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The utility of modelling word identification from visual

input within models of eye movements in reading

Klinton Bicknell1 and Roger Levy2

1Department of Psychology, University of California, San Diego,

CA, USA
2Department of Linguistics, University of California, San Diego,

CA, USA

Decades of empirical work have shown that a range of eye movement phenomena in
reading are sensitive to the details of the process of word identification. Despite
this, major models of eye movement control in reading do not explicitly model word
identification from visual input. This paper presents an argument for developing
models of eye movements that do include detailed models of word identification.
Specifically, we argue that insights into eye movement behaviour can be gained by
understanding which phenomena naturally arise from an account in which the eyes
move for efficient word identification, and that one important use of such models is
to test which eye movement phenomena can be understood this way. As an
extended case study, we present evidence from an extension of a previous model of
eye movement control in reading that does explicitly model word identification
from visual input, Mr. Chips (Legge, Klitz, & Tjan, 1997), to test two proposals for
the effect of using linguistic context on reading efficiency.
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One of the major drivers of eye movements in reading is the identification of

the words in the text being read (Rayner, 1998, 2009). Over the past decades,

the word identification process has been demonstrated to be sensitive to the

precise visual input about the word that the eyes receive: e.g., identification is

most efficient when the eyes fixate the part of a particular word that provides

the most disambiguating information to distinguish that word from the other

words in the lexicon (e.g., Clark & O’Regan, 1999; O’Regan, Lévy-Schoen,

Pynte, & Brugaillère, 1984). Given this, it is perhaps a surprising state of

affairs that major contemporary models of eye movement control in reading

(e.g., Engbert, Longtin, & Kliegl, 2002; Engbert, Nuthmann, Richter, &

Kliegl, 2005; Reichle, Pollatsek, Fisher, & Rayner, 1998; Reichle, Warren, &

McConnell, 2009) do not explicitly model word identification from visual

input. Here, we argue that the inclusion of detailed models of word

identification within models of eye movement control in reading*that is,

modelling the dependence of the process of word recognition on the precise

visual input the eyes receive given their position and the text around them*is

a necessary and useful step towards achieving a fuller understanding of eye

movements in reading.

The structure of the paper is as follows. First, we review empirical

evidence that many aspects of eye movements in reading can be understood

as naturally arising from an account in which the eyes are efficiently directed

to identify words from visual input, which we will refer to as an efficient

visual identification account. We next describe how the major models of eye

movement control in reading (Engbert et al., 2002, 2005; Reichle et al., 1998,

2009) can account for many (but not all) of these effects without

incorporating detailed models of word identification from visual input,

and make an argument for why developing models that do incorporate

detailed models of word identification from visual input can be useful: To

verify proposals for how eye movement phenomena can be understood as

arising from efficient visual identification. We then describe the first model

of eye movements in reading that meets this criterion, Mr. Chips (Legge,

Hooven, Klitz, Mansfield, & Tjan, 2002; Legge, Klitz, & Tjan, 1997), and

show how it verifies that a number of such proposals can in fact produce the

eye movement behaviour in question. Finally, as an extended case study on

the utility of models that include models of word identification from visual

input, we focus the remainder of the paper on using such models to test two

intuitions for the effect of linguistic context.

READING ISOLATED WORDS

The first suggestion that the word identification process is sensitive to the

precise visual input that the eyes receive about the word was given by Rayner
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(1979). Rayner reported evidence that the median landing site of the eyes on

a word of text in natural reading of English is just left of its centre, and

conjectured that one explanation for this preferred viewing location is that it

may provide the maximum information about the word being fixated. This

hypothesis was further elaborated by O’Regan (1981), who suggested that

the most efficient place to look in a word is the one that will provide the most

disambiguating visual information to distinguish the word from its visual

neighbours*what is now referred to as the optimal viewing position.1

O’Regan’s (1981) suggestion implies that, although this position may be

on average just left of centre, it should be different for each particular word,

since each word has a different distribution of visual neighbours. For

example, the word xylophone has a very rare beginning, and knowing just the

first two letters distinguish it from virtually all other words of English; by

contrast, knowing that the first two letters of a word are, e.g., ‘‘ca’’ leaves a

large range of possible word identities. Thus, O’Regan predicts that the

optimal viewing position should differ between words.

A range of studies of isolated word recognition have supported the basic

hypothesis that words are on average identified most quickly when fixated at

or just left of the word centre. In the studies, the word to be identified is

displayed at varying displacements relative to the point of fixation, allowing

for experimental control over the position in the word that the reader is

fixating. Then, the researcher can examine the time it takes to say the word

aloud (naming latency), the probability of making a second fixation on the

word (refixation probability), or the total duration of all fixations on the

word (gaze duration), each as a function of the reader’s initial fixation

position within the word. Using this methodology, O’Regan et al. (1984)

presented evidence that*when aggregating over a range of words*naming

latencies, refixation probabilities, and gaze durations were all U-shaped

functions with a minimum at a point just left of the word centre, which climb

rather sharply as the fixation is further away from this point, supporting the

notion that the optimal viewing position is on average just left of a word’s

centre. The conclusion that this effect arises because this is the location in the

word that provides the most disambiguating information to distinguish a

word from its neighbours is further supported by lexical analysis conducted

by Clark and O’Regan (1999), which demonstrated formally that*under

certain assumptions about the nature of the visual input obtained from a

word given the point of fixation*ambiguity about the identity of a word is

minimized on average by fixating just left of centre, vindicating O’Regan’s

original argument.

1 O’Regan originally referred to this position as the convenient viewing position.
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Another result from these studies concerns the locations in the word to

which refixations take the eyes. We can contrast two hypotheses about why a

reader would make a refixation to efficiently identify a word. The hypothesis

that word identification involves obtaining enough visual information to

disambiguate a word from its visual neighbours predicts that if enough visual

information to disambiguate the word cannot be obtained from the current

fixation location, then a reader must move their eyes to another part of the

word*a natural motivation for refixations. Conversely, an alternative

explanation for the optimal viewing position phenomenon may be that

word identification efficiency is related to how well the word can be seen

overall (e.g., perhaps the average distance of the eyes from each of the word’s

characters). Under this hypothesis, if a reader’s initial fixation location is

sufficiently far from the optimal viewing position, the most efficient

correction would be to move the eyes to the optimal position. Thus, when

the initial fixation is too close to the beginning of the word, the

disambiguation hypothesis would predict that a refixation should take the

eyes to the end of the word, whereas the average distance hypothesis would

predict that a refixation should take the eyes to the optimal position (just left

of centre). O’Regan and Lévy-Schoen (1987) report that refixations in these

single-word identification tasks typically take the eyes to the other side of the

word, thus supporting the hypothesis that the best way to understand these

effects is that obtaining disambiguating visual input is crucial to how readers

identify words.
Finally, data from these experiments also support O’Regan’s (1981)

proposal that the optimal viewing position should vary across words,

depending on where the most useful disambiguating visual information is

located for a particular word relative to its visual neighbours. In experiments

comparing French words that could be uniquely disambiguated given only

information about the end of the word but not with information about the

beginning (e.g., circonspecte, interrogatif, transversal, approfondi, architecte)

with words that could be uniquely determined from information about the

beginning but not with information about the end (e.g., perquisition,

attroupement, arrestation, auxiliaire, hirondelle), O’Regan and colleagues

showed that the optimal viewing position (defined for this task as the fixation

point that minimized gaze duration) was closer to the end of the word for the

former group and closer to the beginning of the word for the latter group

(Holmes & O’Regan, 1987; O’Regan & Lévy-Schoen, 1987; O’Regan et al.,

1984). Analogous results have also been shown for single word recognition in

Finnish (Hyönä, Niemi, & Underwood, 1989). Taken together, all these results

provide substantial evidence that the word identification process is one of
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obtaining the specific visual information which will disambiguate a word from

its visual neighbours.

READING WORDS IN TEXT

Given that one of the major components of reading continuous text is

word identification, we might expect the insights obtained from the study

of isolated word identification to directly transfer to reading words

embedded in text. However, in reading continuous text, readers have

access to two sources of information about a word before their first

fixation on the word, which makes the insights gained from the isolated

word recognition case transfer less directly. One additional source of

information that readers can have when reading words embedded in text is

visual information about the word, obtained parafoveally. For example,

there is ample evidence that readers can detect the length of a word in the

parafovea (e.g., Morris, Rayner, & Pollatsek, 1990; Pollatsek & Rayner,

1982; Rayner, 1979) and, in addition, can often obtain information about

(or even identify) the first letters in the word following the one that is

fixated (e.g., Rayner, McConkie, & Zola, 1980, Rayner, Well, Pollatsek, &

Bertera, 1982). The second additional source of information about the

identity of a word that readers have in advance is linguistic context.

