing system, and that it proceeds with
only probabilistic information about word identity. We pre-
dict therefore that what have been analyzed previously as pre-
dictability effects must instead be based on noisy estimates of
word predictability that are influenced by the predictability of
visually similar words (neighbors). We test this prediction by
building a Bayesian model of visual word recognition, using it
to compute the ‘average neighborhood surprisal’ of words in a
corpus, and testing the ability of this novel measure to explain
human reading time data.
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Performance in isolated word recognition tasks is often af-
fected by the existence or properties of words that are not
presented, but that are visually similar to the words which
are presented. For instance, a word with many neighbors
— especially high frequency neighbors — tends to produce
a faster response in the lexical decision task, and a slower
response in naming or reading tasks (Perea & Rosa, 2000).
Norris (2006) has argued that these divergent results can be
best explained by uncertainty in the processing system. That
is, noise is an inevitable component of all biological compu-
tation, and if the processor receives only noisy information
about a word’s shape, then it must consider all similar look-
ing words as candidates for identification. When there are
many such candidates, identifying the single correct candi-
date (as in the naming task) becomes more difficult, because
there are many incorrect distractors and only one correct tar-
get; resolving this difficulty requires the acquisition of more
sensory information, which requires more time. In the lexical
decision task, however, it is not necessary to determine which
word is seen, only whether a word is seen, and therefore in-
creasing the number of candidates only makes it easier to give
a correct response (even if for the ‘wrong’ reason).

However, in reading — that is, processing connected lan-
guage, rather than isolated words — another consideration
arises. In a naming task, no response can be given until the

word is identified, but when reading, the ultimate outcome is
not the name of a single word, but an understanding of the
text as a whole. Here, we ask: can the linguistic processing
associated with a word proceed before that word is uniquely
identified? And if so, what are the consequences for pro-
cessing? It’s possible that neighborhood effects are limited
to some early, serial, word identification process, in which
any uncertainty is resolved before higher-level linguistic pro-
cesses begin. Alternatively, this uncertainty may be propa-
gated through the linguistic processing system itself.

Most current models of high-level language processing fall
into the former category; for instance, they take as input
words, rather than probability distributions over words. How-
ever, there is some reason to suspect that the latter possibility
is more plausible. Spoken language, in particular, is a very
noisy signal, in which word identification is generally im-
possible without reference to high-level linguistic constraints.
Furthermore, listeners are willing to revise their identifica-
tion of perceptually ambiguous phonetic material in light of
disambiguating material that follows within a short period
(Connine, Blasko, & Hall, 1991). In reading, the availabil-
ity of a stable visual record makes it possible in principle to
acquire substantially more detailed perceptual information —
but in practice the average fixation length in reading is 200
ms, comparable to the time required to plan a motor saccade.
This suggests that the next saccade must be initiated almost
as soon as the fixation begins, and that decisions about its
timing — and thus the fixation time for the current word —
must be made before the current word is fully processed. In
addition, Levy, Bicknell, Slattery, and Rayner (2009) have
recently used evidence from a reading task to argue that cer-
tain syntactic constructions associated with garden-path-like
processing difficulty may arise from uncertainty about the
identity of critical words earlier in the sentence. Therefore
it seems plausible that the language processing system not
only has the capacity to handle uncertain input, but that this
ability is used in natural reading.

Here, we examine this question via the well-known effect
of word predictability on reading time (predictable words are
read more quickly, Ehrlich & Rayner, 1981). This is a useful
tool, because (i) the effect is very early; it affects the duration
of initial fixations on a word, in the 200–300 ms range, when
we would most expect some uncertainty to remain, and (ii)
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as word predictability depends on the fit between the present
word and its context, it implicates higher-level linguistic pro-
cessing in a way that word frequency, for instance, might not,
and yet (iii) it cannot affect processing until the word is fully
identified, because different words are differently predictable.
All theories which invoke word predictability to explain early
reading time measures therefore implicitly assume that word
identification occurs early and fully.

