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1 Introduction 
One essential part of a native speaker’s knowledge is the characterization of what 

logically possible sound sequences constitute legitimate possible words in the 

speaker’s language, or phonotactics.  Although formal phonotactic models were 

originally categorical—classifying every sound sequence dichotomously as either 

being a well-formed possible word or not (Chomsky & Halle, 1968) the 

recognition that well-formedness judgments are gradient has driven the more 

recent development of probabilistic models of phonotactics (Albright, in prep; 

Hayes & Wilson, 2008). These models involve two substantive commitments: 

first, a speaker’s phonotactic knowledge is encoded as a probability distribution 

over sound sequences, with higher probability implying greater well-formedness; 

second, this probability distribution is hypothesized to be in substantial alignment 

with the lexicon, so that learning a language’s phonotactics can be understood as 

inferring a probability distribution that assigns high likelihood to the lexicon.  

Since any speaker’s experience with a lexicon is finite, however, a probabilistic 

phonotactic model must also include a propensity toward generalizing to novel 

sequences, assigning higher probability to some nonce words than to others. A 

model of English phonotactics must thus assign higher probability to [bwad] than 

to [bnad], for example, for the former sequence is preferred to the latter by native 

speakers, although both are nonce words (Albright, in prep).  In this case, the 

distinction can be understood as a preference at the representational level of 

phonological features: namely, that [-continuant][+nasal] sequences do not appear 

in English, while [-continuant][+approximant] features do.  Hence understanding 

phonotactics requires investigation into the representational basis for phonological 

generalization. 

 This paper reports an investigation into phonological generalization and its 

representational basis for the case of the Obligatory Contour Principle as applied 

to place of articulation (OCP-Place) in Amharic, a Semitic language of Ethiopia.  

OCP-Place in Amharic applies to the co-occurrence of consonants within the verb 

root.  This constraint poses modeling challenges at three levels.  First, relative to 

other case studies in phonotactics such as English onsets, Amharic verb roots are 

long and complex, consisting minimally of three consonants, and sometimes four 

or five.  Second, OCP-Place is gradient, with violations rare but attested.  Third, 

there are a large number of verbs in Amharic with identical consonants. Identical 

consonants could be analyzed as surface-true, and therefore included in the 

assessment of phonotactic restrictions. On the other hand, identical consonants 



  

could be analyzed as lexically reduplicated, in which case the copy would be 

absent from the lexical representation of the root and not included in the 

assessment of OCP-Place phonotactics.  Here, we use the Hayes and Wilson 

(2008) Maximum Entropy (Maxent) Phonotactic Learner to model the acquisition 

of phonotactic knowledge in Amharic, training the model on a lexicon of Amharic 

verb roots, and testing it both on its ability to accurately encode the contents of the 

lexicon and on its ability to predict native speaker well-formedness judgments of 

nonce verbs. We compare automatically learned phonotactic grammars with hand-

coded grammars specifically designed to encode OCP-Place. We find that an 

automatic learner with access to information about lexical reduplication is able to 

discover constraints more effectively than a learner with access to only surface 

lexical representations, underscoring the importance of data representation in the 

acquisition of phonotactic knowledge. 

 

2 Phonotactics and experimental testing 
 Experimental work has shown that there is a connection between the lexical 

probability of the sound sequences that compose a nonce word (a manifestation of 

phonotactic restrictions) and gradient speaker judgments of word acceptability.  

 

2.1 Experimental studies and probabilistic models 
Experimental studies that evaluate gradient speaker judgments for nonce 

words that controlled for phonotactic probability have primarily focused on 

specific sub-parts of English words. For example, Scholes (1966), Coleman, 

(1996), Albright and Hayes (2003), Hay et al. (2003), Treiman et al. (2000) and  

Albright (in prep) have collected English speaker judgments for nonce words that 

differed in the probability of their onsets, rimes or consonant clusters. Judgments 

for probabilistically controlled whole nonce words are somewhat rarer (Vitevitch 

et al. 1997, Frisch et al. 2000). Research focusing on whole words in other 

languages include Frisch & Zawaydeh (2001) for Arabic, Myers & Tsay (2005) 

for Mandarin, and Kirby & Yu (2007) for Cantonese.  

