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Abstract

Humor plays an essential role in human interactions. Precisely what makes something funny,

however, remains elusive. While research on natural language understanding has made significant

advancements in recent years, there has been little direct integration of humor research with com-

putational models of language understanding. In this paper, we propose two information-theoretic

measures—ambiguity and distinctiveness—derived from a simple model of sentence processing.

We test these measures on a set of puns and regular sentences and show that they correlate signif-

icantly with human judgments of funniness. Moreover, within a set of puns, the distinctiveness

measure distinguishes exceptionally funny puns from mediocre ones. Our work is the first, to our

knowledge, to integrate a computational model of general language understanding and humor the-

ory to quantitatively predict humor at a fine-grained level. We present it as an example of a

framework for applying models of language processing to understand higher level linguistic and

cognitive phenomena.
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1. Introduction

Love may make the world go round, but humor is the glue that keeps it together. Our

everyday experiences serve as evidence that humor plays a critical role in human interac-

tions and composes a significant part of our linguistic, cognitive, and social lives. Previ-
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ous research has shown that humor is ubiquitous across cultures (Kruger, 1996; Martin,

2010), increases interpersonal attraction (Lundy, Tan, & Cunningham, 1998), helps

resolve intergroup conflicts (Smith, Harrington, & Neck, 2000), and improves psychologi-

cal well-being (Martin, Kuiper, Olinger, & Dance, 1993). However, little is known about

the cognitive basis of such a pervasive and enjoyable experience. By providing a formal

model of linguistic humor, we aim to solve part of the mystery of what makes us laugh.

Theories of humor have existed since the time of Plato and Aristotle (see Attardo,

1994, for review). A leading theory in modern research posits that incongruity, loosely

characterized as the presence of multiple incompatible meanings in the same input, may

be critical for humor (Forabosco, 1992; Hurley, Dennett, & Adams, 2011; Koestler,

1964; Martin, 2010; McGhee, 1979; Vaid & Ramachandran, 2001; Veale, 2004).

However, despite relative consensus on the importance of incongruity, definitions of

incongruity vary across informal analyses of jokes. As Ritchie (2009) wrote, “There is

still not a rigorously precise definition that would allow an experimenter to objectively

determine whether or not incongruity was present in a given situation or stimulus”

(p. 331). This lack of precision makes it difficult to empirically test the role of incongruity

in humor or extend these ideas to a concrete computational understanding. On the other

hand, most work on computational humor focuses either on joke-specific templates and

schemata (Binsted, 1996; Taylor & Mazlack, 2004) or surface features and properties of

individual words (Kiddon & Brun, 2011; Mihalcea & Strapparava, 2006; Reyes, Rosso &

Buscaldi, 2012). One exception is Mihalcea, Strapparava, and Pulman (2010), which used

features inspired by incongruity theory to detect humorous punch lines; however, the incon-

gruity features proposed did not significantly outperform a random baseline, leading the

authors to conclude that joke-specific features may be preferable. While these dominant

approaches in computational humor are able to identify humorous stimuli within certain

constraints, they fall short of testing a more general cognitive theory of humor.

In this work, we suggest that true measures of incongruity in linguistic humor may

require a model that infers meaning from words in a principled manner. We build upon

theories of humor and language processing to formally measure the multiplicity of mean-

ing in puns—sentences “in which two different sets of ideas are expressed, and we are

confronted with only one series of words,” as described by philosopher Henri Bergson

(Bergson, 1914). Puns provide an ideal test bed for our purposes because they are simple,

humorous sentences with multiple meanings. Here we focus on phonetic puns, defined as

puns containing words that sound identical or similar to other words in English.1 The

following is an example:

(1) “The magician got so mad he pulled his hare out.”

Although the sentence’s written form unambiguously contains the word “hare,” previous

work has suggested that phonetic representations play a central role in language comprehen-

sion even during reading (Niznikiewicz & Squires, 1996; Pexman, Lupker, & Jared, 2001;

Pollatsek, Lesch, Morris, & Rayner, 1992). Taking the lexical ambiguity of its phonetic

form into account, this sentence thus implicitly expresses two “ideas,” or meanings:2
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(1a) The magician got so mad he performed the trick of pulling a rabbit out of his hat.

(1b) The magician got so mad he pulled out the hair on his head.