We hypothesize that this effect does not arise from pre-
dictability per se, but from the processing system’s ‘best
guess’ at the word’s predictability, given the uncertain in-
formation available to it. To test this hypothesis, we build
a simple Bayesian model of visual word recognition, use it
to estimate ‘best guess’ predictabilities on a corpus, and test
whether this improves our ability to predict human reading-
time measures.

Word recognition model
We begin with a standard Bayesian model of word recog-
nition in sentence context, in which beliefs about the iden-
tity of the word on which the eyes are currently fixated are
formed by integrating top-down prior expectations from lan-
guage knowledge and context with bottom-up perceptual in-
put:

P(word|context, input)

=
P(word|context)P(input|word, context)

P(input)
(1)

The first term in the numerator, P(word|context), corresponds
to top-down prior expectations and can be estimated from
any of a variety of language-modeling techniques standard in
computational linguistics (Manning & Schütze, 1999). The
second term in the numerator, P(input|word, context), corre-
sponds to bottom-up perceptual evidence and is the present
focus: we are investigating the possibility that this evidence
is imperfect and that this imperfection may be reflected in
rapid eye-movement decisions in reading.

We introduce three simplifying assumptions to make our
model of perceptual evidence more tractable. First, we as-
sume conditional independence between input and context
given word identity, which is natural since it is the word be-
ing identified rather than the preceding context that gener-
ates the relevant perceptual input. Second, we assume that
readers are aware of how many letters exist in the word that
they are looking at, and only their identity is in doubt. (A
more detailed model would certainly relax this assumption,
but we believe that the high visual salience of inter-word
spaces makes it a reasonable initial approximation.) Third,
we assume that the subjective evidence for a given letter de-
pends only on the noisy input we receive describing that letter
(and this noisy input, of course, depends in turn on the letter
that is actually present in the world). In particular, we as-
sume that our bottom-up perceptual evidence for each letter
in a word is probabilistically independent of that for the other
letters. Therefore, we can write the perceptual evidence for

a word as simply the product of the evidence for each of the
n letters which comprise it. If E is the complete perceptual
input derived from a word and Ei is the component of that
perceptual input arising from the i-th letter, then normative
Bayesian inference for the word’s identity looks as follows:

P(letters|input) =
P(E|letters)P(letters)

P(E)
∝ P(E1, . . . ,En|letters)P(letters)

= P(letters)
n

∏
i=1

P(Ei|letteri)

The term P(letters) is simply the prior probability of the word
in question; the perceptual evidence for the word is repre-
sented by the term ∏

n
i=1 P(Ei|letteri).

To estimate the perceptual evidence P(Ei|letteri) ob-
tained from each position in the word, we made use of
letter-confusion matrices derived from previous norming
experiments with the lowercase English alphabet (Engel,
Dougherty, & Jones, 1973; Geyer, 1977). In each of these
experiments, participants were presented with isolated letters
for durations brief enough to induce considerable identifica-
tion error, and the frequency with some presented letter α was
identified as some letter β was tabulated as fαβ. Here α = β

implies correct identification and α 6= β implies misidentifica-
tion. Finally we used these frequency tables to obtain a matrix
M, in which each entry Mαβ denotes the estimated probabil-
ity of identifying letter α as β. For example, Mti is relatively
high, presumably reflecting the visual similarity of the letters
t and i, whereas Mtn is relatively low.

Since these norming studies used viewing conditions rather
unlike those that occur in natural reading, we assume that the
matrix entries Mαβ specify only the relative perceptual ev-
idence provided by each letter of the word, rather than the
absolute evidence. We therefore introduce a single free pa-
rameter q which scales the matrix as a whole, so that for the
i-th letter of a word in a sentence,

P(Ei = α|letteri = β) ∝ (Mαβ)
q. (2)

This allows us to estimate the overall level of noise in the
model when analyzing human reading-time data.1 The pa-
rameter q can be interpreted as the overall quantity of in-
formation acquired by the reader and used to inform down-
stream decisions; each entry in the confusability matrix is
raised to the power q, and then rows are renormalized. Thus,
q = 0 creates a uniform posterior distribution over letters,
or perfect ignorance, while in the limit as q goes to infin-
ity, the matrix becomes diagonal — representing perfect in-

1Note that we are making a simplifying assumption by equating
the perceptual evidence from the i-th letter with the letter actually
in the word, rather than with noisy perceptual input generated from
the actual letter, as is done in models such as (Norris, 2006). This
simplifying assumption can be interpreted roughly as marginalizing
over the perceptual input itself; see (Smith, Chan, & Levy, 2010) for
discussion of the justification for and implications of this simplifying
assumption.
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formation about letter identity. Varying q between these ex-
tremes smoothly varies the overall accuracy of letter informa-
tion available, while preserving relative differences in letter
similarity and recognizability. Figure 1 depicts the resulting
letter-confusion matrices for q = 1 and q = 2.