 Probabilistic phonotactic models use lexical probabilities to predict speaker 

judgments.  These models learn by assigning a high likelihood to the lexicon, and 

define probability distributions over sounds and sound sequences. Those 

probability distributions can then be used to predict the acceptability of nonce 

forms. Currently, the model that performs the best in predicting speaker 

judgments is the Hayes and Wilson (2008) Maximum Entropy phonotactic 

learner. For English onsets, the correlation between the predictions of the Maxent 

learner and speaker judgments (Scholes 1968) is remarkable: r = .946 (Pearson's 

correlation). The judgments were based on a binary legal-illegal task rather than a 

gradient judgment task, which may account for the high correlation. It is important 

to test the model on more challenging data.  

 

 



  

2.2 The Maximum Entropy phonotactic learner 
The power of the Maxent learner compared to earlier models, is that it uses a 

phonologically motivated representation of distinctive features and natural classes 

to compose a Maxent weighted grammar of constraints. A Maxent grammar  

containing constraints Ci each with weight wi assigns a probability distribution 

over the set Ω of possible sound sequences in the language, according to the 

following formula: 
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where the Maxent score for a logically possible sound sequence x is defined as 
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the value Ci(x) is the number of violations of Ci in x, and the normalizing constant 

Z is defined as follows: 
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This representation enables the model to make generalizations that would be 

impossible with a less fine-grained representation. Returning to our example of 

[bwad] versus [bnad]-a segmental bigram model would assign equal (zero) 

probability to the onsets [bw] and [bn], since neither bigram appears in an English 

onset. However, the Maxent learner has access to the natural class representations 

and thus can learn that other stop-[+approximant] sequences do occur in the 

lexicon but stop-[+nasal] sequences do not. It would therefore assign a higher 

penalty to [bn] than [bw]. 

Given a segment inventory defined in terms of distinctive features, the Maxent 

learner creates the set of all possible natural class sequences defined for the 

language (where the maximal length of the sequences is a researcher-defined 

parameter of the model). This set of natural class sequences defines the set of 

potential constraints. The Maxent Learner then iterates over the following 

processes: 

 

 1. Selecting a constraint from the set of potential constraints and adding it to 

the grammar.  

 2. Reweighting the new constraint set according to the principle of Maxent. 

 

We elaborate on each of these in turn. 

 

2.2.1 Weighting the grammar 
For weighting the constraints in the grammar, the Maxent learner proceeds 

similarly to other Maxent models. The goal is to assign a penalty weight to each 

constraint in the grammar such that the probability of the learning data D is 

maximized. There is no single step method for determining the set of constraint 

weights that maximize P(D), so an iterative hill climbing algorithm is used.  



  

 

2.2.2 Constraint selection 

The model selects a candidate constraint from the set of potential constraints that 

represents the most under-represented sequence given the current grammar. The 

model estimates O(Ci)/E(Ci), the ratio between the number of Observed and 

Expected violations, for each of the candidate constraints Ci via Monte Carlo 

sampling. O/E values between 0 and 1 indicate that a sequence is under-

represented. The model first selects the most accurate constraints. This is the set 

of constraints that have O/E values below a certain threshold with an adjustment 

(Mikheev, 1997) such that for the same O/E values, those with high Expected 

values are more salient than those with lower Expected values. Then, within that 

set, a heuristic is used to select the most general constraint. Shorter constraints are 

considered more general than longer ones (so *[+voice] would be considered 

more general than *[+voice][+voice]) and constraints described with few natural 

classes are considered more  general than those that have many ([+voice] is 

therefore more general than [+voice, -continuant]). 