At the most basic level, the humor in this pun relies on the fact that it contains the

word “hare,” which is phonetically confusable with “hair.” However, the following sen-

tence also contains a phonetically ambiguous word, but it is clearly not a pun:

(2) “The hare ran rapidly across the field.”

A critical difference between (1) and (2) is that hare and hair are both probable mean-

ings in the context of sentence (1), whereas hare is much more likely than hair in sentence

(2). From this informal analysis, it seems that what distinguishes a phonetic pun from a reg-

ular sentence is that both meanings are compatible with context in a phonetic pun, suggest-

ing that a sentence must contain ambiguity to be funny. However, another example shows

that ambiguity alone is insufficient. Consider the sentence:

(3) “Look at that hare.”

This sentence is also ambiguous between hare and hair, but it is unlikely to elicit

chuckles. A critical difference between (1) and (3) is that while each meaning is strongly

supported by distinct groups of words in (1) (hare is supported by “magician” and “hare”;

hair is supported by “mad” and “pulled”), both meanings are weakly supported by all

words in (3). This comparison suggests that in addition to ambiguity, distinctiveness of

support may also be an important criterion for humor. Observations on the putative roles

of ambiguity of sentence meaning and distinctiveness of support will motivate our formal

measures of humor.3

How should we represent the meaning of a sentence in order to measure its ambiguity

and distinctiveness? While formally representing sentence meanings is a complex and lar-

gely unsolved problem (Grefenstette, Sadrzadeh, Clark, Coecke, & Pulman, 2014; Liang,

Jordan, & Klein, 2013; Socher, Huval, Manning, & Ng, 2012), we can utilize certain proper-

ties of phonetically ambiguous sentences to simplify the issue at hand. We notice that in

sentence (1), meaning (1a) arises if the word “hare” is interpreted as hare, while meaning

(1b) arises if “hare” is interpreted as its homophone hair. Each sentence-level meaning

directly corresponds to the meaning of a phonetically ambiguous word. As a result, we can

represent sentence meaning (1a) with the meaning of hare and (1b) with the meaning of

hair. This approximation is coarse and captures only the “gist” of a sentence rather than its

full meaning. However, we will show that such a gist representation is sufficiently powerful

for modeling the interpretation of sentences with only a phonetic ambiguity.

Given the space of candidate sentence meanings, a comprehender’s task is to infer a

distribution over these meanings from the words she observes. Formally, a phonetically ambigu-

ous sentence such as (1) is composed of a vector of words w
! ¼ fw1; . . .;wi; h;wiþ1; . . .;wng,

where h is phonetically confusable with its homophone h0. The sentence meaning is a latent

variable m, which we assume has two possible values ma and mb. These two sentence mean-

ings can be identified with the homophones h and h0, respectively. Consistent with a noisy

channel approach (Gibson, Bergen, & Piantadosi, 2013; Levy, 2008; Levy, Bicknell, Slat-

tery, & Rayner, 2009), we construe the task of understanding a sentence as inferring m
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using probabilistic integration of noisy evidence given by w
!
. We construct a simple proba-

bilistic generative model that captures the relationship between the meaning of a sentence

and the words that compose it (Fig. 1). If a word is semantically relevant (fi = 1), we

assume that it is sampled based on semantic relatedness to the sentence meaning; if the

word is irrelevant, or “noise,” it only reflects general language statistics and is sampled

from an n-gram model. Because the comprehender maintains uncertainty about which

words are relevant, it is possible for her to arrive at multiple interpretations of a sentence

that are each coherent but incongruous with one another, a situation that we hypothesize

gives rise to humor. To capture this intuition, we introduce two measures of humor derived

from the distribution over sentence meanings (details in Methods section).

Given words in a sentence, we infer the joint probability distribution over sentence

meanings and semantically relevant words, which can be factorized into the following:

Pðm; f
*

jw*Þ ¼ Pðmjw!ÞPð f
!
jm;w*Þ ð1Þ

We compute a measure of humor from each of the two terms on the right-hand side.

Ambiguity is quantified by the entropy of the distribution Pðmjw!Þ. If entropy is high, then

the sentence is ambiguous because both meanings are near-equally likely. Distinctiveness

captures the degree to which the semantically relevant words differ given different sen-

tence meanings. Given one meaning ma, we can compute Fa ¼ Pð f
!
jma;w

*Þ. Given

another meaning mb, we compute Fb ¼ Pð f
!
jmb;w

*Þ. Distinctiveness is quantified by the

symmetrized Kullback-Leibler divergence between these two distributions, DKL (Fa||

Fb) + DKL (Fb||Fa). If the symmetrized KL distance is high, it suggests that the two sen-

tence meanings are supported by distinct subsets of words in the sentence. Derivation

details of these two measures are in the Methods section below. In what follows, we

empirically evaluate ambiguity and distinctiveness as predictors of humor in a set of pho-

netically ambiguous sentences.