This idea of rescaling was also used in producing our per-
ceptual confusion matrix M from the raw norming data. We
assumed that the two experiments had different overall levels
of perceptual noise, and we used maximum likelihood to find
the single matrix M that — when rescaled for each experi-
ment — best explained the data from both. However, simply
averaging the two norming matrices would produce similar
results.

In aggregate, these assumptions give us the following final
estimate of the subjective probability that we are observing a
particular word given both context and visual input:

P(word|context, visual input)

∝ P(word|context)∏
i

P(letteri|visual input). (3)

Average neighborhood surprisal
Now that we have a model of the uncertainty affecting the
language processing system, we can model its consequences
for the predictability effect. Word predictability itself is well-
described computationally by surprisal — the negative log-
probability of a word in context (Hale, 2001; Levy, 2008).
For clarity, in this paper we will refer to this as the raw sur-
prisal (RS). We now define the average neighborhood sur-
prisal (ANS) of a word in some context to be the average
of the surprisal of every word that might occur in that con-
text, weighted by that word’s similarity to the visible word,
P(word|context,visual input). More formally,

ANS(wordk|context) =

∑
i

P(wordi|context, wordk)RS(wordi|context). (4)

Our fundamental prediction is that ANS will better predict
reading times than RS.

The intuition here is that the processing system would pre-
fer to spend an amount of time on a word proportional to
its RS, but since visual noise makes the RS unavailable, the
ANS is the best available approximation. The visual system is
accurate enough that in most cases P(wordk|context, wordk),
the subjective probability that one is looking at word k given
that one is, in fact, looking at word k, will be close to one;
therefore ANS will generally be close to the RS for any given
word. However, if a word has visually similar neighbors with
higher surprisals, then this will pull up the ANS, and the
reader will spend more time on that word ‘just in case’ it turns
out to be one of those high-surprisal neighbors that require
more time to process. Contrariwise, if a word has visually
similar neighbors with lower surprisals, then this will pull
down the average, and our reader will hurry onward faster
than they otherwise might. Note especially that in this model,

a word with a dense neighborhood may be read either faster
or slower than a word with a sparse neighborhood. It’s not the
size of your neighborhood that matters, it’s who your neigh-
bors are.

It should also be noted that other models of neighborhood
effects generally predict that the presence of higher-frequency
neighbors will produce an inhibitory effect on word identi-
fication, as these neighbors interfere with recognition of the
true word (e.g., Perea & Rosa, 2000). Our prediction is nearly
the opposite — that in reading, the presence of high probabil-
ity neighbors should lead to shorter initial fixations (though
it is possible that later, as more information about the word’s
true identity becomes available, the eyes may slow or regress
in compensation).

Methods
We compared average neighborhood surprisal to raw sur-
prisal as predictors of human reading times in the Dundee
eye-movement corpus (Kennedy, Hill, & Pynte, 2003), which
consists of all eye-movements made by 10 subjects while
reading a collection of newspaper articles totaling approxi-
mately 50,000 words. Several previous studies have already
demonstrated surprisal effects on reading times in the Dundee
corpus (Demberg & Keller, 2008; Frank, 2009; Smith &
Levy, 2008). We analyzed both first fixation times — defined
as the duration of the first fixation to land on each fixated
word in a text — and second fixation times, defined as the
duration of the second fixation to land on each word that was
fixated a second time. We eliminated all fixations on words
that occurred at the beginning or end of a line, which pre-
ceded or followed punctuation, that did not occur in the BNC
(i.e., unknown words), or that occurred in the BNC but in
segmented form (e.g., the BNC codes don’t as two words, do
followed by n’t). Finally, we eliminated any remaining words
containing uppercase letters, since our confusion norms only
cover the lowercase alphabet. This left 182,169 first fixations
and 42,024 second fixations for further analysis.