 

3 Simulations 
Although the Maxent learner performs extremely well in predicting the 

acceptability of unattested onsets in English, it has not been evaluated against 

speaker judgments across a word or for languages other than English
1
. The goal of 

our simulations is therefore to evaluate the performance of the Maxent learner for 

words in a language with different representational issues and phonotactic 

constraints that those of English onsets.  

 

3.1   OCP-Place in Amharic 
 We evaluated the performance of the Maxent learner on the consonant 

phonotactics of verb roots in Amharic, a Semitic language of Ethiopia. Like other 

Semitic languages, Amharic verb roots are subject to OCP-Place (Greenberg 

1950, Bender and Fulass 1978, McCarthy 1986, 1988, Pierrehumbert 1993, 

Buckley 1997, Frisch et al. 2004, Rose and King 2007): consonants with the same 

place of articulation co-occur less frequently within roots than would be expected, 

all else being equal. Although a hallmark of Semitic languages, OCP-Place has 

also been identified as a restriction in Russian (Padgett 1995), Javanese (Mester 

1986) English (Berkley 1994) and Muna (Coetzee and Pater 2008).  

 OCP-Place is considered a gradient restriction because it may be violated. For 

Amharic, as for other Semitic languages, gradiency is expressed over two 

dimensions: place of articulation and location of violation. Regarding place of 

articulation, homorganic consonants are under-represented in Amharic verb roots 

                                                 
1
  Hayes and Wilson (2008) modeled the phonotactics of Wargamy and Shona, but did not 

compare the predictions of the models to speaker judgments. Pater & Kager (2010) have applied 

the MaxEnt learner to Dutch rimes and tested speaker judgments.  



  

but the co-occurrence of dorsal consonants is rarest, followed by labials and then 

coronals (for coronals, the largest group, the restriction operates over coronals 

having the same manner of articulation). This holds for longer verb roots, too. For 

location of violation, verb roots with OCP-Place violations at the left edge of the 

root (C1C2X) are rarest, followed by right-edge violations (XC2C3), with non-

adjacent violations being the least rare (C1XC3).   

 This expression of OCP-Place over verb roots poses a particular challenge to 

the Maxent learner. To encode the gradiency over location of violation requires 

constraints of length 3 (to distinguish left-edge, right-edge and non-adjacent 

violations) but the Maxent learner is designed to favor shorter constraints. For 

example, the model might select a constraint over adjacent segments of length 2 

*[Dorsal][Dorsal] rather than the longer *[word boundary][Dorsal][Dorsal] and 

this may well affect the performance of the model in predicting gradiency 

according to location of violation. In addition, Amharic has roots with four, five 

and even six consonants. 

 

3.2 Identical consonants 
Amharic has numerous roots containing identical consonants (36% of the roots in 

our database). There are several common patterns in Ethio-Semitic languages such 

as 122, 1212, 1233 or 12323 (where numbers correspond to consonants), as well 

as other less common types. These patterns are usually analyzed as a single 

consonant that is spread to another position (McCarthy 1979, 1983) or as 

reduplication (Buckley 1990, Hudson 1995, Rose 1997, Gafos 1998) or both. 

However, these are cases of lexical or phonological reduplication, rather than a 

productive morphological derivational pattern. Two approaches could be taken to 

the representation of identical consonants in this study. One, they could be 

analyzed as is, treating the distribution as lexical and static. This method has the 

advantage of being surface-true, but by so doing, it is necessary for OCP-Place to 

be stated as a restriction over homorganic, but non-identical consonants, as 

identical consonants would be overrepresented in particular positions, thereby 

undermining OCP-Place. Berent & Shimron (2003) have shown that Hebrew 

speakers judge identical and homorganic consonants differently. Two, they could 

be analyzed according to the standard phonological analysis (McCarthy 1979, 

1983), treating them as containing a single underlying consonant and assuming a 

process of reduplication or spreading.  