Fig. 1. Graphical representation of a generative model of a sentence. If the indicator variable fi has value 1,

wt is generated based on semantic relatedness to the sentence meaning m; otherwise, wt is sampled from a

trigram language model based on the immediately preceding two words.
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2. Methods

2.1. Computing model predictions

We define the ambiguity of a sentence as the entropy of Pðmjw!Þ, where w
!

is a vector

of observed content words in a sentence (which contains a phonetically ambiguous word

h) and m is the latent sentence meaning. Given the simplifying assumption that the distri-

bution over sentence meanings is not affected by function words, each wi in w
*

is a con-

tent word. The distribution over sentence meanings given words can be derived using

Bayes’ rule:

Pðmjw~Þ ¼
X
f~

Pðm; f~jw*Þ

/
X
f~

Pðw~jm; f~ÞPðmÞPðf~Þ

¼
X
f~

PðmÞPð f~Þ
Y
i

Pðwijm; fiÞ
 ! ð2Þ

Each value of m is approximated by either the meaning of the observed phonetically

ambiguous word h (e.g., “hare” in sentence (1)) or its unobserved homophone h0 (e.g.,
“hair”). We can thus represent P(m) as the unigram frequency of h or h0. For example,

P(m = hare) is approximated as proportional to P(“hare”). We assume equal prior proba-

bility that each subset of the words is semantically relevant, hence P(f~) is a constant.

P(wi|m, fi) depends on the value of the semantic relevance indicator variable fi. If fi = 1,

wi is semantically relevant and is sampled in proportion to its relatedness with the

sentence meaning m. If fi = 0, then wi is generated from a noise process and sampled in

proportion to its probability given the previous two words in the sentence. Formally,

Pðwijm; fiÞ ¼ PðwijmÞ if fi ¼ 1

PðwijbigramiÞ if fi ¼ 0

�
ð3Þ

We estimate P(wi|m) using empirical association measures described in the Experiment

section and compute P(wi|bigrami) using the Google N-grams corpus (Brants & Franz,

2006). Once we derive M ¼ Pðmjw~Þ, we compute its information-theoretic entropy as a

measure of ambiguity:

AmbðMÞ ¼ �
X

k2fa;bg
Pðmkjw~Þ logPðmkjw~Þ ð4Þ

We next compute the distinctiveness of words supporting each sentence meaning.

Using Bayes’ Rule:
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Pðf~jm;w~Þ / Pðw~jm; f~ÞPð f~jmÞ ð5Þ

Since f~ and m are independent, Pðf~jmÞ ¼ Pðf~Þ, which is a constant. Let

Fa ¼ Pðf~jma;w~Þ and Fb ¼ Pðf~jmb;w~Þ. We compute the symmetrized Kullback-Leibler

divergence score DKL (Fa||Fb) + DKL (Fb||Fa), which measures the difference between the

distribution of supporting words given one sentence meaning and the distribution of

supporting words given another sentence meaning. This results in the distinctiveness

measure4 :

DistðFa;FbÞ ¼
X
i

ln
FaðiÞ
FbðiÞ
� �

FaðiÞ þ ln
FbðiÞ
FaðiÞ
� �

FbðiÞ
� �

ð6Þ

Given these derivations, we conducted the following experiment to implement and test

the ambiguity and distinctiveness measures.