Linguistic context can provide substantial constraint on the possible words

that will occur in a particular position, and has robust effects on eye

movements in reading (Balota, Pollatsek, & Rayner, 1985; Ehrlich &

Rayner, 1981). For example, in the context ‘‘The children went outside to

. . .’’, only the identities of the first couple of letters would be necessary to

be virtually certain that the next word is play. Given access to these

additional sources of information prior to their first fixation on a word,

the point in the word that will provide the most disambiguating visual

information about its identity will change.
Because of these complications, we might expect that the relationship

between a measure like gaze duration and the eyes’ first landing position on

a word will be less direct when reading words embedded in text than words

in isolation, which is precisely what Vitu, O’Regan, and Mittau (1990)

found: Gaze durations are on average a relatively constant function of

initial landing positions on the words. Despite the lack of direct effects on

gaze durations, there are other indications that word identification in

reading works in a similar fashion to isolated word recognition. For one,

the familiar U-shaped curve, with a minimum just left of word centre, does

appear when analysing refixation rates by initial landing position

(McConkie, Kerr, Reddix, Zola, & Jacobs, 1989; Rayner, Sereno, & Raney,
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1996). Relatedly, as already mentioned, readers direct their saccades to

words such that their initial fixations on them are on average at or just left

of word centre. The strongest evidence, however � as with single word

identification studies � is provided by demonstrations that eye movement

behaviour in reading is sensitive to the location of the most useful
disambiguating information in particular words. A range of sentence

reading studies in English, French, and Finnish have compared eye

movement behaviour when reading words that can be disambiguated given

only information about the beginning of the word (i.e., words with

redundant endings) to words that cannot be uniquely identified given

only information about the beginning. The results show that when the

word’s ending is redundant, readers are more likely to skip the word’s

second half, and when they do fixate the second half, they do so for a
shorter duration (Hyönä, 1995; Hyönä et al., 1989; Pynte, Kennedy, &

Murray, 1991; Rayner & Morris, 1992; Underwood, Bloomfield, & Clews,

1988; Underwood, Clews, & Everatt, 1990). The natural interpretation of

such findings is that because readers are more likely to be able to identify

words with redundant endings given only visual information about their

beginning, they are less likely to require further visual information about

their end. Results such as these*as well as general principles of theoretical

parsimony*suggest that the underlying principles of the identification of
words embedded in text should be the same as for words in isolation, i.e.,

that identification is a process of obtaining the specific visual information

that will disambiguate a word from its visual neighbours.

This emphasis on word identification from visual input also has the

advantage of providing a unified explanation for a number of phenomena

seen only in continuous reading. One example is the fact that the mode of

the distribution of initial landing positions on a word shifts depending on

the launch site of the previous saccade. That is, when the saccade
originates from further back, the eyes tend to land closer to the beginning

of the word, and when the saccade originates from a position closer to the

word, the eyes tend to land closer to its end (McConkie, Kerr, Reddix, &

Zola, 1988). Because fixation positions closer to the word can yield more

parafoveal preview of the word’s initial letters (Rayner et al., 1980, 1982),

it seems reasonable to suppose that the position in the word containing

the as yet unobtained visual information most useful for disambiguation

may also shift to the right. Another case for which this account may
provide a simple explanation is the effect of word length on the

probability of skipping a word, i.e., not making a fixation on the word.

Rayner and McConkie (1976) demonstrated that skipping rates decrease

with word length, ranging from average rates over 90% for one-character

words to around 40% for five-character words and down to 10% for 10-

character words. The nature of this relationship is precisely what one
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might expect if word identification occurs by obtaining disambiguating

visual input. If we make the simplifying assumption that readers get

approximately the same amount of parafoveal information about words of

each length, for example, we might expect the probability of being able to

effectively disambiguate a word based on parafoveal information to

decrease as words become longer. In summary, not only are there

empirical and theoretical reasons to believe that this account of word

identification plays a large role in shaping eye movements in reading, but

the account can also be used to provide intuitive explanations for a range

of eye movement phenomena.

MAJOR MODELS OF EYE MOVEMENT CONTROL IN READING

Given the discussion in the previous two sections, it may at first seem

surprising that the major models of eye movement control in reading do not

model the process of word identification from visual input. Instead, models

such as E-Z Reader (Pollatsek, Reichle, & Rayner, 2006; Reichle et al., 1998)

and SWIFT (Engbert et al., 2002, 2005; Schad & Engbert, this issue 2012)

make a small set of assumptions about how the word identification process

works on average, and define the model to behave relatively reasonably given

those assumptions. Specifically, the single assumption made by these models

about the word identification process that relates to visual input2 is

essentially that the rate of word identification is lower for words that are

further away from the point of fixation. Formally, in E-Z Reader, the rate of

word identification decreases with the average distance of each letter in the

word from the point of fixation. In SWIFT, the situation is slightly more

complex. There, a processing rate function assigns each letter position a

processing rate. These rates decrease with distance from the point of fixation,

but fall off more rapidly on the left than the right. Then, the rates of word

identification in the model are defined to be faster as the mean of the

processing rates of the letters comprising the word increases (similar to

E-Z Reader) and also as the sum of the rates of the letters increases. Note

that these simplified models of word identification abstract over any

properties of particular words, and there is no representation of how the

letter or word in question is distinguished from the other possible letters or

words that might have been present.
Despite these simplifications, it is the case that under each of these

formalizations, the optimal viewing position (i.e., the position from which a

word will be identified most quickly) will be near the empirically

2 There are also other assumptions made about the word identification process that do not

relate to visual input, which encode effects of word frequency and predictability.
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determined optimal viewing position. For E-Z Reader, it is apparent that it

will be exactly at the centre of the word, since the word identification rate

decreases with distance from the word centre. Similarly, for SWIFT, it will

also be near the centre of the word, since the word identification rate

decreases as the mean and sum of the processing rates of the letters
decrease. For SWIFT, however, because the visual acuity function is

asymmetric and falls off more sharply to the left than to the right, these

rates will be highest when fixating slightly left of the word centre. Thus, this

single assumption correctly encodes the fact that, on average, words in

isolation will be recognized most quickly when fixated near the centre, a

fact that would result naturally from the inclusion of a model of word

identification from visual input.

Given this assumption about the word identification process, one
reasonable way for the models to behave would be to always target

saccades to the centre of words (where they can be most efficiently

identified), and this is in fact what both models do. This stipulation thus

encodes the fact that initial fixations on words are near the word centre,

without appealing to any details of the word identification process.

Additionally, both models assume that there is systematic error (i.e., bias)

in saccade targeting, such that the amplitude of all intended saccades is

shifted closer to a preferred saccade length, which is seven characters in
E-Z Reader and about five characters in SWIFT.3 In both models, the

amount of bias is proportional to the difference between the intended and

preferred saccade lengths, and thus there is more bias for saccades intended

to be especially long or short. For example, in E-Z Reader, a saccade

intended to be nine characters might be pulled towards the preferred length

of seven characters by a character, producing a saccade effectively targeted

for a position eight characters away, yet a saccade intended for a position

11 characters would have twice the bias and end up targeting a position
nine characters away.

The concept of systematic error is not descended from the notion of

efficiently getting disambiguating visual input; nevertheless, it functions in

the models to produce some of the same effects. In combination with the

functional target of saccades in these models always being the centre of the

word, systematic error allows the model to reproduce a number of aspects of

human reading behaviour that we earlier argued could be explained as

readers moving their eyes to efficiently obtain disambiguating visual input.
One aspect of human behaviour that systematic error helps these models to

capture is the shift in the peak of the initial landing site distributions caused

by varying the saccade’s launch site. Specifically, the closer the previous

3 Technically, in SWIFT, the preferred saccade length is different for progressive nonrefixa-

tions, progressive refixations, regressive refixations, and regressive nonrefixations.
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fixation is to the word, the further right the peak shifts, an effect we

suggested could be understood as allowing for more efficient word

identification because fixations closer to a word provide more parafoveal

preview of the word’s initial letters. Systematic error allows E-Z Reader and

SWIFT to reproduce these effects because the amount of undershoot (or
overshoot) grows as the distance to the target word’s centre becomes larger

(smaller). For example, if the centre of the targeted word is seven characters

from the current point of fixation, then the effective saccade target will also

be seven characters; but if the current fixation is further away from the centre

of the targeted word, perhaps 11 characters, a position two characters left of

the word’s centre will be targeted. Another aspect of human behaviour that

E-Z Reader and SWIFT can reproduce by depending on systematic error

concerns refixations. For human readers, refixations launched from the
beginning of a word typically take the eyes to the word’s ending (Rayner

et al., 1996), an effect that we suggested could be understood as allowing for

more efficient word identification because, after a fixation at the beginning,

most of the visual information about the word that has not yet been obtained

is at the end. In E-Z Reader and SWIFT, a refixation initiated from the

beginning of a word, like all saccades, will be targeted to the centre of

the word and subject to systematic error. Except for very long words, the

distance of the current fixation from the centre of the word (the intended
saccade target) will be less than the preferred saccade distance, and thus,

systematic error will cause the eyes to overshoot the word’s centre, resulting

in a fixation on the word’s end. In each of these cases, systematic error allows

the models to reproduce aspects of human reading behaviour that could

otherwise be naturally explained on an efficient visual identification account,

despite the fact that under the models’ simplified assumptions about word

identification, these behaviours actually result in less*not more*efficient

identification.
Clearly, this approach of including within a model of reading only

simplified assumptions about the word identification process has been very

productive, and can reproduce a number of human reading phenomena.