 As there are arguments in favor of both of these representations, we performed 

two parallel series of simulations: one, the Identical approach, assumes that 

identical consonants are qualitatively the same as other consonants, and two, the 

Reduplication approach, assumes that only one consonant is included in the verb 

root and subject to evaluation of OCP-Place. 

 

 

 



  

3.3 Methodology 
The following section describes the training data, test data, procedures and 

evaluation for each of the two simulations. 

  

3.3.1 Training data 
In both simulations, models were trained on 4243 verbs (in 3ms perfective citation 

form) drawn from Kane (1990) containing an inventory of 25 consonants shown 

in table 1. Because of software limitations, labialized consonants were 

confounded with their non-labialized counterparts. This does not affect the 

calculation of OCP-Place, since it operates over primary place of articulation. 

 

Place Segments 

Labial  p’, b, f, m, w 

     Coronal 
 
 

stops, affricates:       t, t’, d, ʧ, ʧ’, ʤ 
fricatives:                 s, s’, ʃ, z, ʒ 
sonorants:                n, ɲ, r, l, j 

Dorsal k, k’, g 

Glottal h 

Table 1: Segment inventory used in training data 

The training data included not only the standard Semitic tri-consonantal roots, but 

also weak roots (those appearing to lack a surface root consonant), roots with 4, 5 

or 6 consonants and roots with identical consonants. Roots with 3 or more 

consonants and no identical consonants were encoded directly as they appear in 

the dictionary, but the encoding of weak roots and roots with identical consonants  

required some analytical decisions.  

 

Weak roots. Weak roots in Semitic languages are those roots that fail to display 

the canonical number of surface consonants, and are typically analyzed as 

containing a glide (see e.g. Kaye 2007). In Ethio-Semitic languages, the historical 

presence of a glide is marked in the surface form by a front vowel (ex. hedə ‘to 

go’ <hjd) or the palatalization of the preceding consonant (ex. rəʧʧ’ə ‘to sprinkle 

<rt’j) (Hudson, 1979). In addition, in languages like Amharic that have lost 

guttural consonants, the historical presence of a guttural is marked by [a] (Unseth, 

2002), (ex. gəbba ‘to enter’ and lakə ‘to send’ are historically derived from *gbɁ, 

and *lɁk respectively). Speakers may determine the location of the missing 

surface consonant due to these clues and the location of morphological 

gemination on the penultimate root consonant. We included weak roots in the 

training data, as OCP-Place still restricts the other consonants. However, weak 

roots were encoded with the place holder 'X' in the position of the consonant 



  

missing from the expected root position. For example, the weak root gəbba is 

encoded as [gbX] and the weak root hedə as [hXd]. For the MaxEnt learner we 

gave 'X' a single distinctive feature, 'x', and left it underspecified for all other 

features; all other segments are underspecified for 'x'. 

 

Identical consonant roots. In the Identical simulation, roots such as zərətt’ət’ə 

‘to trip up by entangling the feet’ which follows the 1233 pattern, are encoded 

with identical consonants: /zrt’t’/. In the Reduplication simulation, the same root 

would be encoded as /zrt’X/, using a featureless placeholder X for the copied 

consonant in the same manner as for weak roots. The placeholder method allows 

reference to the templatic pattern and word edge employed by the root, in this case 

a quadriconsonantal pattern, and keeps it distinct from an unrelated triconsonantal 

root, in this case, /zrt’/ for the verb zərrət’ə ‘to insult; to be stunted’.  

 

Table 2 summarizes the encoding choices and the contrast between the 

representation of identical consonant roots in each of the two simulations. The 

shaded areas indicate examples where the encoding for simulation 1 is different 

from simulation 2.  