To obtain conditional word probabilities for both raw sur-
prisal estimates and noisy conditional word-probability esti-
mates (Equation 3) we used a trigram language model trained
on the 100 million word British National Corpus (BNC),
using the SRI Language Modeling Toolkit (Stolcke, 2002);
the trigram model was smoothed using modified Kneser-
Ney (Kneser & Ney, 1995), a standard technique for broad-
coverage language modeling. Average neighborhood sur-
prisal was estimated for each fixated word by plugging in raw
surprisal estimates to Equation (4), and repeating this process
at each value of q required by the fitting process.

As Smith and Levy (2008) have previously demonstrated
that the relationship between surprisal and first fixation times
in this corpus is linear, we simply regressed fixation time on
RS and ANS simultaneously, with frequency (estimated from
the BNC) and word length as controls. The noise parameter
q was fit simultaneously with the regression coefficients by
maximum likelihood. Gamma distributed error was assumed,
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Figure 1: The letter confusability matrix, for different values of the scaling parameter q. For instance, presentation of the letter
a to the noisy input system eventually gives rise to a particular posterior distribution over letters that is represented by the
top row in each matrix. The diagonal represents the probability of veridical perception; we can see that the letter d is the least
confusable in the lowercase English alphabet. As q increases (right), more information becomes available, causing the posterior
distribution to cluster around the diagonal.

in order to properly account for the long right-ward tail in
fixation durations.

Results
First fixations
The best fitting model had a moderate level of noise (q =
1.306), corresponding to a mean naming accuracy for individ-
ual letters of 66%. While this may seem low, most words con-
tain enough letters that, combined with the constraint of lin-
guistic context, this allows for substantial information about
word identity. As a result, ANS and RS are highly correlated
(R2 = 0.96) — suggesting that while the models differ greatly
in terms of the cognitive processes they postulate, they may
be difficult to disentangle experimentally.

Even so, our data set turned out to be large enough for the
regression model to give an unambiguous result: ANS bet-
ter predicts human behavior than RS. That is, ANS is highly
significant after controlling for RS (t(182155) = 4.164, p�
0.001), while RS has no significant effect after controlling for
ANS (t(182155) = 0.489,n.s.). This result also remains after
controlling for neighborhood size (N).

Second fixations
The same analysis on second fixations produces analogous
results; ANS is highly significant (t(42010) = 4.209, p �
0.001), while RS is marginally significant in the wrong direc-
tion (t(42010) = −1.847, p = 0.06). More interesting, how-

ever, is examination of the q value; we predicted that a second
fixation would provide more visual information about word
identity, and thus result in a higher q. In fact, for second fix-
ations, we found q = 2.939, suggesting that by the end of the
second fixation, the eye movement control system has access
to somewhat more than twice the information it has at the end
of the first fixation.

Frequency prior

Equation (4) suggests that to compute the estimated, aver-
age neighborhood surprisal, the processing system must be
able to, in some sense, compute the probability of all possi-
ble words in the current context, and sum over all of them,
in time to affect the first fixation. This is a strong claim,
and so to test it we calculated a simplified version of ANS
in which we modified Equation 3 to replace the context-
sensitive prior over words, P(word|context), with a sim-
ple, context-insensitive word frequency prior, P(word). This
modified ANS was then added to our regression as an addi-
tional control. Our original context-sensitive ANS remained
highly significant (t(182154) = 4.413, p� 0.001), suggest-
ing that in the neighborhood effects we describe, the defini-
tion of ‘neighborhood’ is indeed sensitive to linguistic con-
text.
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Other determiners of reading time
While in this preliminary work we have focused on surprisal
as a model reading time predictor, the essential argument ap-
plies to any word property which is believed to affect read-
ing time, and one could define average neighborhood X for
any interesting property X that was believed to affect reading
time (or language processing behavior more generally). Gen-
erally, we would predict that to the extent the brain processes
sensitive to property X must work from noisy representations
of linguistic input, average neighborhood X would also be a
better predictor of human behavior than X alone.