The goals of using such a simplified model of word recognition, according

to Reichle, Rayner, and Pollatsek (2003, section R3) were to make the

models (1) more transparent and (2) simple enough computationally to

evaluate on large corpora. With respect to these criteria, this program has

been a success. It is important, however, to remember the limitations of
such an approach. Perhaps the most obvious limitation of using a

simplified word identification model that does not include any notion of

disambiguating visual input is that the model treats all words similarly, and

cannot distinguish between words with different properties. For example,

words that have disambiguating information in different places, as

described earlier, will not be predicted to differ, and for the same reason,
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such models cannot reproduce orthographic neighbourhood effects

(Pollatsek, Perea, & Binder, 1999). Certainly, this will decrease the model’s

ability to make accurate predictions on cases in which these factors are

relevant. Perhaps more dangerous, however, is the implicit assumption that

there is no variance between words with regard to these properties, which
may also harm the model’s performance in the aggregate. For example,

reading a series of words whose optimal viewing positions vary wildly but

are on average in the centre of the word should yield very different reading

behaviour than reading a series of words whose optimal viewing positions

are each exactly at the centre. Thus, one must be somewhat cautious when

interpreting the predictions of a model of eye movements in reading that

does not incorporate a model of word recognition from disambiguating

visual input. One motivation for pursuing a model of eye movement
control in reading that does incorporate such a model of word recognition,

then, is to ensure that the simplified model of word recognition is not

distorting the model’s predictions too badly.

Perhaps the more exciting reason to pursue models of eye movement

control in reading that include models of word recognition from disambig-

uating visual input is to test and sharpen our intuitions for what would

constitute efficient reading behaviour for word identification. We have

already presented intuitions as to how a number of eye movement
phenomena might be explained in terms of efficient reading behaviour for

word identification. For example, when we suggested that we might

understand the fact that word skipping rates decrease as word length

increases, we made a number of conjectures: (1) The amount of parafoveal

preview available about a word is relatively independent of its length and (2)

the probability of being able to identify a word from a fixed amount of

parafoveal preview decreases as word length increases. Although these both

seem to be reasonable hypotheses, either or both of them may in fact be
incorrect. Thus, if we are to claim that this phenomenon can be explained as

resulting from efficient reading behaviour for word identification, we must

first verify that this behaviour actually does result from efficient reading for

this goal. One way to make such a demonstration is to perform simulations

with an implemented model of eye movements in reading that performs word

identification from visual input and moves its eyes efficiently given this goal.

If the behaviour of such a model reproduces the eye movement phenomenon

in question, then this constitutes evidence that the phenomenon can be
understood as arising from efficient reading for word identification from

visual input. Thus, if we are to argue that many eye movement phenomena in

reading should be understood as naturally resulting from an efficient visual

identification account, one crucial piece of the argument is a demonstration

that a model efficiently identifying words from visual input can actually

reproduce those phenomena.
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MR. CHIPS

For many eye movement phenomena, the intuition that they can be

explained as resulting from an efficient visual identification account has

already been verified by the only extant model of eye movement control in

reading to incorporate a model of word identification from visual input,

Mr. Chips (Legge et al., 1997, 2002).4 This model makes the simplifying

assumption that all fixations are of approximately equal length, and thus

give equal quality visual input, which consists of the (veridical) identities

of the nine characters around the point of fixation as well as peripheral

information about word boundaries in the four character positions on

each side of this range. Mr. Chips uses this visual input to identify words

in series, one at a time, by continuing to obtain visual input about a word

until it has eliminated all possible identities of the word except one. The

model uses this formalization of word identification to plan saccades

according to the following heuristic. It first calculates a probability

distribution over possible identities of the word currently being identified

by combining the visual input obtained thus far with its knowledge of how

likely each word is in the language. (Note that this means that the model

does not make use of the prior linguistic context to identify words.) Then,

the model targets its next saccade to the position that it calculates will

provide the most additional information about the identity of the word

(formally, the position expected to minimize the entropy in its distribution

over possible word identities), taking into account its saccade motor

error.5 The model continues to make saccades in this manner until the

current word is identified with complete certainty, and then it focuses on

identifying the next word (or the one after that if the next word can

already be uniquely identified based on previous visual input).

Despite its overly simplistic model of visual input, this model can

reproduce a number of facets of human eye movement behaviour (Legge

et al., 2002), many of which verify intuitions presented earlier that certain

4 The model of eye movement control in reading other than Mr. Chips that comes closest to

this goal is Glenmore (Reilly & Radach, 2006), which incorporates a connectionist model of

letter and word activation that bears some similarity to interactive activation models of word

identification (McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982). Crucially for

our purposes, however, Glenmore differs from interactive activation models of word recognition

in only having a single letter node for each character position (rather than multiple possible

letter identities) and a single word node for each word (rather than multiple possible word

identities). That is, the model entertains no other candidate letter or word identities other than

the correct one, and thus cannot perform word identification.
5 See Appendix A for formal details of how this algorithm works.
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phenomena can be understood as resulting from an efficient visual

identification account.6 As one important example, the model can reproduce

the preferred landing position effect, in which the most likely position within

words to be initially fixated is at or just left of centre (for English). Figure 1

shows the distribution of initial landing positions on words that are between

three and eight characters long for the Mr. Chips model and our extension of

the Mr. Chips model (which we describe later), both measured using our own

implementation, as well as human data for comparison (calculated from the

Dundee Corpus of eye movements; Kennedy & Pynte, 2005). As can be seen

from Figure 1, the distribution of initial fixations on words produced by

both models (and humans) peaks at or just left of the centre of words (for

words of at least four characters). Because the algorithm used by the

Mr. Chips model to select saccade targets works by choosing the position

6 Note, however, that none of the following simulation results we describe from the

Mr. Chips model show sensitivity to the particular visual information within words. It seems

reasonable given the model’s algorithm for saccade target selection to suppose that the model

will, e.g., be more likely to skip the endings of words whose beginnings uniquely identify the

word, but simulations to verify this have not been performed.

Figure 1. Proportion of first fixations as a function of letter position within words of lengths 3�8 in

the behaviour of humans, the Mr. Chips model, and our extended version of the Mr. Chips model. We

extracted the human data from the Dundee Corpus of eye movements (Kennedy & Pynte, 2005), and

measured the Mr. Chips model and our extension of the model using our own implementation. The

extended version shown was parameterized to use context and a 90% identification criterion. To view

this figure in colour, please see the online issue of the Journal.
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that is expected to provide the most information about the word in question,

this result corroborates O’Regan’s (1981) idea that we can understand the

preferred landing position effect as resulting from the fact that the position is

on average the most useful one to identify words. Further, the result goes

beyond that of Clark and O’Regan (1999), by demonstrating that this

explanation works not just for single word recognition, but is still on average

true of the reading of continuous text, despite the complications of

parafoveal preview, linguistic context, and motor error.

As another example, recall the effect of launch site on the distribution of

initial fixation positions on words, i.e., that the peak of the distribution shifts

forwards (or backwards) as the saccade launch site becomes closer to

(further away from) the word. We previously suggested that we might be able

to understand this in terms of efficient visual identification: Given that

positions closer to a word are likely to yield parafoveal information about the

first characters of the word, the most useful visual information in this case

that the reader has not yet obtained will be at the end of the word, yielding

on average a peak in initial fixations that is further forward, closer to the end

of the word. Legge et al. (2002) present results showing that the behaviour of

the Mr. Chips model displays this effect, supporting the idea that the effect

of launch site can be understood along these lines.

In addition to these effects on initial fixation positions, the model also

verifies a number of other intuitions for how eye movement phenomena can

be understood as resulting from an efficient visual identification account,

including the effect of a word’s length on the rate at which it is skipped and

the effect of initial fixation position on refixation rate. The fact that a single

model of eye movement control in reading that explicitly models the process

of word identification and produces eye movements designed to maximize

identification efficiency can reproduce such a range of phenomena provides

substantial support for the notion that a wide range of reading phenomena

can be understood as resulting from efficient visual identification.

THE EFFECT OF CONTEXT

One prominent eye movement phenomenon in continuous reading for which

the Mr. Chips model does not provide an account, however, is the effect

of linguistic context. It has been known at least since Morton (1964) that the

basic effect of context is to allow for faster reading. Morton demonstrated

that reading of contextualized text is 33% faster than reading random words.