 
Root type Example  root  sim 1  sim 2 

surface true bəggənə      “get furious” bgn bgn bgn 

weak awwədə       “perfume” wd Xwd Xwd 

reduplicative bədəbbədə    ”beat” bd bdbd bdXX 

Table 2: Root types and representational encoding 

3.3.2 Test data 
Computational phonotactic models require data against which the predictions of 

the model can be compared. We evaluated all model predictions against a set of 

speaker judgments of nonce verb forms previously collected in Ethiopia by the 

third author
2
. A set of triconsonantal nonce verb stimuli were created based on 

consonant distributions in a dictionary study (Rose and King 2007). The nonce 

verbs, which used only the 14 most frequent and evenly distributed consonants, 

contained 90 forms with OCP-Place violations representing a range of predicted 

acceptability according to location of violation (left-edge, right-edge, non-

adjacent) and place of articulation (dorsal, coronal, labial).  Twenty native 

speakers of Amharic were asked to rate the nonce forms (all conjugated 

                                                 
2
  This study was developed with Lisa King and data were collected in 2001 in Addis Ababa, 

Ethiopia.  



  

identically as CəC:əCə) on a 1-6 scale with 1 = very Amharic-like and 6 = not like 

Amharic at all. Speakers significantly dispreferred nonce forms with OCP 

violations over controls (f-test: p<.0001) – see figure 1. 

 
3.3.3 Procedures 
 For each of the two simulations, two models were generated: 

 

 i. an automatically learned model with 1000 constraints 

ii. a hand-written model designed to determine whether the automatic 

constraint selection is optimal by comparing the automatic model to a 

Maxent weighted hand-written grammar.  

 

For both simulations, the hand-written grammar describes the OCP-Place 

restriction using constraints that are available to the Maxent learner. That set of 

constraints is then weighted according to the principle of Maximum Entropy. 

Because of the differing representation of identical consonants, the hand-written 

grammars were different for simulation 1 and simulation 2: 

 

     i.  In Simulation 1 (Identical), the hand-written grammar encodes OCP-Place 

as a restriction over homorganic, but non-identical, consonants.  

    ii.   In Simulation 2 (Reduplication), the hand-written grammar describes the 

more general restriction over homorganic consonants.  

 

Figure 1: Well-formedness of OCP-violating and non-OCP-violating Amharic verb roots.  

Curves show estimated judgment distributions; dots and  bars are means and standard errors. 



  

Table 3 illustrates the difference between the two hand-written grammars. Note 

that in simulation 1, the restriction must be described specifically for each 

individual segment, whereas in simulation 2, the restriction is described generally 

for each place of articulation. 

 

 condition Expression of constraint 

 

Simulation 1 Identical: 

constraints describing OCP-

Place restriction for 'b' 

 

 

left-edge  

(C1C2X) 

*[word boundary][b][Labial not b] 

*[word boundary][Labial not b][b] 

right-edge  

(XC2C3) 

*[b][Labial not b][word boundary] 

*[Labial not b][b][word boundary] 

non-adjacent  

(C1XC3) 

*[Labial not b][not Labial][b] 

*[b][not Labial][Labial not b] 

 

Simulation 2 Reduplication: 

constraints describing OCP-

Place for all Labial 

consonants 

left-edge  

(C1C2X) 

*[word boundary][Labial][Labial] 

right-edge  

(XC2C3) 

*[Labial][Labial][word boundary] 

non-adjacent  

(C1XC3) 

*[Labial][word boundary][Labial] 

Table 3: Constraint examples 

Table 3 shows that describing a restriction over non-identical homorganic 

consonants requires more constraints than the general restriction over homorganic 

consonants. Furthermore, the requirement that grammars use only those natural 

classes pre-defined by the model imposes further limitations and the final hand-

written grammar for simulation 1 contained 384 constraints compared to just 27 

for simulation 2. In both simulations, automatically selected constraints were 

added to the hand-written models until grammar size reached 1000 constraints. 

 

3.3.4 Model evaluation 
For both simulations, the automatic model and the hand-written model were 

evaluated incrementally as constraints were added to the grammar. For the 

automatic models, each model was evaluated after the acquisition of every new 

constraint until the grammar size reached 100, and every 20 constraints thereafter. 