2.2. Experiment

We collected 435 sentences consisting of phonetic puns and regular sentences that con-

tain phonetically ambiguous words. We obtained the puns from a website called “Pun of

the Day” (http://www.punoftheday.com), which at the time of collection contained over a

thousand puns submitted by users. We collected 40 puns where the phonetically ambigu-

ous word has an identical homophone, for example “hare.” Since only a limited number

of puns satisfied this criterion, a research assistant generated an additional 25 pun

sentences based on a separate list of homophone words, resulting in a total of 65 identi-

cal-homophone puns. We selected 130 corresponding non-pun sentences from an online

version of Heinle’s Newbury House Dictionary of American English (http://nhd.

heinle.com). Of the 130 non-pun sentences, 65 sentences contain the ambiguous words

observed in the pun sentences (e.g., “hare”); the other 65 contain the unobserved homo-

phone words (e.g., “hair”).5 To test whether our measures generalize to sentences contain-

ing phonetically ambiguous words that do not have identical homophones, we collected

80 puns where the phonetically ambiguous word sounds similar (but not identical) to

other words in English (e.g., “tooth” sounds similar to “truth”). We also collected 160

corresponding non-pun sentences. Table 1 shows an example sentence from each cate-

gory. The full set of sentences can be found here: http://web.stanford.edu/~justinek/pun-

paper/results.html

We obtained funniness ratings for each of the 435 sentences. We asked 100 partici-

pants on Amazon’s Mechanical Turk6 to rate the 195 sentences that contain identical

homophones. Each participant read roughly 60 sentences in random order, counterbal-

anced for the sentence types, and rated each sentence on funniness (“How funny is this

sentence?”) on a scale from 1 (not at all) to 7 (extremely). We removed seven partici-

pants who reported a native language other than English and z-scored the ratings within

each participant. A separate group of 160 participants on Mechanical Turk rated the 240
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near homophone sentences. Each participant read 40 sentences in random order, counter-

balanced for the sentence types, and rated each sentence on funniness on a scale from 1

to 7. We removed four participants who reported a native language other than English

and z-scored the ratings within each participant. We used the average z-scored ratings

across participants as human judgments of funniness for all 435 sentences.

As described in the measure derivations, computing ambiguity and distinctiveness

requires the conditional probabilities of each word given a sentence meaning, that is,

P(wi|m). In practice, this value is difficult to obtain reliably and accurately in an

automated way, such as through WordNet distances or semantic vector space models

(Gabrilovich & Markovitch, 2007; Mihalcea et al., 2010; Zhang, Gentile, & Ciravegna,

2011).7 Instead of tackling the challenging problem of automatically learning P(wi, m)
from large corpora, we observe that P(wi, m) is related to point wise mutual information

(PMI) between wi and m, an information-theoretic measure defined mathematically as the

following (Church & Hanks, 1990):

log
Pðwi;mÞ
PðwiÞPðmÞ ¼ logPðwijmÞ � logPðwiÞ ð7Þ

Intuitively, PMI captures the relatedness between wi and m, which can be measured

empirically by asking people to judge the semantic relatedness between two words. This

allows us to harness people’s rich knowledge of the relationships between word meanings

without relying solely on co-occurrence statistics in corpora. We assume that the z-scored

human ratings of relatedness between two words, denoted R (wi, m), approximates true PMI.

With the proper substitutions and transformations8 from Eq. 7, we derive the following:

PðwijmÞ ¼ eRðwi;mÞPðwiÞ ð8Þ

To obtain R(wi, m) for each of the words in the stimuli sentences, function words were

removed from each of the sentences in our data set, and the remaining words were paired

with the phonetically ambiguous word h and its homophone h0 (e.g., for the pun in

Table 1

Example sentence from each category. Identical homophone sentences contain phonetically ambiguous words

that have identical homophones; near homophone sentences contain phonetically ambiguous words that have

near homophones. Pun sentences were selected from a pun website; non-pun sentences were selected from an

online dictionary (see main text for details)

Homophone Type Example

Identical Pun The magician was so mad he pulled his hare out.

Identical Non-pun The hare ran rapidly across the field.

Identical Non-pun Some people have lots of hair on their heads.

Near Pun A dentist has to tell a patient the whole tooth.

Near Non-pun A dentist examines one tooth at a time.

Near Non-pun She always speaks the truth.
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Table 1, [“magician,” “hare”] is a legitimate word pair, as well as [“magician,” “hair”]).

This resulted in 1,460 distinct word pairs for identical homophone sentences and 2,056

word pairs for near homophone sentences. We asked 200 participants on Amazon’s

Mechanical Turk to rate the semantic relatedness of word pairs for identical homophone

sentences. Each participant saw 146 pairs of words in random order and were asked to

rate how related each word pair is using a scale from 1 to 10. We removed five partici-

pants who reported a native language other than English. A separate group of 120 partici-

pants rated word pairs for near homophone sentences. We removed two participants who

reported a native language other than English. Since it is difficult to measure the related-

ness of a word with itself, we assume that the value is constant for all words and treat it

as a free parameter, r. After computing our measures, we fit this parameter to people’s

funniness judgments (resulting in r = 13). We used the average z-scored relatedness mea-

sure for each word pair to obtain R(wi, m) and Google Web unigrams to obtain P(wi).