Under a framework in which readers are identifying the words in the text,

the basic role of linguistic context is to provide a second source of

information*in addition to the visual input*about the words’ identities.

For example, given only visual input that the first letter of a word is ‘‘c’’ one
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is left quite uncertain about the identity of the word; but knowing that the

preceding context is ‘‘The first thing I drink every morning is . . .’’ gives

substantially more information about this word’s identity.

Because context can give additional information for word identification, it

may be suggested that a reader who uses this information for word

identification can identify words (and thus read) more efficiently when

contextual information is available than when it is not, explaining this effect

also as resulting from efficient visual identification. In the Mr. Chips model,

however, linguistic knowledge is taken to be simply word frequency

information, and thus the model is unable to use context as an additional

source of information for word identification, meaning that we cannot use

the Mr. Chips model to evaluate whether (and how) this intuition would

actually work out.

In the remainder of this paper, we describe two specific proposals for how

context could increase reading speed under this framework, and then present

an extension of the Mr. Chips model that can make use of context, which we

use to evaluate these specific proposals. The results provide a case study in

the utility of models that incorporate detailed models of word recognition:

Showing that they can help to give insight into the ways in which eye

movement phenomena in reading may (and might not) be understood as

properties of efficient visual identification. Before we describe these

proposals for how context effects may arise from efficient eye movements

for word identification, we first describe effects of context in E-Z Reader and

SWIFT.

EFFECTS OF CONTEXT IN MAJOR MODELS

One function of the linguistic context is to make a word in a text more

predictable in some instances and less predictable in others. For example,

‘‘coffee’’ would be very predictable given the preceding context ‘‘The first

thing I drink every morning is . . .’’, but it would be a more surprising

continuation given a preceding context ‘‘Before bed, the last thing I do after

brushing my teeth is drink a glass of . . . ’’. These effects of predictability have

been well studied in the reading literature, and it is known that when a word

is more predictable given its preceding linguistic context, it is more likely to

be skipped (Balota et al., 1985; Ehrlich & Rayner, 1981) and*when it is

actually fixated*it is fixated for a shorter duration on average (Balota et al.,

1985; Rayner, Ashby, Pollatsek, & Reichle, 2004; Rayner & Well, 1996).

It is via such effects of predictability that E-Z Reader and SWIFT encode

effects of context. Specifically, each of these models explicitly builds in effects

of predictability on the ‘‘word processing rate’’ functions, which in turn

lead to more skipping and shorter fixations on highly predictable words.
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In E-Z Reader, the time required to process a word is broken down into two

components, called L1 and L2, and the time required for each of these

components is given by functions that yield shorter times for words that are

more predictable. Intentional skipping in the model requires that both L1

and L2 for a word complete prior to the word being fixated, which will mean
more skipping of highly predictable words. Similarly, when a word is fixated,

a saccade to leave the word starts being programmed when L1 finishes, which

will thus happen earlier on average for highly predictable words, yielding

shorter fixation times.

In SWIFT, the situation is slightly more complicated. There, word

processing is split into two stages called preprocessing and completion. As

in E-Z Reader, completion is defined to be shorter when words are highly

predictable, but for preprocessing this is not the case. Preprocessing is
actually set to be longer for highly predictable words when they are being

processed parafoveally (i.e., not being fixated) and does not vary as a

function of predictability when the word is being fixated. The reason for this

is that words in SWIFT are more likely to be fixated when parafoveal

preprocessing is closer to completion. Thus, making parafoveal preproces-

sing slower for highly predictable words ensures that these words will have

higher rates of being skipped. When these words are fixated, however, word

processing is faster for more highly predictable words, meaning that fixation
durations will be shorter.

The previous discussion makes it clear that the basic effects of

predictability*fewer and longer fixations on highly predictable words*
will be reproduced by E-Z Reader and SWIFT. From this description,

however, it is not necessarily clear that the overall effect of context, i.e.,

speeding up reading, will be apparent in the behaviour of these models. To

see why it is indeed the case that context speeds reading in these models, we

must describe the relationship between predictability and lexical processing
time in these models in more detail. In each model, the predictability of a

word is formally defined to be the probability of the word in context,

generally estimated by a Cloze task, and the lexical processing times are

taken to be a linear function of this probability. Because this relationship is

taken to be linear (and not, e.g., logit; Agresti, 2002), the only substantial

differences in lexical processing rates between words will be between those

with a relatively high probability in context and those that are close to zero.

(That is, there will be no real differences between words that both have
relatively small values of predictability, say .01 and .0001, despite the fact

that there are multiple orders of magnitude difference between them.) If we

constructed versions of E-Z Reader and SWIFT that did not make use of

context, and instead used values for predictability that were proportional to

word frequency, the overall effect then would be that there were fewer words

that had relatively high predictability, which would have the effect of slowing
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reading. Hence, E-Z Reader and SWIFT do indeed predict the overall effect

that context has of speeding reading.

TWO PROPOSALS FOR THE EFFECT OF CONTEXT

By building the effects of predictability directly into the word processing rate

functions, E-Z Reader and SWIFT can reproduce the basic effects of context.

But insight into the reasons why these effects might occur on an efficient

visual identification account requires additional analysis. There are at least

two suggestions in the literature for the answer to this question.

The first possibility for how context could allow for faster reading

behaviour in a framework such as Mr. Chips is given by the authors of the

Mr. Chips model. Legge and colleagues (2002) suggest that the efficiency of

reading in a model such as Mr. Chips (i.e., the average saccade size) is largely

a function of the model’s average uncertainty about each word’s identity

prior to obtaining any visual input about it (formalized as entropy: See Cover

& Thomas, 2006). To support this notion, they construct a set of artificial

languages with vocabularies of different sizes by subsampling from an

English lexicon, and note that the average uncertainty about a word in those

languages prior to receiving visual input about it is larger for the languages

with larger lexica. They then use the Mr. Chips model to simulate reading of

each of those languages, and demonstrate that the model’s average saccade

size is smaller for languages with larger lexica, and thus for larger

uncertainty. Legge et al. conjecture that, because context also reduces

uncertainty about a word’s identity, it will naturally lead to behaviour with

larger saccades. That is, context will enable the model to select better saccade

targets from which visual input is more efficiently gathered to fully

disambiguate each word because of its better prior knowledge of what the

word is likely to be.

A second possibility for how context could allow for faster reading is that

it may enable a reader to require less visual input to reach a given level of

confidence about predictable words. For this intuition, we must imagine that

instead of requiring that a word is disambiguated completely, a reader is

satisfied with being 90% confident about the word’s identity (i.e., believing

there is a 10% chance that it is not that identity). In this case, we can say that

the word is ‘‘identified’’ when the reader’s confidence in a particular identity

of the word reaches this 90% threshold. Now make the simplifying

assumption that prior to obtaining any visual information about a word,

the reader has veridical knowledge of the preceding context. In that case, the

probability of the true identity of that word under the reader’s beliefs is given

by the word’s predictability in context, which we will denote by p. Thus, the

reader’s initial confidence about the true identity of the word is given by p,
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and*assuming correct identification*the reader will continue gathering

visual input about the word until their confidence in that identity reaches the

90% threshold. On average, then, less visual input will be required to reach

this threshold for words that are highly predictable in their contexts, because

confidence about the true identity of the word begins at a higher level. Note
that this argument does not hold if the confidence criterion is always 100%,

because in this case, the same amount of visual input will be needed

regardless of predictability (i.e., enough to completely rule out all other

possible words). This intuition for the effect of context*that more

predictable words need less visual input to reach a given level of

confidence*is closely related to rational accounts of frequency effects in

isolated word recognition (Moscoso del Prado Martı́n, 2008; Norris, 2006,

2009). For reading of words in context, however, it is to our knowledge
relatively unexplored.

Each of these suggestions for how the use of context might allow a reader

to increase their efficiency appear reasonable, but it is important to note that

neither has been tested in an implemented model of eye movement control in

reading. Thus, it could be the case that one or both of these explanations

cannot in practice significantly increase the rate of reading. In order to gain

more insight, then, into the reasons why context may speed reading, we test

these two intuitions by building an extension of the Mr. Chips model.

EXTENDING MR. CHIPS

In order to use the Mr. Chips framework to test these two intuitions for why

context might allow a reader to be more efficient, we must first extend the
model in two ways: (1) To allow for the use of contextual information in word

identification and (2) to allow for a confidence criterion below 100%. We alter

the model to use contextual information by replacing its knowledge of word

frequency statistics with a word bigram language model (Jurafsky & Martin,

2009), encoding the transition probabilities between each pair of words in the

language.7 We allow for a lower confidence criterion by changing the model of

word identification so that it shifts its focus on to the next word whenever the

model’s posterior probability of some identity of the current word exceeds a
flexible threshold a. Finally, these two changes require that we update the

model’s saccade targeting algorithm so that it still targets the position

7 Although we do not believe that word bigram language models are good approximations of

how human readers make use of context (and do not encode the type of longer range context

effects that reading researchers typically study), we use them here because of their computa-

tional simplicity. Such a model gives a lower bound on the amount of benefit that humans might

obtain from context, and is sufficient for understanding the qualitative effect of using context in

reading.
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expected to give the most information about the word given these two changes

to the model. Details of the modifications are reported in Appendix B.