The hand-written models were first evaluated after all the hand-written constraints 

had been incorporated into the model, and then incrementally in the same manner 

as for the automatic models.  



  

Grammars were evaluated by (a) computing the log-likelihood (using five-fold 

cross-validation) of the training data, and (b) evaluating the correlation between 

maxent scores assigned by the grammar (see figure 2 above) and native speaker 

well-formedness judgments of nonce verbs.  

 
3.4 Results 

3.4.1 Simulation 1: Identical 
Figure 2 shows the cross-validated log-likelihood of the training data for both the 

automatic and hand-written models, and the Pearson’s correlations between 

speaker judgments and model Maxent scores. First, we note that the 384 hand-

written constraints describing the OCP-Place restriction do not raise the overall 

log-likelihood of the model as much as the constraints selected early on by the 

automatic grammar. Second, the log-likelihood of the hand-written model is 

always lower than the corresponding automatic model with the same number of 

constraints. Inspection of the constraints that correspond to a sharp rise in log-

likelihood shows a large number of constraints over rare and positionally 

restricted segments, as well as OCP-Place type constraints. For example, both 

models quickly assigned high weights to constraints against the rare segment [p'] 

and root-final palatal consonants (for diachronic reasons, palatal consonants are 

rare in final position
3
).  

 Overall, the log-likelihood tends to show that the model is performing as we 

would expect: as constraints are added to the grammar, there is a sharp rise in the 

log-likelihood and a tapering off as there are fewer powerful constraints to be 

found. Even with 1000 constraints, there is no evidence of overfitting as there is 

no fall in log-likelihood.  

                                                 
3
 For the complete grammars, see idiom.ucsd.edu/~colavin/Amharic_results.pdf. 

Figure 2: Results from simulation 1 



  

The most important point regarding model/speaker agreement is that the peak 

in the hand-written model at 384 constraints (r = .45) is higher than the peak in 

correlation for the automatic model (r = .34 at 80 constraints). This difference is 

statistically significant (p < .01, with non-parametric bootstrapping). This implies 

that automatic constraint selection is less optimal than a phonologically motivated 

grammar that directly encodes the OCP explicitly.   

An unexpected result is that for the hand-written model, the correlation with 

speaker judgments falls off immediately as new constraints are added after the 

highest peak. This fall in correlation between the hand-written grammar and the 

speaker judgments between 384 and 1000 constraints is significant (p< .01, with 

non-parametric bootstrapping).  

Figure 3: (a) averaged speaker judgments; (b) simulation 1: best automatic model; 

(c) simulation 2: best automatic model  

 

An analysis of automatically selected constraints in both models shows that 

the encoding of lexically reduplicated consonants in a manner analogous to 

ordinary consonants is problematic. One problem arises from Laryngeal 

Agreement. Laryngeal Agreement (LA) is a restriction requiring stops to agree in 

the laryngeal features of voice and constricted glottis ([cg]) (Rose & Walker 

2004). For example, roots such as [tgr] (stops disagree in voice) and [ftk'] 

(voiceless stops disagree in [cg]) occur less frequently than would be expected, all 

else being equal). In Amharic, LA is a weak restriction both statistically (Rose and 

King 2007) and in speaker judgments. The judgment task data investigated 

Amharic speaker sensitivity to both OCP-Place violations and LA violations and 

found that speakers showed no significant dis-preference for nonce forms with LA 

violations. The results of the judgment task are shown in the violin plot in figure 

4a. Note the similarity between the ratings for controls and for LA violations. This 

result contrasts with figure 4b which shows predicted acceptability ratings for the 



  

best automatic model (82 constraints). The predictions for LA violations are 

clearly stretched more to the unacceptable range than for the speaker judgments.  

 This over-estimation of the unacceptability of nonce forms with LA violations 

is directly related to the presence of identical consonants in our training data. 