We have begun to examine this more general prediction,
and in the process discovered a mystery. Using the above
model to define average neighborhood word frequency, we
find our regression against reading times gives just as unam-
biguous results as for surprisal — but the other way. That is,
raw frequency is significant, and average neighborhood fre-
quency is not. This suggests that whatever process produces
word frequency effects in reading times appears to have exact
information about the frequency (and therefore identity) of
the word being processed, while the process which produces
predictability effects has only noisy and imperfect informa-
tion. Furthermore, this is true even on first fixations, so it
cannot be a simple matter of the frequency effect arising later
in the processing stream, when more information is available.
(Evidence for frequency as a later effect than predictability
would also, it seems safe to say, surprise most experts in the
field.)

Discussion
Our fundamental prediction — that early predictability ef-
fects in reading are modulated by the predictability of visually
similar (but unseen) words — was confirmed. Furthermore,
the reduction of this effect on second fixations gives insight
into the time course for resolution of uncertainty about word
identity, and the failure of the word frequency prior to ade-
quately explain the data argues for the ability of high-level
linguistic constraint to quickly and robustly modulate the res-
olution of visual uncertainty. All our results — with the
possible exception of the mysterious frequency non-effect —
are compatible with a model of reading in which uncertainty
about the input is propagated forward into the linguistic pro-
cessing system itself.

Going forward, a major question is whether the noise we
observe is truly visual noise, or whether it has another source.
After all, biological computation necessarily involves noise
and uncertainty at every level. When reading, for example,
visual information must be gathered at the retina, transmit-
ted and analyzed by the visual system, and converted to some
higher level representation of word identity; then, this rep-
resentation must be maintained in memory for semantic pro-
cessing and integration. None of these processes can be per-
fectly veridical or reliable; all must introduce some amount
of noise and uncertainty. Here, we built a specifically visual
noise model, relying on a visual confusability matrix and a

letter-based word representation, but presumably all models
of word similarity/confusability are similar to the first order,
and we did not compare against any other noise model; there-
fore, while our results suggest that average neighborhood sur-
prisal drives reading time, it may be premature to conclude
that the visual system is the source of uncertainty being aver-
aged over.

In future work, we hope to make a sharper test of this
part of the model in two ways. First, we can fit a differ-
ent noise parameter q for letters at different degrees of ec-
centricity from visual fixation; if this reproduces the classic
curve of acuity falling off with increasing eccentricity, then
that would be stronger evidence that our noise arises from vi-
sual processing limitations. Second, looking the other direc-
tion, we plan to build a simple phonological/auditory noise
model, and use it to estimate ANS for written words. If this
model outperforms the visual noise model, then that would
be strong evidence that the noise is in fact noise in some post-
recoding internal representation. Finding auditory noise in
a visual paradigm would be quite curious, but there is some
precedent; for instance, it has been argued that the true de-
terminer of neighborhood size for purposes of word naming
effects is the number of words which are simultaneous visual
and phonological neighbors (Adelman & Brown, 2007).

Finally, we hope that further investigation may shed light
on the lack of a neighborhood effect on word frequency. One
possibility is that further study of the noise, as described
above, will provide a clue — perhaps visual information is
highly accurate, the frequency effect is a relatively early and
low-level effect acting on this low-level, accurate visual rep-
resentation, and the predictability-sensitive process is work-
ing with a later representation more subject to internal noise.
However, this remains mere speculation, and we welcome
any suggestions on this matter. In another way, though, this
dissociation of frequency and predictability is quite exciting,
as it suggests a possible avenue for understanding the rela-
tionship between these highly similar linguistic properties.
(Indeed, as they are inherently confounded in any study us-
ing isolated words stripped of context, and quite difficult to
accurately measure and deconfound in more naturalistic stim-
uli, it has long been unclear whether they represented distinct
effects at all.) This is, to our knowledge, the first study to
find qualitatively different effects of each, and we hold high
hopes that our current confusion may lead to a deeper future
understanding.
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