SIMULATION

We use our extension of the Mr. Chips model to test the two intuitions for

the effect of context mentioned earlier. Recall that the first intuition suggests

that using context will allow the model to more efficiently gather visual

input for 100% identification. We can test this using the extended Mr. Chips

model by fixing the confidence criterion a at 100%, and then comparing the

model’s reading efficiency when it uses context to when it has access only to

frequency information (like the original version of Mr. Chips). The second
intuition suggests that context functions by allowing the reader to read

efficiently with less visual input about predictable words, an intuition that

only holds if the confidence criterion is less than 100%. We can test this

intuition by setting the confidence criterion below 100%, and then

comparing the model’s performance when using context to when using

just frequency information. In this simulation, we test these two hypotheses

and systematically explore the relationship between the effect of context and

the confidence criterion by performing simulations with a range of models
that vary in (1) whether they make use of context or only frequency

information and (2) their confidence criterion. We evaluate the reading

efficiency of the models with two measures: Average saccade size and

proportion of words skipped.

Methods

We represent the language knowledge of the frequency-only model with a

unigram language model and of the model with context with a word bigram
language model. Both models were smoothed with Kneser-Ney under

default parameters (Chen & Goodman, 1998; equivalent to add-d
smoothing for the unigram model). As in Legge et al. (2002), the models

were trained on a 280,000 word corpus of Grimm Brothers’ Fairy Tales,

containing 7503 unique words. This corpus was normalized by Legge et al.

to convert all letters to lowercase, remove all punctuation other than

apostrophes, convert all numbers to their alphabetic equivalents, and

remove all nonsense words.
We test models with context and models with only frequency information

at a range of six levels of the confidence criterion: 90%, 95%, 99%, 99.9%,

99.99%, and 100%, a total of 12 models.8 We evaluate each of these models

8 The models at the extremes of this range*the 100% model without context and the 90%

model with context*were used to demonstrate the landing position results in Figure 1.
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by simulating the reading of two different 40,000 word texts. Following the

procedure used by Legge et al. (2002), one text is artificially generated by the

model’s internal language model, creating a situation under which the model

has exact knowledge of the statistical regularities underlying the text. In

addition, in order to ensure that no artificial properties of these texts
influence the results, we evaluate each model on naturalistic text*the first

40,000 words of Grimm Brothers’ Fairy Tales (i.e., the text on which the

models’ language knowledge is based.)

Results

Figure 2 reports the average saccade sizes of each of the twelve models on

each of the two types of text and Figure 3 reports the proportion of words

skipped.9 Perhaps the most striking pattern from the four graphs is that they

all look very similar. Comparing models with and without context when

using a 100% confidence criterion (the furthest right points in each graph)

reveals a striking disconfirmation of the predictions made by the intuition

that adding context to the Mr. Chips model will substantially increase its
efficiency at identifying words with complete certainty. In fact, the

simulation results show that the model using context is slightly less efficient:

It reads slightly more slowly when reading natural text, and skips slightly

fewer words on both types of text. Thus, at least in this framework, it does

not appear that using context can increase efficiency at identifying words

with complete certainty.

The situation is quite different, however, when we examine the models

that use confidence criteria below 100%. Here there is an interesting
interactive pattern, in which the use of context gives more benefit to

models with a lower criterion. This pattern of results verifies the intuition

that one way in which context can facilitate more efficient reading is

through allowing words to reach a confidence criterion with less visual

9 Although it is orthogonal to our main point here, in which we only use average saccade size

and word skipping rate as indices of reading speed, one may ask to what extent the model’s

saccade size and skip rate resemble human reading behaviour. Unfortunately, both of these

measures vary as a function of a number of variables (e.g., text difficulty), so it is difficult to

draw a precise comparison. That said, the values produced by the model do appear to be within

the usual human range. Rayner (1998) gives the mean saccade size when reading English to be

7�9 characters, a range some of the models we tested fall into (only those with the lower

confidence criteria, and more models with context than without). Regarding human readers’

overall word skipping rates in English, a sample of empirical estimates is given by Rayner and

McConkie (1976), who report a rate of 51%, Vitu, O’Regan, Inhoff, and Topolski (1995), who

report 42%, McDonald and Shillcock (2003), who report 44%, and Greenberg, Inhoff, and

Weger (2006), who report 40%, a comparable range to that of our models (39�46%).
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Figure 2. Effects of context and confidence criterion on mean saccade size in the extended

Mr. Chips model, evaluated when reading natural text (a) and artificial text generated according to

the model’s knowledge of language (b). Confidence criteria are plotted on a logit-transformed

log
p

1 � p

� �
scale, except the criterion of 100%, which is plotted as the rightmost value. Mean

saccade sizes are plotted with 95% confidence intervals. To view this figure in colour, please see the

online issue of the Journal.

Figure 3. Effects of context and confidence criterion on the proportion of skipped words in the

extended Mr. Chips model, evaluated when reading natural text (a) and artificial text generated

according to the model’s knowledge of language (b). Confidence criteria are plotted on a logit-

transformed log
p

1 � p

� �
scale, except the criterion of 100%, which is plotted as the rightmost value.

The proportions of skipped words are plotted with 95% binomial confidence intervals. To view this

figure in colour, please see the online issue of the Journal.
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input. Furthermore, it appears that the lower the criterion the more help

context can give.

Discussion

In summary, the pattern of results presented here provides support for the

notion that context can make reading more efficient for a reader who is

content with substantially less than 100% certainty about the identity of

each word, by allowing the reader to become confident about the identities

of words with, on average, less visual input. It provides no evidence,
however, for the notion that context can increase reading efficiency by

allowing the reader to more efficiently get visual input for full word

disambiguation. Of course, it could be the case that this result depends on

the details of the Mr. Chips framework or of its algorithm for selecting

saccade targets, and that contextual information may be useful to a

different model in helping the reader to more efficiently gather visual input

for full word disambiguation. However, these results with the Mr. Chips

model provide clear evidence for one intuition of how context can increase
reading efficiency and provide no support for the other. This is an example

of one way in which a model of eye movement control in reading that

incorporates a model of word identification from visual input can be

especially useful: In showing that, of two reasonable intuitions for how

context might affect reading behaviour, only one may help increase reading

efficiency in practice.

GENERAL DISCUSSION

In this paper, we presented an argument for the incorporation of models of
word identification from visual input into models of eye movement control

in reading. We first described the extensive evidence that the process of

isolated word recognition depends crucially on the particular visual input

that the eyes receive about a particular word, as well as more limited

evidence that this is also the case for the identification of words embedded in

text. We also gave intuitions for how a number of eye movement phenomena

from reading can be understood as naturally arising as part of a reader

efficiently gathering disambiguating visual input for word identification,
which we termed an efficient visual identification account. We noted that

major models do not incorporate detailed models of word identification,

but rather make simple assumptions about how the process of word

identification works. Although these assumptions are enough to reproduce

442 BICKNELL AND LEVY

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
8:

23
 0

9 
O

ct
ob

er
 2

01
3 



some of these phenomena, they are not enough to reproduce them all. More

crucially for the prospect of understanding eye movement behaviour as

efficient visual identification, these models cannot be used to gain insight

into the reasons why efficiently gathering visual input might give rise to

many eye movement phenomena we observe.

We described the Mr. Chips model, the only extant model of eye

movement control in reading that does incorporate a model of word

identification from visual input, and noted that it verifies many of the

intuitions described here by reproducing many aspects of human eye

movement behaviour from a principle of moving the eyes to the most

informative particular place to identify a particular word. We then

provided an example of how a model of eye movement control in reading

that incorporates a model of word identification from visual input could be

used to test new intuitions for how the use of linguistic context could affect

reading on this account. Accomplishing this required the creation of an

extended version of the Mr. Chips model that could (1) make use of

linguistic context and (2) be content with less than 100% certainty about

the identities of words. Simulations with this extended model revealed that

context can speed reading only in the case that readers do not require 100%

certainty about the identity of each word, providing support for one

intuition about how context could affect reading behaviour, but no

evidence for the other.