Consider the case of the roots [mlt] and [fnk'] and their possible counterparts with 

identical consonants [mltt] and [fnk'k']. The repeated stops agree in voice and 

[cg], strengthening adherence to LA; this issue does not arise in the representation 

without reduplication.   

 

3.4.2  Simulation 2: Reduplication 
Turning to the reduplication simulation, figure 4 shows the log-likelihood and 

correlation with speaker judgments for the automatic and hand-written models, 

with several points of interest.  For log-likelihood: 

 

i) after the hand-written grammar is incorporated into the model, the general 

shape of both models is very similar. In both cases, the sharp rise in log-

likelihood corresponds in many cases to the automatic acquisition of 

constraints over generally rare segments and positionally restricted 

segments. 

ii) for both models, the log-likelihood appears to fall once the grammar size 

exceeds 550 constraints. This is likely a sign of over-fitting.  

iii) contrary to the first simulations, the log-likelihood of the hand-written 

model is not consistently lower than that of the automatic model. 

 

Figure 4 shows the results for the correlation between model predictions and 

speaker judgments. Note that the automatic model peaks much later than the 

Figure 4: results for simulation 2 



  

hand-written model. The peak of correlation for the hand-written model (r = .45 

with 40 constraints) is not significantly better than that of the automatic model (r 

= .37 at 380 constraints).  

This improvement in the automatic model, a direct result of the change in the 

encoding of reduplicated consonants, is illustrated in Figure 7 which shows the 

speaker judgments for LA violations and the best automatic model from 

simulation 2. In simulation 1, model predictions for roots with LA violations were 

stretched rightwards, to the more unacceptable range, where in simulation 2, the 

predictions for LA violations are similar to controls. 

A second point of interest is the fact that the most predictive model (the hand-

written model completed to 40 constraints, r=.45) is significantly (p <.01) better 

than the model with the highest log-likelihood (hand-written model completed to 

520 constraints, r=.33). This result must be interpreted with prudence because 

although it appears to call into question the linking function between speaker 

judgments and the log-likelihood of the data, it may well be an artifact of the 

numerous assumptions that we have made in representing the data. Most 

obviously, we have assumed that speakers base their judgments of nonce verb 

roots exclusively on the lexicon of verb roots, and our test data examines only a 

subset of the full range of possible phonotactic restrictions for the language. 

 

3.5 Discussion 
The qualitative improvement in the automatic model’s performance over that of 

Simulation 1 demonstrates that access to information about lexical reduplication 

allows the learner to generalize from the contents of the Amharic lexicon both 

more efficiently and more faithfully to the generalizations made by native 

speakers. Although the hand-written grammar still ultimately achieves a higher 

raw correlation with native speaker judgment than the automatic grammar, this 

difference is no longer significant.  Furthermore, access to information about 

lexical reduplication eliminates the discrepancy between the ability of the hand-

written versus automatic grammars to achieve high cross-validated log-likeihood 

on the lexicon.   

 

4. Conclusion 
Our study shows that assumptions about data representation have significant 

consequences for phonotactic modeling. The problem of representation is 

particularly acute for languages such as Amharic where the definition and 

behavior of a lexical item can be different from English. Here we considered the 

role of identical consonants in speaker judgments of OCP-Place, but there are 

many other variables that have yet to be investigated: root productivity, the 

number of non-verbs associated with the same verb root, or words without 

obvious roots. Finally, our study also highlights the importance of speaker 

judgment data in the evaluation of phonotactic models. The excellent results of 

Hayes and Wilson in modeling English onsets are based mostly on the binary 



  

legal-illegal quality of the Scholes (1986) judgment data that was used to evaluate 

the model. Our results indicate that speakers are sensitive to OCP-Place 

violations, but the fit with model predictions is not as strong. Further judgment 

data designed to explicitly focus on strong distributional restrictions in the 

language may lead the way to yet better models of human phonotactic knowledge.  
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