This allowed us to compute P(wi|m) for all word and meaning pairs.

3. Results

We computed an ambiguity and distinctiveness score for each of the 435 sentences

(see Methods). We found no significant differences between identical and near homo-

phone puns in terms of funniness ratings (t(130.91) = 0.13, p = .896), ambiguity scores

(t(137.80) = 1.13, p = .261), and distinctiveness scores (t(134.91) = �0.61, p = .543),

suggesting that ambiguity and distinctiveness are fairly robust to the differences

between puns that involve identical or near homophone words. As a result, we collapsed

across identical and near homophone sentences for the remaining analyses. We found

that ambiguity was significantly higher for pun sentences than non-pun sentences

(t(159.48) = 7.89, p < .0001), which suggests that the ambiguity measure successfully

captures characteristics distinguishing puns from other phonetically ambiguous sentences.

Distinctiveness was also significantly higher for pun sentences than non-pun sentences

(t(248.99) = 6.11, p < .0001). Fig. 2 shows the standard error ellipses for the two sen-

tence types in a two-dimensional space of ambiguity and distinctiveness. Although there

is a fair amount of noise in the predictors (likely due to simplifying assumptions, the

need to use empirical measures of relatedness, and the inherent complexity of humor),

pun sentences (both identical and near homophone) tend to cluster at a space with higher

ambiguity and distinctiveness, while non-pun sentences score lower on both measures.

We constructed a linear mixed-effects model of funniness judgments with ambiguity and

distinctiveness as fixed effects, a by-item random intercept, and by-subject random slopes

for entropy and distinctiveness. We found that ambiguity and distinctiveness were both

highly significant predictors, with funniness increasing as each of ambiguity and distinctive-

ness increases (Table 2). Furthermore, the two measures capture a substantial amount of the

reliable variance in funniness ratings averaged across subjects (F(2, 432) = 74.07,

R2 = 0.25, p < .0001). A linear mixed-effects model including a term for the interaction
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between ambiguity and distinctiveness (both as fixed effect and by-subjects random slope)

showed no significant interaction between the two (t = 1.39, p > .05).

We then examined whether the measures are able to go beyond distinguishing puns

from non-puns to predicting fine-grained levels of funniness within puns. We found that

ambiguity does not correlate with human ratings of funniness within the 145 pun sen-

tences (r = .03, p = .697). However, distinctiveness ratings correlate significantly with

human ratings of funniness within pun sentences (r = .28, p < .001). By separating the

puns into four equal bins based on their distinctiveness scores, we found that puns with

distinctiveness measures in the top-most quartile were significantly funnier than puns with

distinctiveness measures in the lower quartiles (t(90.15) = 3.41, p < .001) (Fig. 3). This

suggests that while ambiguity helps distinguish puns from non-puns, high distinctiveness

characterizes exceptionally humorous puns. To our knowledge, our model provides the

first quantitative measure that predicts fine-grained levels of funniness within humorous

stimuli.

Besides predicting the funniness of a sentence, the model can also be used to reveal

critical features of each pun that make it amusing. For each sentence, we identified the

set of words that is most likely to be semantically relevant given w
!

and each sentence

meaning m. Formally, we computed arg max
f
*Pð f

*

jma;w
*Þ and arg max

f
*Pð f

*

jmb;w
*Þ.
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Fig. 2. Standard error ellipses of ambiguity and distinctiveness for each sentence type. Puns (both identical

and near homophone) score higher on ambiguity and distinctiveness; non-pun sentences score lower.

Table 2

Regression coefficients using ambiguity and distinctiveness to predict funniness ratings for all 435 sentences;

p-values are computed assuming that the t statistic is approximately normally distributed

Estimate SE p-value

Intercept �2.139 0.306 <.0001
Ambiguity 1.915 0.221 <.0001
Distinctiveness 0.264 0.040 <.0001
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Table 3 shows a group of identical homophone sentences and a group of near homophone

sentences. Sentences in each group contain the same pair of candidate meanings for the

homophone; however, they differ on ambiguity, distinctiveness, and funniness. Words that

are most likely to be relevant given sentence meaning ma are in boldface; words that are

most likely to be relevant given mb are in italics. Qualitatively, we observe that the two

pun sentences (which are significantly funnier) have more distinct and balanced sets of

semantically relevant words for each sentence meaning than other sentences in their

groups. Non-pun sentences tend to have no words in support of the meaning that was not

observed. Furthermore, the boldfaced and italicized words in each pun sentence are what

one might intuitively use to explain why the sentence is funny—for example, the fact that

magicians tend to perform magic tricks with hares, and people tend to be described as

pulling out their hair when angry.