We have argued that there is good evidence that many aspects of reading

behaviour can be well understood in an efficient visual identification

account, in which readers move their eyes to efficiently obtain visual input

for word disambiguation. However, for this account to be viable, it must be

demonstrated that it can provide an explanation for many more aspects of

reading behaviour. The only way to provide such demonstrations is

through the use of models of eye movement control in reading that

incorporate a model of word identification from visual input, such as

Mr. Chips.
Our efficient visual identification account is closely related to rational

models of cognition (Anderson, 1990) and to Marr’s (1982) computational

level of analysis. These paradigms assume that the cognitive system

optimizes the behaviour of an agent given the agent’s goals and the

constraints posed by the task, and seek to understand human behaviour in

terms of the efficient ways for agents to perform that task, given the

constraints. In the case of our extension of Mr. Chips, the model’s goal is

defined to be efficient serial identification of each word to a given level of

confidence and the task constraints are given by the model’s language

knowledge, its visual input system, and its motor error. Mr. Chips’ algorithm
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for saccade target selection represents an efficient solution to this problem.10

In rational analysis, the efficient solution to the task is compared to human

behaviour, and if its predictions are found to be incorrect, it is taken to

suggest that either the agent’s assumed goal or the task constraints should be

revised.
Of course, we are not the first to argue for the benefits of incorporating

realistic models of word identification into models of eye movement

control in reading (e.g., Grainger, 2003; Huestegge, Grainger, & Radach,

2003). In fact, in this Special Issue, Reichle, Rayner, and Pollatsek (this

issue 2012) reach a very compatible conclusion. They describe a sort of

rational analysis performed using their E-Z Reader model, in which they

run simulations with the model to determine the most efficient time for a

reader to initiate a saccade to leave a word. Formally, word identification in

E-Z Reader is broken up into two serial stages, first L1 and then L2, and it is

the completion of L1 that triggers initiation of a saccade to leave a word.

Given that there is a delay between the initiation of a saccade and its

execution, initiating a saccade when L1 completes will often mean executing

the saccade around the time L2 completes, and that the word is fully

processed before the eyes leave it. Reichle et al. performed simulations for a

range of values of the total word processing time (L1�L2), and tested the

effect on reading speed of varying the proportion of this total comprised by

L1, i.e., the proportion of total word processing time that has transpired

when a saccade to leave the word is initiated. The results of the simulations

reveal that with the current version of E-Z Reader, the most efficient time

for a reader to initiate a saccade to leave a word is immediately; that is,

reading speed increases monotonically as the saccade to leave a word is

initiated earlier. As in rational analysis, Reichle et al. suggest that the fact

that this conclusion does not comport with human reading behaviour (as

human readers do not immediately initiate saccades to leave words upon

landing) suggests that the constraints on reading imposed by their model

are misspecified. The two main possibilities they highlight for how their

model constraints may be misspecified both relate to the assumptions the

model makes about the word identification process, and specifically about

the role of visual information within it. The first concerns the fact that in

E-Z Reader, the speed of L1 is sensitive to visual information (decreasing

with the average distance of each letter in the word from the fovea) but the

speed of L2 is unaffected by visual properties. Given this, one interpretation

10 It should be noted, however, that Mr. Chips’ algorithm is not necessarily the most efficient

solution to the problem. For example, as each saccade is planned to maximize the information

obtained about the current word, ignoring any information that might be obtained about the

next word, this algorithm can be somewhat short-sighted as a way of minimizing the time

required to identify the entire text.
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of their findings is that while initiating a saccade to leave a word too early

means that the reader will still be processing the word after its eyes have

left, there is no penalty for this in the model, as L2 is insensitive to visual

information. Reichle et al. suggest that a natural solution to this problem in

E-Z Reader would be to make L2 sensitive to visual information (perhaps in
the same way as L1), meaning that the entire word identification process in

E-Z Reader would be sensitive to visual information, bringing the model

more in line with an efficient visual identification account of reading. The

second possible alternative Reichle et al. suggest for how the constraints in

E-Z Reader may need to be revised concerns the notion of word

misidentification, which recent work has indicated may play an important

role in eye movement behaviour (Levy, Bicknell, Slattery, & Rayner, 2009;

Slattery, 2009). Reichle et al. speculate that if the part of the word
identification process that is sensitive to visual information (L1) is

performed too rapidly, it could lead to an increase in the number of

misidentified words, which would have their own penalty on reading

efficiency by causing integration failure downstream. They note, however,

that modelling word misidentification is ‘‘outside of the E-Z Reader

model’s theoretical scope’’ (p. XXX). We argue that both of these

possibilities for what E-Z Reader is missing given by Reichle et al.*a

larger role for visual input throughout the word identification process and
a nonnegligible probability of word misidentification dependent on visual

input*point to the lack of a model of word identification from visual input

in the model. Indeed, these possibilities are natural consequences of an

efficient identification account.

As a model of the efficient identification account, the Mr. Chips

framework has a limitation, however, that prevents it from being able to

reproduce key aspects of human reading behaviour. Namely, it cannot make

predictions for the durations of fixations, but rather only their locations. In
many domains, it is common for models of eye movement control to only

model the where or when components of eye movements. For example, most

models of eye movements in visual search (e.g., Najemnik & Geisler, 2005)

and scene viewing (e.g., Itti & Koch, 2000) only model fixation locations,

while Nuthmann, Smith, Engbert, and Henderson (2010) present a scene

viewing model only of fixation durations (see also Nuthmann & Henderson,

this issue 2012). Mr. Chips is unique, however, among models of eye

movement control in reading in not modelling fixation durations, and
knowledge about effects on the durations of fixations comprise a large

amount (if not the majority) of our knowledge of eye movements in reading.

The ultimate reason why Mr. Chips is unable to model fixation durations

derives from the nature of visual input in the model. After a single timestep

fixating a particular location, the model receives veridical information about

the identities of the nine characters surrounding the point of fixation.
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Because it would obtain no additional visual information by spending

another timestep fixating that location, there is no reason for the model ever

to do so, resulting in all its fixations being of equal duration (i.e., one

timestep). In order to make predictions for variable fixation durations, then,

there must be some reason why it would be efficient to spend more than
one timestep fixating a particular location. One proposed remedy for this

problem is to make the visual input stochastic, i.e., not veridical letter

identities, so that the model can choose to fixate a position longer to obtain

higher quality visual input, an approach explored by Bicknell and Levy

(2010). Another possibility would be to leave visual input veridical, but only

give the reader a particular number of letter identities on each time step. For

example, there could be an expanding visual window around the point of

fixation. Whichever of these methods is used, allowing the model to make
predictions for durations will also necessitate adding other complications to

the model, such as the time it takes to plan and execute a saccade. This

appears, however, to be a necessary step toward allowing for the under-

standing of a much wider range of eye movement phenomena as resulting

from efficient visual identification.

Another advantage of modelling eye movements in reading as a process of

obtaining the most useful visual information for the task is that there are

analogous models of eye movements in a number of other domains. For
example, Najemnik and Geisler (2005, 2008) show that eye movements in a

visual search task are well modelled as being targeted to obtain the most

useful disambiguating visual input about which location in an array contains

the target (see also Butko & Movellan, 2010; Zelinsky, 2008, this issue 2012).

Similarly, Itti and Baldi (2009) report that humans preferentially move their

eyes to locations that are especially informative in scene perception (see also

Kanan, Tong, Zhang, & Cottrell, 2009; Torralba, Oliva, Castelhano, &

Henderson, 2006; Zhang, Tong, Marks, Shan, & Cottrell, 2008) and
Renninger, Verghese, and Coughlan (2007) show that eye movements in a

shape discrimination task are well described as maximizing the total

information gained about the shape. Even beyond the wide applicability of

this framing in terms of efficiently obtaining information, the parallels in

practice between domains when framed this way are striking. For example,

whereas in this paper we highlighted the importance for identifying a word of

the linguistic context around it, in another paper in this Special Issue, Marat

and Itti (this issue 2012) demonstrate the importance for identifying an
object in a scene of using the context around it. Investigating the extent to

which we can understand eye movements in reading as efficiently gathering

visual input for word identification, then, allows for a substantial amount of

interaction with a range of eye movement tasks.

Of course, striving to explain eye movement behaviour across a range of

tasks using a single framework is not a goal unique to the efficient visual
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identification account. Three of the other papers in this Special Issue (each

from a different perspective) also seek to model eye movement behaviour

across tasks using a single model (Nuthmann & Henderson, this issue 2012;

Reichle et al., this issue 2012; Schad & Engbert, this issue 2012). The strategy

in doing so is similar across all three: They each fit the parameters of their
model to the data from each task separately, and show that the resulting

models (with task specific parameters) reproduce a number of the patterns in

the empirical data. These results are important in demonstrating that each of

the model frameworks can be used to understand eye movement behaviour

in more than one task, but they also raise the question of how to interpret

the differences in model parameters across tasks. That is, while these

simulations reveal some underlying similarity between tasks, it is still unclear

why eye movements look one way in one task and another way in another
task. One advantage of rational approaches such as the efficient visual

identification account is that they do not encounter this problem. Because

eye movement behaviour is understood as being performed to efficiently

achieve the agent’s goal in the task, given relevant task constraints, it should

change in systematic ways as the task goal and constraints change. For

example, modifying a model like Mr. Chips to perform visual search for a

particular word rather than word identification would involve changing the

model’s goal: Instead of trying to identify each word, the model would try to
determine whether or not each word was the target word. This slightly

modified goal would lead to a slightly modified saccade targeting algorithm,

in which instead of moving the eyes to the position that will provide the most

information about the identity of the current word, the eyes would be

targeted to the position that will provide the most information about

whether or not the word is the target word. Similarly, the criterion for

moving on to the next word would be a function of the model’s confidence in

whether or not the current word was the target. That is, modifying Mr. Chips
for visual search would only require changing its goal and working out the

implications of that new goal for the model’s algorithm. As the other task

constraints*such as the models of language knowledge, the visual input

system, and motor error*would not need to be changed, the differences

between the model’s behaviour in the two tasks would be interpretable as

arising from the differences in the nature of efficient performance in the two

tasks.

The efficient visual identification account we have proposed (and
rational accounts of eye movement behaviour more generally) implicitly

assumes that the agent can directly control when and where to move the

eyes. Two papers in this Special Issue, however, provide evidence

questioning each of these assumptions (Nuthmann & Henderson, this

issue 2012; Zelinsky, this issue 2012). Zelinsky provides evidence from

visual search tasks showing that a number of fixations land at positions in
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between possible target locations, and he interprets this result as resulting

from an intrinsic constraint of the motor system. Specifically, he presents a

model (TAM; Zelinsky, 2008) in which a number of possible motor

command vectors are entertained, and during saccade planning, this set

of vectors is iteratively pruned, removing at each step
the least desirable motor command. When this process runs to completion,

the saccade will be targeted to the most desirable location. In many cases,

however, this process will not finish prior to the saccade’s launch. When

this occurs, the saccade is sent to the spatial average of the remaining

motor command vectors, yielding fixations targeted to locations exactly in

between objects of interest. One possible objection to this interpretation of

the results is the possibility that locations in between objects of interest

may sometimes be the most desirable place to move the eyes. For example,
Najemnik and Geisler’s (2005, 2008) rational model of visual search also

produces fixations between objects of interest, which are designed to gather

some information about both of them. Zelinsky (this issue 2012) is aware of

this objection and argues that the objects of interest in his experiments were

spaced too far apart for a fixation halfway in between the two to provide

useful information about either object. If this interpretation is correct, his

results provide evidence that in some cases agents cannot directly control

where their saccades are targeted. Similarly, Nuthmann and Henderson
(this issue 2012) provides evidence from both reading and scene viewing

tasks suggesting that agents cannot always directly control the duration of

their fixations. Using an experimental paradigm in which at the beginning

of one-sixth of fixations, the stimulus disappears, and only reappears again

after a random amount of time, Nuthmann and Henderson show that a

number of saccades are launched prior to stimulus onset, while other

saccades appear to wait until the stimulus appears and is processed. They

interpret this result as providing evidence for a model such as CRISP
(Nuthmann et al., 2010), in which there is an autonomous timer that

launches saccades. This timer is loosely coupled to cognition, but it is not

under direct cognitive control. The interpretation of their experimental

results, then, is that on some proportion of the trials on which the stimulus

is delayed, a saccade is launched by the autonomous timer prior to stimulus

onset despite cognitive processing from that location not having yet begun.

At first sight, each of these results may be taken to provide evidence against

a rational approach in which cognition moves the eyes to perform a given
task most efficiently, as indeed, cognition cannot do so if eye movements

are not under its control. However, recall that in the rational approach,

each task has a particular set of task constraints, so each of these

conclusions could be incorporated into a rational model of eye movements

as motor constraints on the task, and the nature of efficient solutions to the

task would change accordingly. Determining precisely what the motor
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constraints are on eye movement control, then, represents a key part of

determining efficient eye movement behaviour, and is an important

direction for future research. Given the relevant task constraints, however,

rational models of eye movement control promise to lead not only to new

predictions and insights for the understanding of eye movements in

reading, but to allow for a unified understanding of eye movement

behaviour across all domains.
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O’Regan, J. K., Lévy-Schoen, A., Pynte, J., & Brugaillère, B. (1984). Convenient fixation

location within isolated words of different length and structure. Journal of Experimental

Psychology: Human Perception and Performance, 10, 250�257.

Pollatsek, A., Perea, M., & Binder, K. S. (1999). The effects of ‘‘neighborhood size’’ in reading

and lexical decision. Journal of Experimental Psychology: Human Perception and Perfor-

mance, 25, 1142�1158.

Pollatsek, A., & Rayner, K. (1982). Eye movement control in reading: The role of word

boundaries. Journal of Experimental Psychology: Human Perception and Performance, 8,

817�833.

Pollatsek, A., Reichle, E. D., & Rayner, K. (2006). Tests of the E-Z Reader model: Exploring the

interface between cognition and eye-movement control. Cognitive Psychology, 52, 1�56.

Pynte, J., Kennedy, A., & Murray, W. S. (1991). Within-word inspection strategies in continuous

reading: Time course of perceptual, lexical, and contextual processes. Journal of

Experimental Psychology: Human Perception and Performance, 17, 458�470.

Rayner, K. (1979). Eye guidance in reading: Fixation locations within words. Perception, 8,

21�30.

Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research.

Psychological Bulletin, 124, 372�422.

Rayner, K. (2009). The 35th Sir Frederick Bartlett lecture: Eye movements and attention in

reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology,

62, 1457�1506.

Rayner, K., Ashby, J., Pollatsek, A., & Reichle, E. D. (2004). The effects of frequency and

predictability on eye fixations in reading: Implications for the E-Z Reader model. Journal of

Experimental Psychology: Human Perception and Performance, 30, 720�732.

Rayner, K., & McConkie, G. W. (1976). What guides a reader’s eye movements? Vision Research,

16, 829�837.

Rayner, K., McConkie, G. W., & Zola, D. (1980). Integrating information across eye

movements. Cognitive Psychology, 12, 206�226.

Rayner, K., & Morris, R. K. (1992). Eye movement control in reading: Evidence against

semantic preprocessing. Journal of Experimental Psychology: Human Perception and

Performance, 18, 163�172.

Rayner, K., Sereno, S. C., & Raney, G. E. (1996). Eye movement control in reading: A

comparison of two types of models. Journal of Experimental Psychology: Human Perception

and Performance, 22, 1188�1200.

Rayner, K., & Well, A. D. (1996). Effects of contextual constraint on eye movements in reading:

A further examination. Psychonomic Bulletin and Review, 3, 504�509.

Rayner, K., Well, A. D., Pollatsek, A., & Bertera, J. H. (1982). The availability of useful

information to the right of fixation in reading. Perception and Psychophysics, 31, 537�550.

MODELLING WORD IDENTIFICATION IN READING 451

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
8:

23
 0

9 
O

ct
ob

er
 2

01
3 



Reichle, E. D., Pollatsek, A., Fisher, D. L., & Rayner, K. (1998). Toward a model of eye

movement control in reading. Psychological Review, 105, 125�157.

Reichle, E. D., Rayner, K., & Pollatsek, A. (2003). The E-Z Reader model of eye-movement

control in reading: Comparisons to other models. Behavioral and Brain Sciences, 26,

445�526.

Reichle, E. D., Rayner, K., & Pollatsek, A. (2012). Eye movements in reading versus non-

reading tasks: Using E-Z Reader to understand the role of word/stimulus familiarity. Visual

Cognition, 20, 360�390.

Reichle, E. D., Warren, T., & McConnell, K. (2009). Using E-Z Reader to model the effects of

higher level language processing on eye movements during reading. Psychonomic Bulletin

and Review, 16, 1�21.

Reilly, R. G., & Radach, R. (2006). Some empirical tests of an interactive activation model of

eye movement control in reading. Cognitive Systems Research, 7, 34�55.

Renninger, L. W., Verghese, P., & Coughlan, J. (2007). Where to look next? Eye movements

reduce local uncertainty. Journal of Vision, 7, 1�17.

Rumelhart, D. E., & McClelland, J. L. (1982). An interactive activation model of context effects

in letter perception: Part 2. The contextual enhancement effect and some tests and

extensions of the model. Psychological Review, 89, 60�94.

Schad, D., & Engbert, R. (2012). The zoom lens of attention: Simulating shuffled versus normal

text reading using the SWIFT model. Visual Cognition, 20, 391�421.

Slattery, T. J. (2009). Word misperception, the neighbor frequency effect, and the role of

sentence context: Evidence from eye movements. Journal of Experimental Psychology:

Human Perception and Performance, 35, 1969�1975.

Torralba, A., Oliva, A., Castelhano, M. S., & Henderson, J. M. (2006). Contextual guidance of

eye movements and attention in real-world scenes: The role of global features in object

search. Psychological Review, 113, 766�786.

Underwood, G., Bloomfield, R., & Clews, S. (1988). Information influences the pattern of eye

fixations during sentence comprehension. Perception, 17, 267�278.