4. Discussion

In this paper, we presented a simple model of gist-level sentence processing and used

it to derive formal measures that predict human judgments of humor in puns. We showed

0.8
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1.2

1.4

987

Distinctiveness

F
un

ni
ne

ss

Fig. 3. Average funniness ratings and distinctiveness of 145 pun sentences binned according to distinctive-

ness quartiles. Error bars are confidence intervals.

Table 3

Semantically relevant words, ambiguity/distinctiveness scores, and funniness ratings for sentences from each

category. Words in boldface are semantically relevant to ma; words in italics are semantically relevant to mb

ma mb Type Sentence Amb. Dist. Funni.

hare hair Pun The magician got so mad he pulled his hare out. 0.15 7.87 1.71

Non The hare ran rapidly through the fields. 1.43E�5 7.25 �0.40

tooth truth Pun A dentist has to tell a patient the whole tooth. 0.1 8.48 1.41

Non A dentist examines one tooth at a time. 8.92E�5 7.65 �0.45
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that a noisy channel model of sentence processing facilitates flexible context selection,

which enables a single series of words to express multiple meanings. Our work is one of

the first to integrate a computational model of sentence processing to analyze humor in a

manner that is both intuitive and quantitative. In addition, it is the first computational

work to our knowledge to go beyond classifying humorous versus regular sentences to

predict fine-grained funniness judgments within humorous stimuli.

The idea of deriving measures of humor from a model of general language understand-

ing is closely related to previous approaches, where humor is analyzed within a frame-

work of semantic theory and language comprehension. Raskin’s (1985) Semantic Script

Theory of Humor (SSTH) builds upon a theory of language comprehension in which lan-

guage is understood in terms of scripts. Under this analysis, a text is funny when it acti-

vates two scripts that are incompatible with each other. This theory explains a number of

classic jokes where the punch line introduces a script that is incongruous with the script

activated by the joke’s setup. Attardo and Raskin (1991) proposed a revision to SSTH in

the General Theory of Verbal Humor (GTVH), which details six hierarchically organized

knowledge resources that inform the understanding of texts as well as the detection of

humor. Nirenburg and Raskin (2004) further formalized the ideas proposed in SSTH and

GTVH by developing a system for computational semantics termed Ontological Seman-

tics, which includes a large concept ontology, a repository of facts, and an analyzer that

translates texts into an ontology-based knowledge representation. This system provides

rich ontological knowledge to support in-depth language comprehension and has been

applied productively to a variety of domains (Beale, Lavoie, McShane, Nirenburg, &

Korelsky, 2004; Nirenburg & Raskin, 2004; Taylor, Raskin, & Hempelmann, 2011).

Hempelmann, Raskin, and Triezenberg (2006) used a classic joke to show that an exten-

sion to the Ontological Semantics system can in principle detect as well as generate

humorous texts. However, to our knowledge the system has not yet been tested on a lar-

ger body of texts to demonstrate its performance in a quantitative manner (Raskin, 2008;

Taylor, 2010). While providing detailed analyses that reveal many important characteris-

tics of humor, much of the work on formalizing humor theories falls short of predicting

people’s fine-grained judgments of funniness for a large number of texts (Attardo,

Hempelmann, & Di Maio, 2002; Attardo, 2001; Brône, Feyaerts, & Veale, 2006; Hempel-

mann, 2004; Raskin & Attardo, 1994; Ritchie, 2001; Veale, 2006). In this regard, we

believe that our work advances the current state of formal approaches to humor theory.

By implementing a simple but psychologically motivated computational model of sen-

tence processing, we derived measures that distinguish puns from regular sentences and

correlate significantly with fine-grained humor ratings within puns. Our approach also

provides an intuitive but automatic way to identify features that make a pun funny. This

suggests that a probabilistic model of general sentence processing (even without the sup-

port of rich ontological semantics) may enable powerful explanatory measures of humor.