Underwood, G., Clews, S., & Everatt, J. (1990). How do readers know where to look next? Local

information distributions influence eye fixations. Quarterly Journal of Experimental

Psychology, 42A, 39�65.

Vitu, F., O’Regan, J. K., Inhoff, A. W., & Topolski, R. (1995). Mindless reading: Eye-movement

characteristics are similar in scanning letter strings and reading texts. Perception and

Psychophysics, 57, 352�364.

Vitu, F., O’Regan, J. K., & Mittau, M. (1990). Optimal landing position in reading isolated

words and continuous text. Perception and Psychophysics, 47, 583�600.

Zelinsky, G. J. (2008). A theory of eye movements during target acquisition. Psychological

Review, 115, 787�835.

Zelinsky, G. J. (2012). TAM: Explaining off-object fixations and central fixation tendencies as

effects of population averaging during search. Visual Cognition, 20, 515�545.

Zhang, L., Tong, M. H., Marks, T. K., Shan, H., & Cottrell, G. W. (2008). SUN: A Bayesian

framework for saliency using natural statistics. Journal of Vision, 8, 1�20.

Manuscript received August 2011

Manuscript accepted February 2012

First published online May 2012

452 BICKNELL AND LEVY

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a,
 S

an
 D

ie
go

] 
at

 1
8:

23
 0

9 
O

ct
ob

er
 2

01
3 



APPENDIX A:
DETAILS OF THE MR. CHIPS SACCADE TARGETING

ALGORITHM

We now give the algorithm that the Mr. Chips model uses to select the

intended target for the next saccade. First, note that given the visual input

obtained by the model from the first to the ith fixation I1
i and the word

frequency information, the model can calculate the posterior probability of

any possible identity of a word w that is consistent with the visual input by
normalizing its probability from the language model by the total probability

of all visually consistent identities,

p wjI i
1

� �
¼ v I i

1;wð Þp wð ÞP
w0 v I i

1;w0ð Þp w0ð Þ
(1)

where x(I ,w) is an indicator function with a value of 1 if w is consistent with

the visual input I and 0 otherwise, and p(w) is the probability of w under the

language model.

To identify a given word, the model selects the saccade target t̂ that, on

average, will minimize the entropy in this distribution, i.e., that is expected to

give the most information about the word’s identity

t̂ ¼ arg min
t

E H wjI i
1

� �
t; I i�1

1

�� �
¼ arg min

t

X
I i

H wjI i
1

� �
p I i tj ; I i�1

1

� �
:

"
(2)

That is, the minimum can be found by calculating the entropy of the conditional

distribution produced by each possible new input sequence and weighting those

entropies by the probability of getting that input sequence given a choice of

target location. In information theory (Cover & Thomas, 2006), the entropy of

the conditional distribution p(wjI i
1) is standardly defined as

HðwjI i
1Þ ¼ �

X
w

pðwjI i
1Þ log pðwjI i

1Þ: (3)

The second term in the formula for t̂ is the probability of a particular
visual input given a target location and previous input. Because of motor

error in the execution of saccades, we must calculate this term by margin-

alizing over possible landing positions ‘ given a particular target position t

p I i t; I i�1
1

��� �
¼

X
‘

p ‘ tjð Þp I i ‘j ; I i�1
1

� �
(4)
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where p(‘jt) is given by the motor error function. We then marginalize over

possible words

p I i ‘j ; I i�1
1

� �
¼

X
w

v I i; ‘;wð Þp w I i�1
1

��� �
(5)

where x(I ,‘,w) is an indicator function with a value of 1 if w is consistent

with the visual input I obtained about w from position ‘, and 0 otherwise.

Putting these together, we have that t̂ is selected as

arg min
t

X
I i

H w I i
1

��� �X
‘

p ‘ tjð Þ
X
w

p I i ‘j ;wð Þp w I i�1
1

��� �
: (6)

That is, we can calculate the expected entropy for each possible value of t by
summing over all possible inputs, whose probabilities are given by summing

over all possible identities of the word and landing positions.

APPENDIX B:
DETAILS OF THE SACCADE TARGETING ALGORITHM

IN OUR EXTENSION OF MR. CHIPS

Note that this section builds on, and thus presumes knowledge of, Appendix

A. As in the original Mr. Chips model, at any given point in time, the model

is working to identify one word. However, this revised model considers the

goal of identifying this word achieved when the marginal probability of some
identity for the word given the visual input exceeds a predefined threshold

probability a. This flexibility requires the algorithm to be substantially

modified to allow for uncertainty about previous word identities and the use

of linguistic context. We denote the sequence of words as W, where the first

word is W1.

Because every word in Mr. Chips was identified with complete certainty,

the model always knew precisely at which position the next word to be

identified began, and its goal was always to identify this next word. Now that
the model has uncertainty about the identities of previous words, however,

the goal must be changed. In the revised model, the reader is always focused

on some character position n, and its goal is to identify which word W(n)

begins at that position (if any), with confidence exceeding a. Once the model

has achieved this goal, it then chooses a new character position n via a

procedure whose description we leave for later. To be explicit about this goal,
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we slightly update our original equation for choosing t̂, swapping w out for

W(n)

t̂ ¼ arg min
t

X
I i

H W nð Þ I i
1

��
 �
p I i tj ; I i�1

1

� �
(7)

where the entropy is calculated assuming that some word does in fact begin

at position n. The fact that our language model can now make use of

linguistic context means that the equation for finding the probability of the

current word given some visual input (Equation 1) must also be changed to

marginalize over identities of the preceding words

p W nð Þ I i
1

��
 �
¼

X
W

nð Þ�1

1

p W nð Þ I i
1;W

nð Þ�1
1

���
 �
p W

nð Þ�1
1 I i

1

��
 �
(8)

where W1
(n)�1 denotes the range of words beginning with the first word of

the sentence W1 and extending through the word prior to the word beginning

at position n. These probabilities of strings consistent with the visual input

are again given probabilities according to their probability in the language

model normalized by the probability of all other consistent strings (cf.

Equation 1)

p W I i
1

��� �
¼

v I i
1;W

� �
p Wð ÞP

W

v I i
1;W

� �
p Wð Þ

: (9)

The second term in Equation 7 is expanded as in Mr. Chips by

marginalizing over the possible landing position ‘

p I i tj ; I i�1
1

� �
¼

X
‘

p ‘ tjð Þp I i ‘j ; I i�1
1

� �
; (10)

but now to incorporate information about the linguistic context, we must
next marginalize over possible full sentence strings instead of possible words

p I i ‘j ; I i�1
1

� �
¼

X
W

v I i; ‘;Wð Þp W I i�1
1

��� �
: (11)

If we make the simplifying assumption that the model does not consider

possible future input about words that are after W(n), this sum can again be
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finitely computed for a given t by a relatively straightforward dynamic

programming scheme. The range of possible values of t to search through

also grows relative to Mr. Chips, because the model must consider not only

any position that can give visual input about W(n) itself, but also positions

that can give information about any position of uncertainty, since that may
indirectly help to identify W(n) through linguistic context. In the case where

the language model is an n-gram model, the probability of a word in context

is a function only of the previous n-1 words. Thus, the minimum value of t

that can contribute toward helping to identify W(n) cannot be further back

than the most recent string of n-1 words for which the model has no residual

uncertainty. Having established the method of selecting a saccade to identify

W(n), we next give a description of the full algorithm of the model, including

how to select n.
The model always begins reading by focusing on identifying W(0). Once

the probability of some identity for W(0) is greater than a, all the possible

identities of W(0) that have not been ruled out by visual input are combined

into a set of possible ‘‘prefixes’’. Each of these prefixes has a conditional

probability given the visual input, and each one predicts that the next word

in the sentence begins at a particular position (i.e., two characters past the

end of that string). Thus, the set of prefixes specify a probability distribution

over the possible positions at which the next word begins. The model simply
selects the most likely such position as the next character position n to focus

on identifying W(n).

Now in the general case, the system has a set of prefixes together with

their conditional probabilities given the visual input, and a position n, which

it is trying to identity the word beginning at. It plans and executes saccades

according to the formula for t̂, and after getting each new piece of visual

information, the model rules out not only possible candidates for the current

word, but also possible prefix strings, and renormalizes both distributions.
The model’s attempt to identify W(n) can now end in one of two ways: (a) the

model’s confidence in some identity of W(n) exceeds the confidence threshold

a or (b) the model eliminates all possible candidates for W(n) and thus knows

that no word begins at that position. In the former case, the model creates all

possible concatenations of prefixes ending two characters prior to W(n) (i.e.,

prefixes whose next word begins at n) with all the possible identities of W(n),

and adds these new strings to the set of prefixes. Then, in both cases, it

removes those original prefixes whose next word begins at n from the set.
Note that this update of the list of prefixes leaves unaffected prefixes that are

incompatible with a word beginning at position n, but still compatible with

visual input. Finally, since the set of prefixes again gives a distribution over

the starting position of the next word, the model selects the most likely new n

and the cycle continues.
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