In addition to advancing computational approaches, our work contributes to cognitive

theories of humor by providing evidence that different factors may account for separate

aspects of humor appreciation. Some humor theorists argue that while incongruity is nec-

essary for humor, resolving incongruity—discovering a cognitive rule that explains the
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incongruity in a logical manner—is also key (Ritchie, 1999, 2009; Suls, 1972, 1983). We

can construe our measures as corresponding roughly to incongruity and resolution in this

sense, where ambiguity represents the presence of incongruous sentence meanings, and

distinctiveness represents the degree to which each meaning is strongly supported by

different parts of the stimulus. Our results would then suggest that incongruity distin-

guishes humorous input from regular sentences, while the intensity of humor may depend

on the degree to which incongruity is resolved by focusing on two different supporting

sets of contexts. Future work could more specifically examine the relationship between

incongruity resolution and the measures presented in our framework.

Although our task in this paper was limited in scope, it is a step toward developing

computational models that explain higher order linguistic phenomena such as humor. To

address more complex jokes, future work may incorporate more sophisticated models of

language understanding, for example to consider the time course of sentence processing

(Kamide, Altmann, & Haywood, 2003; McRae, Spivey-Knowlton, & Tanenhaus, 1998),

effects of pragmatic reasoning and background knowledge (Kao, Bergen, & Goodman,

2014; Kao, Wu, Bergen, & Goodman, 2014), and multisentence discourse (Chambers &

Jurafsky, 2008; Polanyi, 1988). Our approach could also benefit greatly from the rich

commonsense knowledge encoded in the Ontological Semantics system (Nirenburg &

Raskin, 2004) and may be combined with it to measure ambiguity and distinctiveness at

the script level rather than only at the level of the sentence.

Previous research on creative language use such as metaphor, idioms, and irony has con-

tributed a great deal to our understanding of the cognitive mechanisms that enable people to

infer rich meanings from sparse and often ambiguous linguistic input (Gibbs & O’Brien,

1991; Lakoff & Turner, 2009; Nunberg, Sag, & Wasow, 1994; Ricoeur, 2003). We hope that

our work on humor contributes to theories of language understanding to account for a wider

range of linguistic behaviors and the social and affective functions they serve. By deriving

the precise properties of sentences that make us laugh, our work brings us one step closer

toward understanding that funny thing called humor (pun intended).
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Notes

1. An early version of this work appeared in the proceedings of the 35th Annual Meeting

of the Cognitive Science Society. In this current extended paper, we examine a wider
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range of sentences, including puns that contain identical homophones as well as puns

with words that sound similar (but not identical) to other words in English.

2. In this work, we focus on written sentences that contain phonetic ambiguity. In the

future, it would be interesting to examine humorous effects in spoken sentences,

where ambiguity cannot be partially resolved by the orthographic form.

3. Note that it is not necessary for both meanings to be completely compatible with

the full context, as illustrated by puns such as I used to be addicted to soap, but
I’m clean now, in which the most common meaning of clean is actually ruled out,

rather than supported, by full compositional interpretation of the context. What

instead seems necessary is that the support derived from the subset of context for

each meaning is balanced.

4. In addition to the symmetrized KL divergence of Eq. 6, we also experimented with

non-symmetrized KL divergence in both directions and found qualitatively identical

results.

5. Results for the 195 identical homophone sentences were reported in Kao et al.

(2012), which was published in the proceedings of the 35th Annual Meeting of the

Cognitive Science Society (a non-archival publication).

6. The sample sizes were chosen such that each sentence would receive roughly 20–
30 funniness ratings, in order for the uncertainty in funniness measurement to be

reasonably low, while keeping the number of sentences rated by each participant

manageably small.

7. We experimented with computing these values from corpora in early stages of this

work. However, we found that it is difficult to obtain reliable co-occurrence statis-

tics for many word pairs of interest (such as “hare” and “magician”), due to the

sparsity of these topics in most corpora. Future work could further explore methods

for extracting these types of commonsense-based semantic relationships from cor-

pus statistics.

8. By assuming Rðwi;mÞ ¼ log
Pðwi;mÞ
PðwiÞPðmÞ, we get Rðwi;mÞ ¼ logPðwi;mÞ � logPðwiÞ

from Eq. 7; exponentiating both sides gives us Eq. 8.
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